diff options
Diffstat (limited to 'core/math/matrix3.cpp')
-rw-r--r-- | core/math/matrix3.cpp | 126 |
1 files changed, 86 insertions, 40 deletions
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp index c30401cc24..a985e29abb 100644 --- a/core/math/matrix3.cpp +++ b/core/math/matrix3.cpp @@ -73,6 +73,7 @@ void Matrix3::invert() { } void Matrix3::orthonormalize() { + ERR_FAIL_COND(determinant() == 0); // Gram-Schmidt Process @@ -99,6 +100,17 @@ Matrix3 Matrix3::orthonormalized() const { return c; } +bool Matrix3::is_orthogonal() const { + Matrix3 id; + Matrix3 m = (*this)*transposed(); + + return isequal_approx(id,m); +} + +bool Matrix3::is_rotation() const { + return Math::isequal_approx(determinant(), 1) && is_orthogonal(); +} + Matrix3 Matrix3::inverse() const { @@ -150,42 +162,58 @@ Vector3 Matrix3::get_scale() const { ); } -void Matrix3::rotate(const Vector3& p_axis, real_t p_phi) { +// Matrix3::rotate and Matrix3::rotated return M * R(axis,phi), and is a convenience function. They do *not* perform proper matrix rotation. +void Matrix3::rotate(const Vector3& p_axis, real_t p_phi) { + // TODO: This function should also be renamed as the current name is misleading: rotate does *not* perform matrix rotation. + // Same problem affects Matrix3::rotated. + // A similar problem exists in 2D math, which will be handled separately. + // After Matrix3 is renamed to Basis, this comments needs to be revised. *this = *this * Matrix3(p_axis, p_phi); } Matrix3 Matrix3::rotated(const Vector3& p_axis, real_t p_phi) const { - return *this * Matrix3(p_axis, p_phi); } +// get_euler returns a vector containing the Euler angles in the format +// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last +// (following the convention they are commonly defined in the literature). +// +// The current implementation uses XYZ convention (Z is the first rotation), +// so euler.z is the angle of the (first) rotation around Z axis and so on, +// +// And thus, assuming the matrix is a rotation matrix, this function returns +// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates +// around the z-axis by a and so on. Vector3 Matrix3::get_euler() const { + // Euler angles in XYZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // // rot = cy*cz -cy*sz sy - // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx - // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy - - Matrix3 m = *this; - m.orthonormalize(); + // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx + // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; - euler.y = Math::asin(m[0][2]); + ERR_FAIL_COND_V(is_rotation() == false, euler); + + euler.y = Math::asin(elements[0][2]); if ( euler.y < Math_PI*0.5) { if ( euler.y > -Math_PI*0.5) { - euler.x = Math::atan2(-m[1][2],m[2][2]); - euler.z = Math::atan2(-m[0][1],m[0][0]); + euler.x = Math::atan2(-elements[1][2],elements[2][2]); + euler.z = Math::atan2(-elements[0][1],elements[0][0]); } else { - real_t r = Math::atan2(m[1][0],m[1][1]); + real_t r = Math::atan2(elements[1][0],elements[1][1]); euler.z = 0.0; euler.x = euler.z - r; } } else { - real_t r = Math::atan2(m[0][1],m[1][1]); + real_t r = Math::atan2(elements[0][1],elements[1][1]); euler.z = 0; euler.x = r - euler.z; } @@ -195,6 +223,9 @@ Vector3 Matrix3::get_euler() const { } +// set_euler expects a vector containing the Euler angles in the format +// (c,b,a), where a is the angle of the first rotation, and c is the last. +// The current implementation uses XYZ convention (Z is the first rotation). void Matrix3::set_euler(const Vector3& p_euler) { real_t c, s; @@ -215,17 +246,30 @@ void Matrix3::set_euler(const Vector3& p_euler) { *this = xmat*(ymat*zmat); } +bool Matrix3::isequal_approx(const Matrix3& a, const Matrix3& b) const { + + for (int i=0;i<3;i++) { + for (int j=0;j<3;j++) { + if (Math::isequal_approx(a.elements[i][j],b.elements[i][j]) == false) + return false; + } + } + + return true; +} + bool Matrix3::operator==(const Matrix3& p_matrix) const { for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { - if (elements[i][j]!=p_matrix.elements[i][j]) + if (elements[i][j] != p_matrix.elements[i][j]) return false; } } return true; } + bool Matrix3::operator!=(const Matrix3& p_matrix) const { return (!