diff options
Diffstat (limited to 'core/math/matrix3.cpp')
-rw-r--r-- | core/math/matrix3.cpp | 86 |
1 files changed, 81 insertions, 5 deletions
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp index b64f34d977..f2f6ff93cf 100644 --- a/core/math/matrix3.cpp +++ b/core/math/matrix3.cpp @@ -338,7 +338,7 @@ void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) { rotate(p_axis, p_angle); } -// get_euler returns a vector containing the Euler angles in the format +// get_euler_xyz returns a vector containing the Euler angles in the format // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last // (following the convention they are commonly defined in the literature). // @@ -348,7 +348,7 @@ void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) { // And thus, assuming the matrix is a rotation matrix, this function returns // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates // around the z-axis by a and so on. -Vector3 Basis::get_euler() const { +Vector3 Basis::get_euler_xyz() const { // Euler angles in XYZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix @@ -366,6 +366,9 @@ Vector3 Basis::get_euler() const { if (euler.y > -Math_PI * 0.5) { //if rotation is Y-only, return a proper -pi,pi range like in x or z for the same case. if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[0][0] < 0.0) { + euler.x = 0; + euler.z = 0; + if (euler.y > 0.0) euler.y = Math_PI - euler.y; else @@ -389,10 +392,11 @@ Vector3 Basis::get_euler() const { return euler; } -// set_euler expects a vector containing the Euler angles in the format -// (c,b,a), where a is the angle of the first rotation, and c is the last. +// set_euler_xyz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. // The current implementation uses XYZ convention (Z is the first rotation). -void Basis::set_euler(const Vector3 &p_euler) { +void Basis::set_euler_xyz(const Vector3 &p_euler) { real_t c, s; @@ -412,6 +416,78 @@ void Basis::set_euler(const Vector3 &p_euler) { *this = xmat * (ymat * zmat); } +// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, +// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned +// as the x, y, and z components of a Vector3 respectively. +Vector3 Basis::get_euler_yxz() const { + + // Euler angles in YXZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy + // cx*sz cx*cz -sx + // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx + + Vector3 euler; +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(is_rotation() == false, euler); +#endif + real_t m12 = elements[1][2]; + + if (m12 < 1) { + if (m12 > -1) { + if (elements[1][0] == 0 && elements[0][1] == 0 && elements[2][2] < 0) { // use pure x rotation + real_t x = asin(-m12); + euler.y = 0; + euler.z = 0; + + if (x > 0.0) + euler.x = Math_PI - x; + else + euler.x = -(Math_PI + x); + } else { + euler.x = asin(-m12); + euler.y = atan2(elements[0][2], elements[2][2]); + euler.z = atan2(elements[1][0], elements[1][1]); + } + } else { // m12 == -1 + euler.x = Math_PI * 0.5; + euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.z = 0; + } + } else { // m12 == 1 + euler.x = -Math_PI * 0.5; + euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.z = 0; + } + + return euler; +} + +// set_euler_yxz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// The current implementation uses YXZ convention (Z is the first rotation). +void Basis::set_euler_yxz(const Vector3 &p_euler) { + + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + //optimizer will optimize away all this anyway + *this = ymat * xmat * zmat; +} + bool Basis::is_equal_approx(const Basis &a, const Basis &b) const { for (int i = 0; i < 3; i++) { |