diff options
Diffstat (limited to 'core/math/quaternion.cpp')
-rw-r--r-- | core/math/quaternion.cpp | 118 |
1 files changed, 89 insertions, 29 deletions
diff --git a/core/math/quaternion.cpp b/core/math/quaternion.cpp index 3f1d2c58e5..c681c60694 100644 --- a/core/math/quaternion.cpp +++ b/core/math/quaternion.cpp @@ -5,8 +5,8 @@ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -44,7 +44,7 @@ real_t Quaternion::angle_to(const Quaternion &p_to) const { // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_xyz() const { Basis m(*this); - return m.get_euler_xyz(); + return m.get_euler(Basis::EULER_ORDER_XYZ); } // get_euler_yxz returns a vector containing the Euler angles in the format @@ -56,7 +56,7 @@ Vector3 Quaternion::get_euler_yxz() const { ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif Basis m(*this); - return m.get_euler_yxz(); + return m.get_euler(Basis::EULER_ORDER_YXZ); } void Quaternion::operator*=(const Quaternion &p_q) { @@ -102,6 +102,22 @@ Quaternion Quaternion::inverse() const { return Quaternion(-x, -y, -z, w); } +Quaternion Quaternion::log() const { + Quaternion src = *this; + Vector3 src_v = src.get_axis() * src.get_angle(); + return Quaternion(src_v.x, src_v.y, src_v.z, 0); +} + +Quaternion Quaternion::exp() const { + Quaternion src = *this; + Vector3 src_v = Vector3(src.x, src.y, src.z); + real_t theta = src_v.length(); + if (theta < CMP_EPSILON) { + return Quaternion(0, 0, 0, 1); + } + return Quaternion(src_v.normalized(), theta); +} + Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); @@ -114,22 +130,16 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con cosom = dot(p_to); // adjust signs (if necessary) - if (cosom < 0.0) { + if (cosom < 0.0f) { cosom = -cosom; - to1.x = -p_to.x; - to1.y = -p_to.y; - to1.z = -p_to.z; - to1.w = -p_to.w; + to1 = -p_to; } else { - to1.x = p_to.x; - to1.y = p_to.y; - to1.z = p_to.z; - to1.w = p_to.w; + to1 = p_to; } // calculate coefficients - if ((1.0 - cosom) > CMP_EPSILON) { + if ((1.0f - cosom) > (real_t)CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); @@ -138,7 +148,7 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation - scale0 = 1.0 - p_weight; + scale0 = 1.0f - p_weight; scale1 = p_weight; } // calculate final values @@ -158,14 +168,14 @@ Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) c real_t dot = from.dot(p_to); - if (Math::absf(dot) > 0.9999) { + if (Math::absf(dot) > 0.9999f) { return from; } real_t theta = Math::acos(dot), - sinT = 1.0 / Math::sin(theta), + sinT = 1.0f / Math::sin(theta), newFactor = Math::sin(p_weight * theta) * sinT, - invFactor = Math::sin((1.0 - p_weight) * theta) * sinT; + invFactor = Math::sin((1.0f - p_weight) * theta) * sinT; return Quaternion(invFactor * from.x + newFactor * p_to.x, invFactor * from.y + newFactor * p_to.y, @@ -173,22 +183,72 @@ Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) c invFactor * from.w + newFactor * p_to.w); } -Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { +Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif - //the only way to do slerp :| - real_t t2 = (1.0 - p_weight) * p_weight * 2; - Quaternion sp = this->slerp(p_b, p_weight); - Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight); - return sp.slerpni(sq, t2); + Quaternion from_q = *this; + Quaternion pre_q = p_pre_a; + Quaternion to_q = p_b; + Quaternion post_q = p_post_b; + + // Align flip phases. + from_q = Basis(from_q).get_rotation_quaternion(); + pre_q = Basis(pre_q).get_rotation_quaternion(); + to_q = Basis(to_q).get_rotation_quaternion(); + post_q = Basis(post_q).get_rotation_quaternion(); + + // Flip quaternions to shortest path if necessary. + bool flip1 = signbit(from_q.dot(pre_q)); + pre_q = flip1 ? -pre_q : pre_q; + bool flip2 = signbit(from_q.dot(to_q)); + to_q = flip2 ? -to_q : to_q; + bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q)); + post_q = flip3 ? -post_q : post_q; + + // Calc by Expmap in from_q space. + Quaternion ln_from = Quaternion(0, 0, 0, 0); + Quaternion ln_to = (from_q.inverse() * to_q).log(); + Quaternion ln_pre = (from_q.inverse() * pre_q).log(); + Quaternion ln_post = (from_q.inverse() * post_q).log(); + Quaternion ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); + ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); + ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); + Quaternion q1 = from_q * ln.exp(); + + // Calc by Expmap in to_q space. + ln_from = (to_q.inverse() * from_q).log(); + ln_to = Quaternion(0, 0, 0, 0); + ln_pre = (to_q.inverse() * pre_q).log(); + ln_post = (to_q.inverse() * post_q).log(); + ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); + ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); + ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); + Quaternion q2 = to_q * ln.exp(); + + // To cancel error made by Expmap ambiguity, do blends. + return q1.slerp(q2, p_weight); } Quaternion::operator String() const { return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")"; } +Vector3 Quaternion::get_axis() const { + if (Math::abs(w) > 1 - CMP_EPSILON) { + return Vector3(x, y, z); + } + real_t r = ((real_t)1) / Math::sqrt(1 - w * w); + return Vector3(x * r, y * r, z * r); +} + +real_t Quaternion::get_angle() const { + return 2 * Math::acos(w); +} + Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); @@ -200,8 +260,8 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { z = 0; w = 0; } else { - real_t sin_angle = Math::sin(p_angle * 0.5); - real_t cos_angle = Math::cos(p_angle * 0.5); + real_t sin_angle = Math::sin(p_angle * 0.5f); + real_t cos_angle = Math::cos(p_angle * 0.5f); real_t s = sin_angle / d; x = p_axis.x * s; y = p_axis.y * s; @@ -215,9 +275,9 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Quaternion::Quaternion(const Vector3 &p_euler) { - real_t half_a1 = p_euler.y * 0.5; - real_t half_a2 = p_euler.x * 0.5; - real_t half_a3 = p_euler.z * 0.5; + real_t half_a1 = p_euler.y * 0.5f; + real_t half_a2 = p_euler.x * 0.5f; + real_t half_a3 = p_euler.z * 0.5f; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) |