(*this==p_matrix)); @@ -249,11 +293,9 @@ Matrix3::operator String() const { } Matrix3::operator Quat() const { + ERR_FAIL_COND_V(is_rotation() == false, Quat()); - Matrix3 m=*this; - m.orthonormalize(); - - real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2]; + real_t trace = elements[0][0] + elements[1][1] + elements[2][2]; real_t temp[4]; if (trace > 0.0) @@ -262,25 +304,25 @@ Matrix3::operator Quat() const { temp[3]=(s * 0.5); s = 0.5 / s; - temp[0]=((m.elements[2][1] - m.elements[1][2]) * s); - temp[1]=((m.elements[0][2] - m.elements[2][0]) * s); - temp[2]=((m.elements[1][0] - m.elements[0][1]) * s); + temp[0]=((elements[2][1] - elements[1][2]) * s); + temp[1]=((elements[0][2] - elements[2][0]) * s); + temp[2]=((elements[1][0] - elements[0][1]) * s); } else { - int i = m.elements[0][0] < m.elements[1][1] ? - (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : - (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + int i = elements[0][0] < elements[1][1] ? + (elements[1][1] < elements[2][2] ? 2 : 1) : + (elements[0][0] < elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; - real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0); + real_t s = Math::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0); temp[i] = s * 0.5; s = 0.5 / s; - temp[3] = (m.elements[k][j] - m.elements[j][k]) * s; - temp[j] = (m.elements[j][i] + m.elements[i][j]) * s; - temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; + temp[3] = (elements[k][j] - elements[j][k]) * s; + temp[j] = (elements[j][i] + elements[i][j]) * s; + temp[k] = (elements[k][i] + elements[i][k]) * s; } return Quat(temp[0],temp[1],temp[2],temp[3]); @@ -356,6 +398,10 @@ void Matrix3::set_orthogonal_index(int p_index){ void Matrix3::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const { + // TODO: We can handle improper matrices here too, in which case axis will also correspond to the axis of reflection. + // See Eq. (52) in http://scipp.ucsc.edu/~haber/ph251/rotreflect_13.pdf for example + // After that change, we should fail on is_orthogonal() == false. + ERR_FAIL_COND(is_rotation() == false); double angle,x,y,z; // variables for result @@ -423,14 +469,13 @@ void Matrix3::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const { // as we have reached here there are no singularities so we can handle normally double s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1]) +(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2]) - +(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // used to normalise - if (Math::abs(s) < 0.001) s=1; - // prevent divide by zero, should not happen if matrix is orthogonal and should be - // caught by singularity test above, but I've left it in just in case + +(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise + angle = Math::acos(( elements[0][0] + elements[1][1] + elements[2][2] - 1)/2); - x = (elements[1][2] - elements[2][1])/s; - y = (elements[2][0] - elements[0][2])/s; - z = (elements[0][1] - elements[1][0])/s; + if (angle < 0) s = -s; + x = (elements[2][1] - elements[1][2])/s; + y = (elements[0][2] - elements[2][0])/s; + z = (elements[1][0] - elements[0][1])/s; r_axis=Vector3(x,y,z); r_angle=angle; @@ -457,6 +502,7 @@ Matrix3::Matrix3(const Quat& p_quat) { } Matrix3::Matrix3(const Vector3& p_axis, real_t p_phi) { + // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z); @@ -464,15 +510,15 @@ Matrix3::Matrix3(const Vector3& p_axis, real_t p_phi) { real_t sine= Math::sin(p_phi); elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x ); - elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine; - elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine; + elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine; + elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine; - elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine; + elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine; elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y ); - elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine; + elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine; - elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine; - elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine; + elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine; + elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine; elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z ); } |