diff options
Diffstat (limited to 'core/math/matrix3.cpp')
-rw-r--r-- | core/math/matrix3.cpp | 379 |
1 files changed, 174 insertions, 205 deletions
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp index 1fabfbbd4c..5f73d91ef3 100644 --- a/core/math/matrix3.cpp +++ b/core/math/matrix3.cpp @@ -30,46 +30,44 @@ #include "math_funcs.h" #include "os/copymem.h" -#define cofac(row1,col1, row2, col2)\ +#define cofac(row1, col1, row2, col2) \ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) -void Basis::from_z(const Vector3& p_z) { +void Basis::from_z(const Vector3 &p_z) { - if (Math::abs(p_z.z) > Math_SQRT12 ) { + if (Math::abs(p_z.z) > Math_SQRT12) { // choose p in y-z plane - real_t a = p_z[1]*p_z[1] + p_z[2]*p_z[2]; - real_t k = 1.0/Math::sqrt(a); - elements[0]=Vector3(0,-p_z[2]*k,p_z[1]*k); - elements[1]=Vector3(a*k,-p_z[0]*elements[0][2],p_z[0]*elements[0][1]); + real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; + real_t k = 1.0 / Math::sqrt(a); + elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); + elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); } else { // choose p in x-y plane - real_t a = p_z.x*p_z.x + p_z.y*p_z.y; - real_t k = 1.0/Math::sqrt(a); - elements[0]=Vector3(-p_z.y*k,p_z.x*k,0); - elements[1]=Vector3(-p_z.z*elements[0].y,p_z.z*elements[0].x,a*k); + real_t a = p_z.x * p_z.x + p_z.y * p_z.y; + real_t k = 1.0 / Math::sqrt(a); + elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0); + elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k); } - elements[2]=p_z; + elements[2] = p_z; } void Basis::invert() { - - real_t co[3]={ + real_t co[3] = { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; - real_t det = elements[0][0] * co[0]+ - elements[0][1] * co[1]+ - elements[0][2] * co[2]; - - ERR_FAIL_COND( det == 0 ); - real_t s = 1.0/det; + real_t det = elements[0][0] * co[0] + + elements[0][1] * co[1] + + elements[0][2] * co[2]; - set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, - co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, - co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s ); + ERR_FAIL_COND(det == 0); + real_t s = 1.0 / det; + set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, + co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, + co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); } void Basis::orthonormalize() { @@ -77,20 +75,19 @@ void Basis::orthonormalize() { // Gram-Schmidt Process - Vector3 x=get_axis(0); - Vector3 y=get_axis(1); - Vector3 z=get_axis(2); + Vector3 x = get_axis(0); + Vector3 y = get_axis(1); + Vector3 z = get_axis(2); x.normalize(); - y = (y-x*(x.dot(y))); + y = (y - x * (x.dot(y))); y.normalize(); - z = (z-x*(x.dot(z))-y*(y.dot(z))); + z = (z - x * (x.dot(z)) - y * (y.dot(z))); z.normalize(); - set_axis(0,x); - set_axis(1,y); - set_axis(2,z); - + set_axis(0, x); + set_axis(1, y); + set_axis(2, z); } Basis Basis::orthonormalized() const { @@ -102,16 +99,15 @@ Basis Basis::orthonormalized() const { bool Basis::is_orthogonal() const { Basis id; - Basis m = (*this)*transposed(); + Basis m = (*this) * transposed(); - return isequal_approx(id,m); + return isequal_approx(id, m); } bool Basis::is_rotation() const { return Math::isequal_approx(determinant(), 1) && is_orthogonal(); } - bool Basis::is_symmetric() const { if (Math::abs(elements[0][1] - elements[1][0]) > CMP_EPSILON) @@ -124,21 +120,20 @@ bool Basis::is_symmetric() const { return true; } - Basis Basis::diagonalize() { //NOTE: only implemented for symmetric matrices //with the Jacobi iterative method method - + ERR_FAIL_COND_V(!is_symmetric(), Basis()); const int ite_max = 1024; - real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; + real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; int ite = 0; Basis acc_rot; - while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) { + while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) { real_t