diff options
Diffstat (limited to 'core/math/quat.cpp')
-rw-r--r-- | core/math/quat.cpp | 72 |
1 files changed, 36 insertions, 36 deletions
diff --git a/core/math/quat.cpp b/core/math/quat.cpp index b6a017dd41..fc2d71c377 100644 --- a/core/math/quat.cpp +++ b/core/math/quat.cpp @@ -106,16 +106,16 @@ Vector3 Quat::get_euler_yxz() const { return m.get_euler_yxz(); } -void Quat::operator*=(const Quat &q) { - set(w * q.x + x * q.w + y * q.z - z * q.y, - w * q.y + y * q.w + z * q.x - x * q.z, - w * q.z + z * q.w + x * q.y - y * q.x, - w * q.w - x * q.x - y * q.y - z * q.z); +void Quat::operator*=(const Quat &p_q) { + set(w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y, + w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z, + w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x, + w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z); } -Quat Quat::operator*(const Quat &q) const { +Quat Quat::operator*(const Quat &p_q) const { Quat r = *this; - r *= q; + r *= p_q; return r; } @@ -146,29 +146,29 @@ Quat Quat::inverse() const { return Quat(-x, -y, -z, w); } -Quat Quat::slerp(const Quat &q, const real_t &t) const { +Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif Quat to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine - cosom = dot(q); + cosom = dot(p_to); // adjust signs (if necessary) if (cosom < 0.0) { cosom = -cosom; - to1.x = -q.x; - to1.y = -q.y; - to1.z = -q.z; - to1.w = -q.w; + to1.x = -p_to.x; + to1.y = -p_to.y; + to1.z = -p_to.z; + to1.w = -p_to.w; } else { - to1.x = q.x; - to1.y = q.y; - to1.z = q.z; - to1.w = q.w; + to1.x = p_to.x; + to1.y = p_to.y; + to1.z = p_to.z; + to1.w = p_to.w; } // calculate coefficients @@ -177,13 +177,13 @@ Quat Quat::slerp(const Quat &q, const real_t &t) const { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); - scale0 = Math::sin((1.0 - t) * omega) / sinom; - scale1 = Math::sin(t * omega) / sinom; + scale0 = Math::sin((1.0 - p_weight) * omega) / sinom; + scale1 = Math::sin(p_weight * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation - scale0 = 1.0 - t; - scale1 = t; + scale0 = 1.0 - p_weight; + scale1 = p_weight; } // calculate final values return Quat( @@ -193,14 +193,14 @@ Quat Quat::slerp(const Quat &q, const real_t &t) const { scale0 * w + scale1 * to1.w); } -Quat Quat::slerpni(const Quat &q, const real_t &t) const { +Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif const Quat &from = *this; - real_t dot = from.dot(q); + real_t dot = from.dot(p_to); if (Math::absf(dot) > 0.9999) { return from; @@ -208,24 +208,24 @@ Quat Quat::slerpni(const Quat &q, const real_t &t) const { real_t theta = Math::acos(dot), sinT = 1.0 / Math::sin(theta), - newFactor = Math::sin(t * theta) * sinT, - invFactor = Math::sin((1.0 - t) * theta) * sinT; + newFactor = Math::sin(p_weight * theta) * sinT, + invFactor = Math::sin((1.0 - p_weight) * theta) * sinT; - return Quat(invFactor * from.x + newFactor * q.x, - invFactor * from.y + newFactor * q.y, - invFactor * from.z + newFactor * q.z, - invFactor * from.w + newFactor * q.w); + return Quat(invFactor * from.x + newFactor * p_to.x, + invFactor * from.y + newFactor * p_to.y, + invFactor * from.z + newFactor * p_to.z, + invFactor * from.w + newFactor * p_to.w); } -Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const { +Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif //the only way to do slerp :| - real_t t2 = (1.0 - t) * t * 2; - Quat sp = this->slerp(q, t); - Quat sq = prep.slerpni(postq, t); + real_t t2 = (1.0 - p_weight) * p_weight * 2; + Quat sp = this->slerp(p_b, p_weight); + Quat sq = p_pre_a.slerpni(p_post_b, p_weight); return sp.slerpni(sq, t2); } |