diff options
Diffstat (limited to 'core/math/matrix3.cpp')
-rw-r--r-- | core/math/matrix3.cpp | 479 |
1 files changed, 479 insertions, 0 deletions
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp new file mode 100644 index 0000000000..ff62e7786b --- /dev/null +++ b/core/math/matrix3.cpp @@ -0,0 +1,479 @@ +/*************************************************************************/ +/* matrix3.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* http://www.godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ +#include "matrix3.h" +#include "math_funcs.h" +#include "os/copymem.h" + +#define cofac(row1,col1, row2, col2)\ + (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) + +void Matrix3::from_z(const Vector3& p_z) { + + if (Math::abs(p_z.z) > Math_SQRT12 ) { + + // choose p in y-z plane + real_t a = p_z[1]*p_z[1] + p_z[2]*p_z[2]; + real_t k = 1.0/Math::sqrt(a); + elements[0]=Vector3(0,-p_z[2]*k,p_z[1]*k); + elements[1]=Vector3(a*k,-p_z[0]*elements[0][2],p_z[0]*elements[0][1]); + } else { + + // choose p in x-y plane + real_t a = p_z.x*p_z.x + p_z.y*p_z.y; + real_t k = 1.0/Math::sqrt(a); + elements[0]=Vector3(-p_z.y*k,p_z.x*k,0); + elements[1]=Vector3(-p_z.z*elements[0].y,p_z.z*elements[0].x,a*k); + } + elements[2]=p_z; +} + +void Matrix3::invert() { + + + real_t co[3]={ + cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) + }; + real_t det = elements[0][0] * co[0]+ + elements[0][1] * co[1]+ + elements[0][2] * co[2]; + + ERR_FAIL_COND( det == 0 ); + real_t s = 1.0/det; + + set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, + co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, + co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s ); + +} + +void Matrix3::orthonormalize() { + + // Gram-Schmidt Process + + Vector3 x=get_axis(0); + Vector3 y=get_axis(1); + Vector3 z=get_axis(2); + + x.normalize(); + y = (y-x*(x.dot(y))); + y.normalize(); + z = (z-x*(x.dot(z))-y*(y.dot(z))); + z.normalize(); + + set_axis(0,x); + set_axis(1,y); + set_axis(2,z); + +} + +Matrix3 Matrix3::orthonormalized() const { + + Matrix3 c = *this; + c.orthonormalize(); + return c; +} + + +Matrix3 Matrix3::inverse() const { + + Matrix3 inv=*this; + inv.invert(); + return inv; +} + +void Matrix3::transpose() { + + SWAP(elements[0][1],elements[1][0]); + SWAP(elements[0][2],elements[2][0]); + SWAP(elements[1][2],elements[2][1]); +} + +Matrix3 Matrix3::transposed() const { + + Matrix3 tr=*this; + tr.transpose(); + return tr; +} + +void Matrix3::scale(const Vector3& p_scale) { + + elements[0][0]*=p_scale.x; + elements[1][0]*=p_scale.x; + elements[2][0]*=p_scale.x; + elements[0][1]*=p_scale.y; + elements[1][1]*=p_scale.y; + elements[2][1]*=p_scale.y; + elements[0][2]*=p_scale.z; + elements[1][2]*=p_scale.z; + elements[2][2]*=p_scale.z; +} + +Matrix3 Matrix3::scaled( const Vector3& p_scale ) const { + + Matrix3 m = *this; + m.scale(p_scale); + return m; +} + +Vector3 Matrix3::get_scale() const { + + return Vector3( + Vector3(elements[0][0],elements[1][0],elements[2][0]).length(), + Vector3(elements[0][1],elements[1][1],elements[2][1]).length(), + Vector3(elements[0][2],elements[1][2],elements[2][2]).length() + ); + +} +void Matrix3::rotate(const Vector3& p_axis, real_t p_phi) { + + *this = *this * Matrix3(p_axis, p_phi); +} + +Matrix3 Matrix3::rotated(const Vector3& p_axis, real_t p_phi) const { + + return *this * Matrix3(p_axis, p_phi); + +} + +Vector3 Matrix3::get_euler() const { + + // rot = cy*cz -cy*sz sy + // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx + // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy + + Matrix3 m = *this; + m.orthonormalize(); + + Vector3 euler; + + euler.y = Math::asin(m[0][2]); + if ( euler.y < Math_PI*0.5) { + if ( euler.y > -Math_PI*0.5) { + euler.x = Math::atan2(-m[1][2],m[2][2]); + euler.z = Math::atan2(-m[0][1],m[0][0]); + + } else { + real_t r = Math::atan2(m[1][0],m[1][1]); + euler.z = 0.0; + euler.x = euler.z - r; + + } + } else { + real_t r = Math::atan2(m[0][1],m[1][1]); + euler.z = 0; + euler.x = r - euler.z; + } + + return euler; + + +} + +void Matrix3::set_euler(const Vector3& p_euler) { + + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Matrix3 xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Matrix3 ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Matrix3 zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0); + + //optimizer will optimize away all this anyway + *this = xmat*(ymat*zmat); +} + +bool Matrix3::operator==(const Matrix3& p_matrix) const { + + for (int i=0;i<3;i++) { + for (int j=0;j<3;j++) { + if (elements[i][j]!=p_matrix.elements[i][j]) + return false; + } + } + + return true; +} +bool Matrix3::operator!=(const Matrix3& p_matrix) const { + + return (!(*this==p_matrix)); +} + +Matrix3::operator String() const { + + String mtx; + for (int i=0;i<3;i++) { + + for (int j=0;j<3;j++) { + + if (i!=0 || j!=0) + mtx+=", "; + + mtx+=rtos( elements[i][j] ); + } + } + + return mtx; +} + +Matrix3::operator Quat() const { + + Matrix3 m=*this; + m.orthonormalize(); + + real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2]; + real_t temp[4]; + + if (trace > 0.0) + { + real_t s = Math::sqrt(trace + 1.0); + temp[3]=(s * 0.5); + s = 0.5 / s; + + temp[0]=((m.elements[2][1] - m.elements[1][2]) * s); + temp[1]=((m.elements[0][2] - m.elements[2][0]) * s); + temp[2]=((m.elements[1][0] - m.elements[0][1]) * s); + } + else + { + int i = m.elements[0][0] < m.elements[1][1] ? + (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : + (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + int j = (i + 1) % 3; + int k = (i + 2) % 3; + + real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0); + temp[i] = s * 0.5; + s = 0.5 / s; + + temp[3] = (m.elements[k][j] - m.elements[j][k]) * s; + temp[j] = (m.elements[j][i] + m.elements[i][j]) * s; + temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; + } + + return Quat(temp[0],temp[1],temp[2],temp[3]); + +} + +static const Matrix3 _ortho_bases[24]={ + Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1), + Matrix3(0, -1, 0, 1, 0, 0, 0, 0, 1), + Matrix3(-1, 0, 0, 0, -1, 0, 0, 0, 1), + Matrix3(0, 1, 0, -1, 0, 0, 0, 0, 1), + Matrix3(1, 0, 0, 0, 0, -1, 0, 1, 0), + Matrix3(0, 0, 1, 1, 0, 0, 0, 1, 0), + Matrix3(-1, 0, 0, 0, 0, 1, 0, 1, 0), + Matrix3(0, 0, -1, -1, 0, 0, 0, 1, 0), + Matrix3(1, 0, 0, 0, -1, 0, 0, 0, -1), + Matrix3(0, 1, 0, 1, 0, 0, 0, 0, -1), + Matrix3(-1, 0, 0, 0, 1, 0, 0, 0, -1), + Matrix3(0, -1, 0, -1, 0, 0, 0, 0, -1), + Matrix3(1, 0, 0, 0, 0, 1, 0, -1, 0), + Matrix3(0, 0, -1, 1, 0, 0, 0, -1, 0), + Matrix3(-1, 0, 0, 0, 0, -1, 0, -1, 0), + Matrix3(0, 0, 1, -1, 0, 0, 0, -1, 0), + Matrix3(0, 0, 1, 0, 1, 0, -1, 0, 0), + Matrix3(0, -1, 0, 0, 0, 1, -1, 0, 0), + Matrix3(0, 0, -1, 0, -1, 0, -1, 0, 0), + Matrix3(0, 1, 0, 0, 0, -1, -1, 0, 0), + Matrix3(0, 0, 1, 0, -1, 0, 1, 0, 0), + Matrix3(0, 1, 0, 0, 0, 1, 1, 0, 0), + Matrix3(0, 0, -1, 0, 1, 0, 1, 0, 0), + Matrix3(0, -1, 0, 0, 0, -1, 1, 0, 0) +}; + +int Matrix3::get_orthogonal_index() const { + + //could be sped up if i come up with a way + Matrix3 orth=*this; + for(int i=0;i<3;i++) { + for(int j=0;j<3;j++) { + + float v = orth[i][j]; + if (v>0.5) + v=1.0; + else if (v<-0.5) + v=-1.0; + else + v=0; + + orth[i][j]=v; + } + } + + for(int i=0;i<24;i++) { + + if (_ortho_bases[i]==orth) + return i; + + + } + + return 0; +} + +void Matrix3::set_orthogonal_index(int p_index){ + + //there only exist 24 orthogonal bases in r3 + ERR_FAIL_INDEX(p_index,24); + + + *this=_ortho_bases[p_index]; + +} + + +void Matrix3::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const { + + + double angle,x,y,z; // variables for result + double epsilon = 0.01; // margin to allow for rounding errors + double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees + + if ( (Math::abs(elements[1][0]-elements[0][1])< epsilon) + && (Math::abs(elements[2][0]-elements[0][2])< epsilon) + && (Math::abs(elements[2][1]-elements[1][2])< epsilon)) { + // singularity found + // first check for identity matrix which must have +1 for all terms + // in leading diagonaland zero in other terms + if ((Math::abs(elements[1][0]+elements[0][1]) < epsilon2) + && (Math::abs(elements[2][0]+elements[0][2]) < epsilon2) + && (Math::abs(elements[2][1]+elements[1][2]) < epsilon2) + && (Math::abs(elements[0][0]+elements[1][1]+elements[2][2]-3) < epsilon2)) { + // this singularity is identity matrix so angle = 0 + r_axis=Vector3(0,1,0); + r_angle=0; + return; + } + // otherwise this singularity is angle = 180 + angle = Math_PI; + double xx = (elements[0][0]+1)/2; + double yy = (elements[1][1]+1)/2; + double zz = (elements[2][2]+1)/2; + double xy = (elements[1][0]+elements[0][1])/4; + double xz = (elements[2][0]+elements[0][2])/4; + double yz = (elements[2][1]+elements[1][2])/4; + if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term + if (xx< epsilon) { + x = 0; + y = 0.7071; + z = 0.7071; + } else { + x = Math::sqrt(xx); + y = xy/x; + z = xz/x; + } + } else if (yy > zz) { // elements[1][1] is the largest diagonal term + if (yy< epsilon) { + x = 0.7071; + y = 0; + z = 0.7071; + } else { + y = Math::sqrt(yy); + x = xy/y; + z = yz/y; + } + } else { // elements[2][2] is the largest diagonal term so base result on this + if (zz< epsilon) { + x = 0.7071; + y = 0.7071; + z = 0; + } else { + z = Math::sqrt(zz); + x = xz/z; + y = yz/z; + } + } + r_axis=Vector3(x,y,z); + r_angle=angle; + return; + } + // as we have reached here there are no singularities so we can handle normally + double s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1]) + +(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2]) + +(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // used to normalise + if (Math::abs(s) < 0.001) s=1; + // prevent divide by zero, should not happen if matrix is orthogonal and should be + // caught by singularity test above, but I've left it in just in case + angle = Math::acos(( elements[0][0] + elements[1][1] + elements[2][2] - 1)/2); + x = (elements[1][2] - elements[2][1])/s; + y = (elements[2][0] - elements[0][2])/s; + z = (elements[0][1] - elements[1][0])/s; + + r_axis=Vector3(x,y,z); + r_angle=angle; +} + +Matrix3::Matrix3(const Vector3& p_euler) { + + set_euler( p_euler ); + +} + +Matrix3::Matrix3(const Quat& p_quat) { + + real_t d = p_quat.length_squared(); + real_t s = 2.0 / d; + real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; + real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; + real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; + real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; + set( 1.0 - (yy + zz), xy - wz, xz + wy, + xy + wz, 1.0 - (xx + zz), yz - wx, + xz - wy, yz + wx, 1.0 - (xx + yy)) ; + +} + +Matrix3::Matrix3(const Vector3& p_axis, real_t p_phi) { + + Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z); + + real_t cosine= Math::cos(p_phi); + real_t sine= Math::sin(p_phi); + + elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x ); + elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine; + elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine; + + elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine; + elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y ); + elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine; + + elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine; + elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine; + elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z ); + +} + |