el01_2 = elements[0][1] * elements[0][1]; real_t el02_2 = elements[0][2] * elements[0][2]; real_t el12_2 = elements[1][2] * elements[1][2]; @@ -151,7 +146,7 @@ Basis Basis::diagonalize() { } else { i = 0; j = 1; - } + } } else { if (el12_2 > el02_2) { i = 1; @@ -163,17 +158,17 @@ Basis Basis::diagonalize() { } // Compute the rotation angle - real_t angle; + real_t angle; if (Math::abs(elements[j][j] - elements[i][i]) < CMP_EPSILON) { angle = Math_PI / 4; } else { - angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); + angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); } // Compute the rotation matrix Basis rot; rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle); - rot.elements[i][j] = - (rot.elements[j][i] = Math::sin(angle)); + rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle)); // Update the off matrix norm off_matrix_norm_2 -= elements[i][j] * elements[i][j]; @@ -188,41 +183,41 @@ Basis Basis::diagonalize() { Basis Basis::inverse() const { - Basis inv=*this; + Basis inv = *this; inv.invert(); return inv; } void Basis::transpose() { - SWAP(elements[0][1],elements[1][0]); - SWAP(elements[0][2],elements[2][0]); - SWAP(elements[1][2],elements[2][1]); + SWAP(elements[0][1], elements[1][0]); + SWAP(elements[0][2], elements[2][0]); + SWAP(elements[1][2], elements[2][1]); } Basis Basis::transposed() const { - Basis tr=*this; + Basis tr = *this; tr.transpose(); return tr; } // Multiplies the matrix from left by the scaling matrix: M -> S.M // See the comment for Basis::rotated for further explanation. -void Basis::scale(const Vector3& p_scale) { +void Basis::scale(const Vector3 &p_scale) { - elements[0][0]*=p_scale.x; - elements[0][1]*=p_scale.x; - elements[0][2]*=p_scale.x; - elements[1][0]*=p_scale.y; - elements[1][1]*=p_scale.y; - elements[1][2]*=p_scale.y; - elements[2][0]*=p_scale.z; - elements[2][1]*=p_scale.z; - elements[2][2]*=p_scale.z; + elements[0][0] *= p_scale.x; + elements[0][1] *= p_scale.x; + elements[0][2] *= p_scale.x; + elements[1][0] *= p_scale.y; + elements[1][1] *= p_scale.y; + elements[1][2] *= p_scale.y; + elements[2][0] *= p_scale.z; + elements[2][1] *= p_scale.z; + elements[2][2] *= p_scale.z; } -Basis Basis::scaled( const Vector3& p_scale ) const { +Basis Basis::scaled(const Vector3 &p_scale) const { Basis m = *this; m.scale(p_scale); @@ -236,12 +231,10 @@ Vector3 Basis::get_scale() const { // (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix. // As such, it works in conjuction with get_rotation(). real_t det_sign = determinant() > 0 ? 1 : -1; - return det_sign*Vector3( - Vector3(elements[0][0],elements[1][0],elements[2][0]).length(), - Vector3(elements[0][1],elements[1][1],elements[2][1]).length(), - Vector3(elements[0][2],elements[1][2],elements[2][2]).length() - ); - + return det_sign * Vector3( + Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), + Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), + Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); } // Multiplies the matrix from left by the rotation matrix: M -> R.M @@ -250,19 +243,19 @@ Vector3 Basis::get_scale() const { // The main use of Basis is as Transform.basis, which is used a the transformation matrix // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), // not the matrix itself (which is R * (*this) * R.transposed()). -Basis Basis::rotated(const Vector3& p_axis, real_t p_phi) const { +Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const { return Basis(p_axis, p_phi) * (*this); } -void Basis::rotate(const Vector3& p_axis, real_t p_phi) { +void Basis::rotate(const Vector3 &p_axis, real_t p_phi) { *this = rotated(p_axis, p_phi); } -Basis Basis::rotated(const Vector3& p_euler) const { +Basis Basis::rotated(const Vector3 &p_euler) const { return Basis(p_euler) * (*this); } -void Basis::rotate(const Vector3& p_euler) { +void Basis::rotate(const Vector3 &p_euler) { *this = rotated(p_euler); } @@ -274,7 +267,7 @@ Vector3 Basis::get_rotation() const { real_t det = m.determinant(); if (det < 0) { // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. - m.scale(Vector3(-1,-1,-1)); + m.scale(Vector3(-1, -1, -1)); } return m.get_euler(); @@ -304,67 +297,64 @@ Vector3 Basis::get_euler() const { ERR_FAIL_COND_V(is_rotation() == false, euler); euler.y = Math::asin(elements[0][2]); - if ( euler.y < Math_PI*0.5) { - if ( euler.y > -Math_PI*0.5) { - euler.x = Math::atan2(-elements[1][2],elements[2][2]); - euler.z = Math::atan2(-elements[0][1],elements[0][0]); + if (euler.y < Math_PI * 0.5) { + if (euler.y > -Math_PI * 0.5) { + euler.x = Math::atan2(-elements[1][2], elements[2][2]); + euler.z = Math::atan2(-elements[0][1], elements[0][0]); } else { - real_t r = Math::atan2(elements[1][0],elements[1][1]); + real_t r = Math::atan2(elements[1][0], elements[1][1]); euler.z = 0.0; euler.x = euler.z - r; - } } else { - real_t r = Math::atan2(elements[0][1],elements[1][1]); + real_t r = Math::atan2(elements[0][1], elements[1][1]); euler.z = 0; euler.x = r - euler.z; } return euler; - - } // set_euler expects a vector containing the Euler angles in the format // (c,b,a), where a is the angle of the first rotation, and c is the last. // The current implementation uses XYZ convention (Z is the first rotation). -void Basis::set_euler(const Vector3& p_euler) { +void Basis::set_euler(const Vector3 &p_euler) { real_t c, s; c = Math::cos(p_euler.x); s = Math::sin(p_euler.x); - Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); c = Math::cos(p_euler.y); s = Math::sin(p_euler.y); - Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); c = Math::cos(p_euler.z); s = Math::sin(p_euler.z); - Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); //optimizer will optimize away all this anyway - *this = xmat*(ymat*zmat); + *this = xmat * (ymat * zmat); } -bool Basis::isequal_approx(const Basis& a, const Basis& b) const { +bool Basis::isequal_approx(const Basis &a, const Basis &b) const { - for (int i=0;i<3;i++) { - for (int j=0;j<3;j++) { - if (Math::isequal_approx(a.elements[i][j],b.elements[i][j]) == false) - return false; - } - } + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + if (Math::isequal_approx(a.elements[i][j], b.elements[i][j]) == false) + return false; + } + } - return true; + return true; } -bool Basis::operator==(const Basis& p_matrix) const { +bool Basis::operator==(const Basis &p_matrix) const { - for (int i=0;i<3;i++) { - for (int j=0;j<3;j++) { + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { if (elements[i][j] != p_matrix.elements[i][j]) return false; } @@ -373,22 +363,22 @@ bool Basis::operator==(const Basis& p_matrix) const { return true; } -bool Basis::operator!=(const Basis& p_matrix) const { +bool Basis::operator!=(const Basis &p_matrix) const { - return (!(*this==p_matrix)); + return (!(*this == p_matrix)); } Basis::operator String() const { String mtx; - for (int i=0;i<3;i++) { + for (int i = 0; i < 3; i++) { - for (int j=0;j<3;j++) { + for (int j = 0; j < 3; j++) { - if (i!=0 || j!=0) - mtx+=", "; + if (i != 0 || j != 0) + mtx += ", "; - mtx+=rtos( elements[i][j] ); + mtx += rtos(elements[i][j]); } } @@ -401,21 +391,18 @@ Basis::operator Quat() const { real_t trace = elements[0][0] + elements[1][1] + elements[2][2]; real_t temp[4]; - if (trace > 0.0) - { + if (trace > 0.0) { real_t s = Math::sqrt(trace + 1.0); - temp[3]=(s * 0.5); + temp[3] = (s * 0.5); s = 0.5 / s; - temp[0]=((elements[2][1] - elements[1][2]) * s); - temp[1]=((elements[0][2] - elements[2][0]) * s); - temp[2]=((elements[1][0] - elements[0][1]) * s); - } - else - { + temp[0] = ((elements[2][1] - elements[1][2]) * s); + temp[1] = ((elements[0][2] - elements[2][0]) * s); + temp[2] = ((elements[1][0] - elements[0][1]) * s); + } else { int i = elements[0][0] < elements[1][1] ? - (elements[1][1] < elements[2][2] ? 