diff options
Diffstat (limited to 'core/math/quat.cpp')
-rw-r--r-- | core/math/quat.cpp | 177 |
1 files changed, 78 insertions, 99 deletions
diff --git a/core/math/quat.cpp b/core/math/quat.cpp index c10f5da494..a9a21a1ba3 100644 --- a/core/math/quat.cpp +++ b/core/math/quat.cpp @@ -5,8 +5,8 @@ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -31,33 +31,7 @@ #include "quat.h" #include "core/math/basis.h" -#include "core/print_string.h" - -// set_euler_xyz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses XYZ convention (Z is the first rotation). -void Quat::set_euler_xyz(const Vector3 &p_euler) { - real_t half_a1 = p_euler.x * 0.5; - real_t half_a2 = p_euler.y * 0.5; - real_t half_a3 = p_euler.z * 0.5; - - // R = X(a1).Y(a2).Z(a3) convention for Euler angles. - // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) - // a3 is the angle of the first rotation, following the notation in this reference. - - real_t cos_a1 = Math::cos(half_a1); - real_t sin_a1 = Math::sin(half_a1); - real_t cos_a2 = Math::cos(half_a2); - real_t sin_a2 = Math::sin(half_a2); - real_t cos_a3 = Math::cos(half_a3); - real_t sin_a3 = Math::sin(half_a3); - - set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1, - -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3, - sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2, - -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); -} +#include "core/string/print_string.h" // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, @@ -68,32 +42,6 @@ Vector3 Quat::get_euler_xyz() const { return m.get_euler_xyz(); } -// set_euler_yxz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -void Quat::set_euler_yxz(const Vector3 &p_euler) { - real_t half_a1 = p_euler.y * 0.5; - real_t half_a2 = p_euler.x * 0.5; - real_t half_a3 = p_euler.z * 0.5; - - // R = Y(a1).X(a2).Z(a3) convention for Euler angles. - // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) - // a3 is the angle of the first rotation, following the notation in this reference. - - real_t cos_a1 = Math::cos(half_a1); - real_t sin_a1 = Math::sin(half_a1); - real_t cos_a2 = Math::cos(half_a2); - real_t sin_a2 = Math::sin(half_a2); - real_t cos_a3 = Math::cos(half_a3); - real_t sin_a3 = Math::sin(half_a3); - - set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, - sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, - -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, - sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); -} - // get_euler_yxz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. @@ -106,16 +54,16 @@ Vector3 Quat::get_euler_yxz() const { return m.get_euler_yxz(); } -void Quat::operator*=(const Quat &q) { - set(w * q.x + x * q.w + y * q.z - z * q.y, - w * q.y + y * q.w + z * q.x - x * q.z, - w * q.z + z * q.w + x * q.y - y * q.x, - w * q.w - x * q.x - y * q.y - z * q.z); +void Quat::operator*=(const Quat &p_q) { + x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; + y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; + z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; + w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; } -Quat Quat::operator*(const Quat &q) const { +Quat Quat::operator*(const Quat &p_q) const { Quat r = *this; - r *= q; + r *= p_q; return r; } @@ -146,29 +94,29 @@ Quat Quat::inverse() const { return Quat(-x, -y, -z, w); } -Quat Quat::slerp(const Quat &q, const real_t &t) const { +Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif Quat to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine - cosom = dot(q); + cosom = dot(p_to); // adjust signs (if necessary) if (cosom < 0.0) { cosom = -cosom; - to1.x = -q.x; - to1.y = -q.y; - to1.z = -q.z; - to1.w = -q.w; + to1.x = -p_to.x; + to1.y = -p_to.y; + to1.z = -p_to.z; + to1.w = -p_to.w; } else { - to1.x = q.x; - to1.y = q.y; - to1.z = q.z; - to1.w = q.w; + to1.x = p_to.x; + to1.y = p_to.y; + to1.z = p_to.z; + to1.w = p_to.w; } // calculate coefficients @@ -177,13 +125,13 @@ Quat Quat::slerp(const Quat &q, const real_t &t) const { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); - scale0 = Math::sin((1.0 - t) * omega) / sinom; - scale1 = Math::sin(t * omega) / sinom; + scale0 = Math::sin((1.0 - p_weight) * omega) / sinom; + scale1 = Math::sin(p_weight * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation - scale0 = 1.0 - t; - scale1 = t; + scale0 = 1.0 - p_weight; + scale1 = p_weight; } // calculate final values return Quat( @@ -193,14 +141,14 @@ Quat Quat::slerp(const Quat &q, const real_t &t) const { scale0 * w + scale1 * to1.w); } -Quat Quat::slerpni(const Quat &q, const real_t &t) const { +Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif const Quat &from = *this; - real_t dot = from.dot(q); + real_t dot = from.dot(p_to); if (Math::absf(dot) > 0.9999) { return from; @@ -208,24 +156,24 @@ Quat Quat::slerpni(const Quat &q, const real_t &t) const { real_t theta = Math::acos(dot), sinT = 1.0 / Math::sin(theta), - newFactor = Math::sin(t * theta) * sinT, - invFactor = Math::sin((1.0 - t) * theta) * sinT; + newFactor = Math::sin(p_weight * theta) * sinT, + invFactor = Math::sin((1.0 - p_weight) * theta) * sinT; - return Quat(invFactor * from.x + newFactor * q.x, - invFactor * from.y + newFactor * q.y, - invFactor * from.z + newFactor * q.z, - invFactor * from.w + newFactor * q.w); + return Quat(invFactor * from.x + newFactor * p_to.x, + invFactor * from.y + newFactor * p_to.y, + invFactor * from.z + newFactor * p_to.z, + invFactor * from.w + newFactor * p_to.w); } -Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const { +Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif //the only way to do slerp :| - real_t t2 = (1.0 - t) * t * 2; - Quat sp = this->slerp(q, t); - Quat sq = prep.slerpni(postq, t); + real_t t2 = (1.0 - p_weight) * p_weight * 2; + Quat sp = this->slerp(p_b, p_weight); + Quat sq = p_pre_a.slerpni(p_post_b, p_weight); return sp.slerpni(sq, t2); } @@ -233,18 +181,49 @@ Quat::operator String() const { return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w); } -void Quat::set_axis_angle(const Vector3 &axis, const real_t &angle) { +Quat::Quat(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS - ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized."); + ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); #endif - real_t d = axis.length(); + real_t d = p_axis.length(); if (d == 0) { - set(0, 0, 0, 0); + x = 0; + y = 0; + z = 0; + w = 0; } else { - real_t sin_angle = Math::sin(angle * 0.5); - real_t cos_angle = Math::cos(angle * 0.5); + real_t sin_angle = Math::sin(p_angle * 0.5); + real_t cos_angle = Math::cos(p_angle * 0.5); real_t s = sin_angle / d; - set(axis.x * s, axis.y * s, axis.z * s, - cos_angle); + x = p_axis.x * s; + y = p_axis.y * s; + z = p_axis.z * s; + w = cos_angle; } } + +// Euler constructor expects a vector containing the Euler angles in the format +// (ax, ay, az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses YXZ convention (Z is the first rotation). +Quat::Quat(const Vector3 &p_euler) { + real_t half_a1 = p_euler.y * 0.5; + real_t half_a2 = p_euler.x * 0.5; + real_t half_a3 = p_euler.z * 0.5; + + // R = Y(a1).X(a2).Z(a3) convention for Euler angles. + // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) + // a3 is the angle of the first rotation, following the notation in this reference. + + real_t cos_a1 = Math::cos(half_a1); + real_t sin_a1 = Math::sin(half_a1); + real_t cos_a2 = Math::cos(half_a2); + real_t sin_a2 = Math::sin(half_a2); + real_t cos_a3 = Math::cos(half_a3); + real_t sin_a3 = Math::sin(half_a3); + + x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; + y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; + z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; + w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; +} |