summaryrefslogtreecommitdiff
path: root/core/math/matrix3.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/matrix3.cpp')
-rw-r--r--core/math/matrix3.cpp96
1 files changed, 50 insertions, 46 deletions
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp
index c7e2a8f307..85421c074b 100644
--- a/core/math/matrix3.cpp
+++ b/core/math/matrix3.cpp
@@ -107,6 +107,13 @@ bool Basis::is_orthogonal() const {
return is_equal_approx(id, m);
}
+bool Basis::is_diagonal() const {
+ return (
+ Math::is_equal_approx(elements[0][1], 0) && Math::is_equal_approx(elements[0][2], 0) &&
+ Math::is_equal_approx(elements[1][0], 0) && Math::is_equal_approx(elements[1][2], 0) &&
+ Math::is_equal_approx(elements[2][0], 0) && Math::is_equal_approx(elements[2][1], 0));
+}
+
bool Basis::is_rotation() const {
return Math::is_equal_approx(determinant(), 1) && is_orthogonal();
}
@@ -227,7 +234,22 @@ Basis Basis::scaled(const Vector3 &p_scale) const {
return m;
}
+void Basis::set_scale(const Vector3 &p_scale) {
+
+ set_axis(0, get_axis(0).normalized() * p_scale.x);
+ set_axis(1, get_axis(1).normalized() * p_scale.y);
+ set_axis(2, get_axis(2).normalized() * p_scale.z);
+}
+
Vector3 Basis::get_scale() const {
+
+ return Vector3(
+ Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
+ Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
+ Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
+}
+
+Vector3 Basis::get_signed_scale() const {
// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
@@ -241,12 +263,13 @@ Vector3 Basis::get_scale() const {
// This may lead to confusion for some users though.
//
// The convention we use here is to absorb the sign flip into the scaling matrix.
- // The same convention is also used in other similar functions such as set_scale,
- // get_rotation_axis_angle, get_rotation, set_rotation_axis_angle, set_rotation_euler, ...
+ // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
//
// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
// matrix elements.
+ //
+ // The rotation part of this decomposition is returned by get_rotation* functions.
real_t det_sign = determinant() > 0 ? 1 : -1;
return det_sign * Vector3(
Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
@@ -254,15 +277,24 @@ Vector3 Basis::get_scale() const {
Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
}
-// Sets scaling while preserving rotation.
-// This requires some care when working with matrices with negative determinant,
-// since we're using a particular convention for "polar" decomposition in get_scale and get_rotation.
-// For details, see the explanation in get_scale.
-void Basis::set_scale(const Vector3 &p_scale) {
- Vector3 e = get_euler();
- Basis(); // reset to identity
- scale(p_scale);
- rotate(e);
+// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
+// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
+// This (internal) function is too specıfıc and named too ugly to expose to users, and probably there's no need to do so.
+Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(determinant() == 0, Vector3());
+
+ Basis m = transposed() * (*this);
+ ERR_FAIL_COND_V(m.is_diagonal() == false, Vector3());
+#endif
+ Vector3 scale = get_scale();
+ Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
+ rotref = (*this) * inv_scale;
+
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(rotref.is_orthogonal() == false, Vector3());
+#endif
+ return scale.abs();
}
// Multiplies the matrix from left by the rotation matrix: M -> R.M
@@ -316,28 +348,6 @@ void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
m.get_axis_angle(p_axis, p_angle);
}
-// Sets rotation while preserving scaling.
-// This requires some care when working with matrices with negative determinant,
-// since we're using a particular convention for "polar" decomposition in get_scale and get_rotation.
-// For details, see the explanation in get_scale.
-void Basis::set_rotation_euler(const Vector3 &p_euler) {
- Vector3 s = get_scale();
- Basis(); // reset to identity
- scale(s);
- rotate(p_euler);
-}
-
-// Sets rotation while preserving scaling.
-// This requires some care when working with matrices with negative determinant,
-// since we're using a particular convention for "polar" decomposition in get_scale and get_rotation.
-// For details, see the explanation in get_scale.
-void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) {
- Vector3 s = get_scale();
- Basis(); // reset to identity
- scale(s);
- rotate(p_axis, p_angle);
-}
-
// get_euler_xyz returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
// (following the convention they are commonly defined in the literature).
@@ -364,8 +374,9 @@ Vector3 Basis::get_euler_xyz() const {
euler.y = Math::asin(elements[0][2]);
if (euler.y < Math_PI * 0.5) {
if (euler.y > -Math_PI * 0.5) {
- //if rotation is Y-only, return a proper -pi,pi range like in x or z for the same case.
+ // is this a pure Y rotation?
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
+ // return the simplest form
euler.x = 0;
euler.y = atan2(elements[0][2], elements[0][0]);
euler.z = 0;
@@ -432,7 +443,9 @@ Vector3 Basis::get_euler_yxz() const {
if (m12 < 1) {
if (m12 > -1) {
- if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { // use pure x rotation
+ // is this a pure X rotation?
+ if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
+ // return the simplest form
euler.x = atan2(-m12, elements[1][1]);
euler.y = 0;
euler.z = 0;
@@ -525,7 +538,7 @@ Basis::operator String() const {
return mtx;
}
-Basis::operator Quat() const {
+Quat Basis::get_quat() const {
//commenting this check because precision issues cause it to fail when it shouldn't
//#ifdef MATH_CHECKS
//ERR_FAIL_COND_V(is_rotation() == false, Quat());
@@ -697,12 +710,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = angle;
}
-Basis::Basis(const Vector3 &p_euler) {
-
- set_euler(p_euler);
-}
-
-Basis::Basis(const Quat &p_quat) {
+void Basis::set_quat(const Quat &p_quat) {
real_t d = p_quat.length_squared();
real_t s = 2.0 / d;
@@ -737,7 +745,3 @@ void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine;
elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
}
-
-Basis::Basis(const Vector3 &p_axis, real_t p_phi) {
- set_axis_angle(p_axis, p_phi);
-}