diff options
Diffstat (limited to 'core/math/quat.cpp')
| -rw-r--r-- | core/math/quat.cpp | 229 | 
1 files changed, 0 insertions, 229 deletions
| diff --git a/core/math/quat.cpp b/core/math/quat.cpp deleted file mode 100644 index a9a21a1ba3..0000000000 --- a/core/math/quat.cpp +++ /dev/null @@ -1,229 +0,0 @@ -/*************************************************************************/ -/*  quat.cpp                                                             */ -/*************************************************************************/ -/*                       This file is part of:                           */ -/*                           GODOT ENGINE                                */ -/*                      https://godotengine.org                          */ -/*************************************************************************/ -/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */ -/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */ -/*                                                                       */ -/* Permission is hereby granted, free of charge, to any person obtaining */ -/* a copy of this software and associated documentation files (the       */ -/* "Software"), to deal in the Software without restriction, including   */ -/* without limitation the rights to use, copy, modify, merge, publish,   */ -/* distribute, sublicense, and/or sell copies of the Software, and to    */ -/* permit persons to whom the Software is furnished to do so, subject to */ -/* the following conditions:                                             */ -/*                                                                       */ -/* The above copyright notice and this permission notice shall be        */ -/* included in all copies or substantial portions of the Software.       */ -/*                                                                       */ -/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */ -/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */ -/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ -/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */ -/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */ -/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */ -/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */ -/*************************************************************************/ - -#include "quat.h" - -#include "core/math/basis.h" -#include "core/string/print_string.h" - -// get_euler_xyz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses XYZ convention (Z is the first rotation). -Vector3 Quat::get_euler_xyz() const { -	Basis m(*this); -	return m.get_euler_xyz(); -} - -// get_euler_yxz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -Vector3 Quat::get_euler_yxz() const { -#ifdef MATH_CHECKS -	ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); -#endif -	Basis m(*this); -	return m.get_euler_yxz(); -} - -void Quat::operator*=(const Quat &p_q) { -	x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; -	y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; -	z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; -	w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; -} - -Quat Quat::operator*(const Quat &p_q) const { -	Quat r = *this; -	r *= p_q; -	return r; -} - -bool Quat::is_equal_approx(const Quat &p_quat) const { -	return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w); -} - -real_t Quat::length() const { -	return Math::sqrt(length_squared()); -} - -void Quat::normalize() { -	*this /= length(); -} - -Quat Quat::normalized() const { -	return *this / length(); -} - -bool Quat::is_normalized() const { -	return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon -} - -Quat Quat::inverse() const { -#ifdef MATH_CHECKS -	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The quaternion must be normalized."); -#endif -	return Quat(-x, -y, -z, w); -} - -Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const { -#ifdef MATH_CHECKS -	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); -	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized."); -#endif -	Quat to1; -	real_t omega, cosom, sinom, scale0, scale1; - -	// calc cosine -	cosom = dot(p_to); - -	// adjust signs (if necessary) -	if (cosom < 0.0) { -		cosom = -cosom; -		to1.x = -p_to.x; -		to1.y = -p_to.y; -		to1.z = -p_to.z; -		to1.w = -p_to.w; -	} else { -		to1.x = p_to.x; -		to1.y = p_to.y; -		to1.z = p_to.z; -		to1.w = p_to.w; -	} - -	// calculate coefficients - -	if ((1.0 - cosom) > CMP_EPSILON) { -		// standard case (slerp) -		omega = Math::acos(cosom); -		sinom = Math::sin(omega); -		scale0 = Math::sin((1.0 - p_weight) * omega) / sinom; -		scale1 = Math::sin(p_weight * omega) / sinom; -	} else { -		// "from" and "to" quaternions are very close -		//  ... so we can do a linear interpolation -		scale0 = 1.0 - p_weight; -		scale1 = p_weight; -	} -	// calculate final values -	return Quat( -			scale0 * x + scale1 * to1.x, -			scale0 * y + scale1 * to1.y, -			scale0 * z + scale1 * to1.z, -			scale0 * w + scale1 * to1.w); -} - -Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const { -#ifdef MATH_CHECKS -	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); -	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized."); -#endif -	const Quat &from = *this; - -	real_t dot = from.dot(p_to); - -	if (Math::absf(dot) > 0.9999) { -		return from; -	} - -	real_t theta = Math::acos(dot), -		   sinT = 1.0 / Math::sin(theta), -		   newFactor = Math::sin(p_weight * theta) * sinT, -		   invFactor = Math::sin((1.0 - p_weight) * theta) * sinT; - -	return Quat(invFactor * from.x + newFactor * p_to.x, -			invFactor * from.y + newFactor * p_to.y, -			invFactor * from.z + newFactor * p_to.z, -			invFactor * from.w + newFactor * p_to.w); -} - -Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const { -#ifdef MATH_CHECKS -	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); -	ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized."); -#endif -	//the only way to do slerp :| -	real_t t2 = (1.0 - p_weight) * p_weight * 2; -	Quat sp = this->slerp(p_b, p_weight); -	Quat sq = p_pre_a.slerpni(p_post_b, p_weight); -	return sp.slerpni(sq, t2); -} - -Quat::operator String() const { -	return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w); -} - -Quat::Quat(const Vector3 &p_axis, real_t p_angle) { -#ifdef MATH_CHECKS -	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); -#endif -	real_t d = p_axis.length(); -	if (d == 0) { -		x = 0; -		y = 0; -		z = 0; -		w = 0; -	} else { -		real_t sin_angle = Math::sin(p_angle * 0.5); -		real_t cos_angle = Math::cos(p_angle * 0.5); -		real_t s = sin_angle / d; -		x = p_axis.x * s; -		y = p_axis.y * s; -		z = p_axis.z * s; -		w = cos_angle; -	} -} - -// Euler constructor expects a vector containing the Euler angles in the format -// (ax, ay, az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -Quat::Quat(const Vector3 &p_euler) { -	real_t half_a1 = p_euler.y * 0.5; -	real_t half_a2 = p_euler.x * 0.5; -	real_t half_a3 = p_euler.z * 0.5; - -	// R = Y(a1).X(a2).Z(a3) convention for Euler angles. -	// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) -	// a3 is the angle of the first rotation, following the notation in this reference. - -	real_t cos_a1 = Math::cos(half_a1); -	real_t sin_a1 = Math::sin(half_a1); -	real_t cos_a2 = Math::cos(half_a2); -	real_t sin_a2 = Math::sin(half_a2); -	real_t cos_a3 = Math::cos(half_a3); -	real_t sin_a3 = Math::sin(half_a3); - -	x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; -	y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; -	z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; -	w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; -} |