2 : 1) : - (elements[0][0] < elements[2][2] ? 2 : 0); + (elements[1][1] < elements[2][2] ? 2 : 1) : + (elements[0][0] < elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; @@ -428,11 +415,10 @@ Basis::operator Quat() const { temp[k] = (elements[k][i] + elements[i][k]) * s; } - return Quat(temp[0],temp[1],temp[2],temp[3]); - + return Quat(temp[0], temp[1], temp[2], temp[3]); } -static const Basis _ortho_bases[24]={ +static const Basis _ortho_bases[24] = { Basis(1, 0, 0, 0, 1, 0, 0, 0, 1), Basis(0, -1, 0, 1, 0, 0, 0, 0, 1), Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1), @@ -462,164 +448,147 @@ static const Basis _ortho_bases[24]={ int Basis::get_orthogonal_index() const { //could be sped up if i come up with a way - Basis orth=*this; - for(int i=0;i<3;i++) { - for(int j=0;j<3;j++) { + Basis orth = *this; + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { real_t v = orth[i][j]; - if (v>0.5) - v=1.0; - else if (v<-0.5) - v=-1.0; + if (v > 0.5) + v = 1.0; + else if (v < -0.5) + v = -1.0; else - v=0; + v = 0; - orth[i][j]=v; + orth[i][j] = v; } } - for(int i=0;i<24;i++) { + for (int i = 0; i < 24; i++) { - if (_ortho_bases[i]==orth) + if (_ortho_bases[i] == orth) return i; - - } return 0; } -void Basis::set_orthogonal_index(int p_index){ +void Basis::set_orthogonal_index(int p_index) { //there only exist 24 orthogonal bases in r3 - ERR_FAIL_INDEX(p_index,24); - - - *this=_ortho_bases[p_index]; + ERR_FAIL_INDEX(p_index, 24); + *this = _ortho_bases[p_index]; } - -void Basis::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const { +void Basis::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const { ERR_FAIL_COND(is_rotation() == false); + real_t angle, x, y, z; // variables for result + real_t epsilon = 0.01; // margin to allow for rounding errors + real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees - real_t angle,x,y,z; // variables for result - real_t epsilon = 0.01; // margin to allow for rounding errors - real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees - - if ( (Math::abs(elements[1][0]-elements[0][1])< epsilon) - && (Math::abs(elements[2][0]-elements[0][2])< epsilon) - && (Math::abs(elements[2][1]-elements[1][2])< epsilon)) { - // singularity found - // first check for identity matrix which must have +1 for all terms - // in leading diagonaland zero in other terms - if ((Math::abs(elements[1][0]+elements[0][1]) < epsilon2) - && (Math::abs(elements[2][0]+elements[0][2]) < epsilon2) - && (Math::abs(elements[2][1]+elements[1][2]) < epsilon2) - && (Math::abs(elements[0][0]+elements[1][1]+elements[2][2]-3) < epsilon2)) { + if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { + // singularity found + // first check for identity matrix which must have +1 for all terms + // in leading diagonaland zero in other terms + if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { // this singularity is identity matrix so angle = 0 - r_axis=Vector3(0,1,0); - r_angle=0; + r_axis = Vector3(0, 1, 0); + r_angle = 0; return; } // otherwise this singularity is angle = 180 angle = Math_PI; - real_t xx = (elements[0][0]+1)/2; - real_t yy = (elements[1][1]+1)/2; - real_t zz = (elements[2][2]+1)/2; - real_t xy = (elements[1][0]+elements[0][1])/4; - real_t xz = (elements[2][0]+elements[0][2])/4; - real_t yz = (elements[2][1]+elements[1][2])/4; + real_t xx = (elements[0][0] + 1) / 2; + real_t yy = (elements[1][1] + 1) / 2; + real_t zz = (elements[2][2] + 1) / 2; + real_t xy = (elements[1][0] + elements[0][1]) / 4; + real_t xz = (elements[2][0] + elements[0][2]) / 4; + real_t yz = (elements[2][1] + elements[1][2]) / 4; if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term - if (xx< epsilon) { + if (xx < epsilon) { x = 0; y = 0.7071; z = 0.7071; } else { x = Math::sqrt(xx); - y = xy/x; - z = xz/x; + y = xy / x; + z = xz / x; } } else if (yy > zz) { // elements[1][1] is the