diff options
Diffstat (limited to 'core/math/quat.cpp')
-rw-r--r-- | core/math/quat.cpp | 250 |
1 files changed, 0 insertions, 250 deletions
diff --git a/core/math/quat.cpp b/core/math/quat.cpp deleted file mode 100644 index c10f5da494..0000000000 --- a/core/math/quat.cpp +++ /dev/null @@ -1,250 +0,0 @@ -/*************************************************************************/ -/* quat.cpp */ -/*************************************************************************/ -/* This file is part of: */ -/* GODOT ENGINE */ -/* https://godotengine.org */ -/*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ -/* */ -/* Permission is hereby granted, free of charge, to any person obtaining */ -/* a copy of this software and associated documentation files (the */ -/* "Software"), to deal in the Software without restriction, including */ -/* without limitation the rights to use, copy, modify, merge, publish, */ -/* distribute, sublicense, and/or sell copies of the Software, and to */ -/* permit persons to whom the Software is furnished to do so, subject to */ -/* the following conditions: */ -/* */ -/* The above copyright notice and this permission notice shall be */ -/* included in all copies or substantial portions of the Software. */ -/* */ -/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ -/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ -/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ -/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ -/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ -/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ -/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ -/*************************************************************************/ - -#include "quat.h" - -#include "core/math/basis.h" -#include "core/print_string.h" - -// set_euler_xyz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses XYZ convention (Z is the first rotation). -void Quat::set_euler_xyz(const Vector3 &p_euler) { - real_t half_a1 = p_euler.x * 0.5; - real_t half_a2 = p_euler.y * 0.5; - real_t half_a3 = p_euler.z * 0.5; - - // R = X(a1).Y(a2).Z(a3) convention for Euler angles. - // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) - // a3 is the angle of the first rotation, following the notation in this reference. - - real_t cos_a1 = Math::cos(half_a1); - real_t sin_a1 = Math::sin(half_a1); - real_t cos_a2 = Math::cos(half_a2); - real_t sin_a2 = Math::sin(half_a2); - real_t cos_a3 = Math::cos(half_a3); - real_t sin_a3 = Math::sin(half_a3); - - set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1, - -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3, - sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2, - -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); -} - -// get_euler_xyz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses XYZ convention (Z is the first rotation). -Vector3 Quat::get_euler_xyz() const { - Basis m(*this); - return m.get_euler_xyz(); -} - -// set_euler_yxz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -void Quat::set_euler_yxz(const Vector3 &p_euler) { - real_t half_a1 = p_euler.y * 0.5; - real_t half_a2 = p_euler.x * 0.5; - real_t half_a3 = p_euler.z * 0.5; - - // R = Y(a1).X(a2).Z(a3) convention for Euler angles. - // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) - // a3 is the angle of the first rotation, following the notation in this reference. - - real_t cos_a1 = Math::cos(half_a1); - real_t sin_a1 = Math::sin(half_a1); - real_t cos_a2 = Math::cos(half_a2); - real_t sin_a2 = Math::sin(half_a2); - real_t cos_a3 = Math::cos(half_a3); - real_t sin_a3 = Math::sin(half_a3); - - set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, - sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, - -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, - sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); -} - -// get_euler_yxz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -Vector3 Quat::get_euler_yxz() const { -#ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); -#endif - Basis m(*this); - return m.get_euler_yxz(); -} - -void Quat::operator*=(const Quat &q) { - set(w * q.x + x * q.w + y * q.z - z * q.y, - w * q.y + y * q.w + z * q.x - x * q.z, - w * q.z + z * q.w + x * q.y - y * q.x, - w * q.w - x * q.x - y * q.y - z * q.z); -} - -Quat Quat::operator*(const Quat &q) const { - Quat r = *this; - r *= q; - return r; -} - -bool Quat::is_equal_approx(const Quat &p_quat) const { - return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w); -} - -real_t Quat::length() const { - return Math::sqrt(length_squared()); -} - -void Quat::normalize() { - *this /= length(); -} - -Quat Quat::normalized() const { - return *this / length(); -} - -bool Quat::is_normalized() const { - return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon -} - -Quat Quat::inverse() const { -#ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The quaternion must be normalized."); -#endif - return Quat(-x, -y, -z, w); -} - -Quat Quat::slerp(const Quat &q, const real_t &t) const { -#ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); -#endif - Quat to1; - real_t omega, cosom, sinom, scale0, scale1; - - // calc cosine - cosom = dot(q); - - // adjust signs (if necessary) - if (cosom < 0.0) { - cosom = -cosom; - to1.x = -q.x; - to1.y = -q.y; - to1.z = -q.z; - to1.w = -q.w; - } else { - to1.x = q.x; - to1.y = q.y; - to1.z = q.z; - to1.w = q.w; - } - - // calculate coefficients - - if ((1.0 - cosom) > CMP_EPSILON) { - // standard case (slerp) - omega = Math::acos(cosom); - sinom = Math::sin(omega); - scale0 = Math::sin((1.0 - t) * omega) / sinom; - scale1 = Math::sin(t * omega) / sinom; - } else { - // "from" and "to" quaternions are very close - // ... so we can do a linear interpolation - scale0 = 1.0 - t; - scale1 = t; - } - // calculate final values - return Quat( - scale0 * x + scale1 * to1.x, - scale0 * y + scale1 * to1.y, - scale0 * z + scale1 * to1.z, - scale0 * w + scale1 * to1.w); -} - -Quat Quat::slerpni(const Quat &q, const real_t &t) const { -#ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); -#endif - const Quat &from = *this; - - real_t dot = from.dot(q); - - if (Math::absf(dot) > 0.9999) { - return from; - } - - real_t theta = Math::acos(dot), - sinT = 1.0 / Math::sin(theta), - newFactor = Math::sin(t * theta) * sinT, - invFactor = Math::sin((1.0 - t) * theta) * sinT; - - return Quat(invFactor * from.x + newFactor * q.x, - invFactor * from.y + newFactor * q.y, - invFactor * from.z + newFactor * q.z, - invFactor * from.w + newFactor * q.w); -} - -Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const { -#ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized."); -#endif - //the only way to do slerp :| - real_t t2 = (1.0 - t) * t * 2; - Quat sp = this->slerp(q, t); - Quat sq = prep.slerpni(postq, t); - return sp.slerpni(sq, t2); -} - -Quat::operator String() const { - return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w); -} - -void Quat::set_axis_angle(const Vector3 &axis, const real_t &angle) { -#ifdef MATH_CHECKS - ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized."); -#endif - real_t d = axis.length(); - if (d == 0) { - set(0, 0, 0, 0); - } else { - real_t sin_angle = Math::sin(angle * 0.5); - real_t cos_angle = Math::cos(angle * 0.5); - real_t s = sin_angle / d; - set(axis.x * s, axis.y * s, axis.z * s, - cos_angle); - } -} |