diff options
Diffstat (limited to 'core/math/matrix3.cpp')
-rw-r--r-- | core/math/matrix3.cpp | 63 |
1 files changed, 61 insertions, 2 deletions
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp index 189b1ef9b3..b0b05d1ec8 100644 --- a/core/math/matrix3.cpp +++ b/core/math/matrix3.cpp @@ -254,7 +254,7 @@ void Basis::set_scale(const Vector3 &p_scale) { set_axis(2, get_axis(2).normalized() * p_scale.z); } -Vector3 Basis::get_scale() const { +Vector3 Basis::get_scale_abs() const { return Vector3( Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), @@ -262,7 +262,13 @@ Vector3 Basis::get_scale() const { Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); } -Vector3 Basis::get_signed_scale() const { +Vector3 Basis::get_scale_local() const { + real_t det_sign = determinant() > 0 ? 1 : -1; + return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length()); +} + +// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. +Vector3 Basis::get_scale() const { // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S. // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal). @@ -342,6 +348,14 @@ void Basis::rotate(const Vector3 &p_euler) { *this = rotated(p_euler); } +Basis Basis::rotated(const Quat &p_quat) const { + return Basis(p_quat) * (*this); +} + +void Basis::rotate(const Quat &p_quat) { + *this = rotated(p_quat); +} + // TODO: rename this to get_rotation_euler Vector3 Basis::get_rotation() const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, @@ -371,6 +385,22 @@ void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { m.get_axis_angle(p_axis, p_angle); } +void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = transposed(); + m.orthonormalize(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + m.get_axis_angle(p_axis, p_angle); + p_angle = -p_angle; +} + // get_euler_xyz returns a vector containing the Euler angles in the format // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last // (following the convention they are commonly defined in the literature). @@ -767,3 +797,32 @@ void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine; elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); } + +void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_axis, p_phi); +} + +void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_euler); +} + +void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_quat); +} + +void Basis::set_diagonal(const Vector3 p_diag) { + elements[0][0] = p_diag.x; + elements[0][1] = 0; + elements[0][2] = 0; + + elements[1][0] = 0; + elements[1][1] = p_diag.y; + elements[1][2] = 0; + + elements[2][0] = 0; + elements[2][1] = 0; + elements[2][2] = p_diag.z; +} |