largest diagonal term - if (yy< epsilon) { + if (yy < epsilon) { x = 0.7071; y = 0; z = 0.7071; } else { y = Math::sqrt(yy); - x = xy/y; - z = yz/y; + x = xy / y; + z = yz / y; } } else { // elements[2][2] is the largest diagonal term so base result on this - if (zz< epsilon) { + if (zz < epsilon) { x = 0.7071; y = 0.7071; z = 0; } else { z = Math::sqrt(zz); - x = xz/z; - y = yz/z; + x = xz / z; + y = yz / z; } } - r_axis=Vector3(x,y,z); - r_angle=angle; + r_axis = Vector3(x, y, z); + r_angle = angle; return; } // as we have reached here there are no singularities so we can handle normally - real_t s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1]) - +(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2]) - +(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise + real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise - angle = Math::acos(( elements[0][0] + elements[1][1] + elements[2][2] - 1)/2); + angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); if (angle < 0) s = -s; - x = (elements[2][1] - elements[1][2])/s; - y = (elements[0][2] - elements[2][0])/s; - z = (elements[1][0] - elements[0][1])/s; + x = (elements[2][1] - elements[1][2]) / s; + y = (elements[0][2] - elements[2][0]) / s; + z = (elements[1][0] - elements[0][1]) / s; - r_axis=Vector3(x,y,z); - r_angle=angle; + r_axis = Vector3(x, y, z); + r_angle = angle; } -Basis::Basis(const Vector3& p_euler) { - - set_euler( p_euler ); +Basis::Basis(const Vector3 &p_euler) { + set_euler(p_euler); } -Basis::Basis(const Quat& p_quat) { +Basis::Basis(const Quat &p_quat) { real_t d = p_quat.length_squared(); real_t s = 2.0 / d; - real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; - real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; - real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; - real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; - set( 1.0 - (yy + zz), xy - wz, xz + wy, - xy + wz, 1.0 - (xx + zz), yz - wx, - xz - wy, yz + wx, 1.0 - (xx + yy)) ; - + real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; + real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; + real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; + real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; + set(1.0 - (yy + zz), xy - wz, xz + wy, + xy + wz, 1.0 - (xx + zz), yz - wx, + xz - wy, yz + wx, 1.0 - (xx + yy)); } -Basis::Basis(const Vector3& p_axis, real_t p_phi) { +Basis::Basis(const Vector3 &p_axis, real_t p_phi) { // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle - Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z); - - real_t cosine= Math::cos(p_phi); - real_t sine= Math::sin(p_phi); + Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); - elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x ); - elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine; - elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine; + real_t cosine = Math::cos(p_phi); + real_t sine = Math::sin(p_phi); - elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine; - elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y ); - elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine; + elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); + elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine; + elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine; - elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine; - elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine; - elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z ); + elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine; + elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); + elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine; + elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine; + elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine; + elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); } - |