diff options
Diffstat (limited to 'core/math/geometry.h')
-rw-r--r-- | core/math/geometry.h | 532 |
1 files changed, 405 insertions, 127 deletions
diff --git a/core/math/geometry.h b/core/math/geometry.h index 3bbd1911ee..a61bf20c4c 100644 --- a/core/math/geometry.h +++ b/core/math/geometry.h @@ -31,13 +31,12 @@ #ifndef GEOMETRY_H #define GEOMETRY_H -#include "core/math/delaunay.h" +#include "core/math/delaunay_2d.h" #include "core/math/face3.h" #include "core/math/rect2.h" #include "core/math/triangulate.h" #include "core/math/vector3.h" #include "core/object.h" - #include "core/print_string.h" #include "core/vector.h" @@ -46,7 +45,6 @@ class Geometry { public: static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) { - Vector2 d1 = q1 - p1; // Direction vector of segment S1. Vector2 d2 = q2 - p2; // Direction vector of segment S2. Vector2 r = p1 - p2; @@ -80,8 +78,9 @@ public: // clamp to segment S1. Else pick arbitrary s (here 0). if (denom != 0.0) { s = CLAMP((b * f - c * e) / denom, 0.0, 1.0); - } else + } else { s = 0.0; + } // Compute point on L2 closest to S1(s) using // t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e t = (b * s + f) / e; @@ -104,7 +103,6 @@ public: } static void get_closest_points_between_segments(const Vector3 &p1, const Vector3 &p2, const Vector3 &q1, const Vector3 &q2, Vector3 &c1, Vector3 &c2) { - // Do the function 'd' as defined by pb. I think is is dot product of some sort. #define d_of(m, n, o, p) ((m.x - n.x) * (o.x - p.x) + (m.y - n.y) * (o.y - p.y) + (m.z - n.z) * (o.z - p.z)) @@ -113,14 +111,18 @@ public: real_t mub = (d_of(p1, q1, q2, q1) + mua * d_of(q2, q1, p2, p1)) / d_of(q2, q1, q2, q1); // Clip the value between [0..1] constraining the solution to lie on the original curves. - if (mua < 0) + if (mua < 0) { mua = 0; - if (mub < 0) + } + if (mub < 0) { mub = 0; - if (mua > 1) + } + if (mua > 1) { mua = 1; - if (mub > 1) + } + if (mub > 1) { mub = 1; + } c1 = p1.lerp(p2, mua); c2 = q1.lerp(q2, mub); } @@ -161,22 +163,22 @@ public: if (tN < 0.0) { // tc < 0 => the t=0 edge is visible. tN = 0.0; // Recompute sc for this edge. - if (-d < 0.0) + if (-d < 0.0) { sN = 0.0; - else if (-d > a) + } else if (-d > a) { sN = sD; - else { + } else { sN = -d; sD = a; } } else if (tN > tD) { // tc > 1 => the t=1 edge is visible. tN = tD; // Recompute sc for this edge. - if ((-d + b) < 0.0) + if ((-d + b) < 0.0) { sN = 0; - else if ((-d + b) > a) + } else if ((-d + b) > a) { sN = sD; - else { + } else { sN = (-d + b); sD = a; } @@ -191,120 +193,134 @@ public: return dP.length(); // Return the closest distance. } - static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = 0) { + static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { Vector3 e1 = p_v1 - p_v0; Vector3 e2 = p_v2 - p_v0; Vector3 h = p_dir.cross(e2); real_t a = e1.dot(h); - if (Math::is_zero_approx(a)) // Parallel test. + if (Math::is_zero_approx(a)) { // Parallel test. return false; + } real_t f = 1.0 / a; Vector3 s = p_from - p_v0; real_t u = f * s.dot(h); - if (u < 0.0 || u > 1.0) + if (u < 0.0 || u > 1.0) { return false; + } Vector3 q = s.cross(e1); real_t v = f * p_dir.dot(q); - if (v < 0.0 || u + v > 1.0) + if (v < 0.0 || u + v > 1.0) { return false; + } // At this stage we can compute t to find out where // the intersection point is on the line. real_t t = f * e2.dot(q); if (t > 0.00001) { // ray intersection - if (r_res) + if (r_res) { *r_res = p_from + p_dir * t; + } return true; - } else // This means that there is a line intersection but not a ray intersection. + } else { // This means that there is a line intersection but not a ray intersection. return false; + } } - static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = 0) { - + static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { Vector3 rel = p_to - p_from; Vector3 e1 = p_v1 - p_v0; Vector3 e2 = p_v2 - p_v0; Vector3 h = rel.cross(e2); real_t a = e1.dot(h); - if (Math::is_zero_approx(a)) // Parallel test. + if (Math::is_zero_approx(a)) { // Parallel test. return false; + } real_t f = 1.0 / a; Vector3 s = p_from - p_v0; real_t u = f * s.dot(h); - if (u < 0.0 || u > 1.0) + if (u < 0.0 || u > 1.0) { return false; + } Vector3 q = s.cross(e1); real_t v = f * rel.dot(q); - if (v < 0.0 || u + v > 1.0) + if (v < 0.0 || u + v > 1.0) { return false; + } // At this stage we can compute t to find out where // the intersection point is on the line. real_t t = f * e2.dot(q); if (t > CMP_EPSILON && t <= 1.0) { // Ray intersection. - if (r_res) + if (r_res) { *r_res = p_from + rel * t; + } return true; - } else // This means that there is a line intersection but not a ray intersection. + } else { // This means that there is a line intersection but not a ray intersection. return false; + } } - static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = 0, Vector3 *r_norm = 0) { - + static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) { Vector3 sphere_pos = p_sphere_pos - p_from; Vector3 rel = (p_to - p_from); real_t rel_l = rel.length(); - if (rel_l < CMP_EPSILON) + if (rel_l < CMP_EPSILON) { return false; // Both points are the same. + } Vector3 normal = rel / rel_l; real_t sphere_d = normal.dot(sphere_pos); real_t ray_distance = sphere_pos.distance_to(normal * sphere_d); - if (ray_distance >= p_sphere_radius) + if (ray_distance >= p_sphere_radius) { return false; + } real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance; real_t inters_d = sphere_d; - if (inters_d2 >= CMP_EPSILON) + if (inters_d2 >= CMP_EPSILON) { inters_d -= Math::sqrt(inters_d2); + } // Check in segment. - if (inters_d < 0 || inters_d > rel_l) + if (inters_d < 0 || inters_d > rel_l) { return false; + } Vector3 result = p_from + normal * inters_d; - if (r_res) + if (r_res) { *r_res = result; - if (r_norm) + } + if (r_norm) { *r_norm = (result - p_sphere_pos).normalized(); + } return true; } - static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = 0, Vector3 *r_norm = 0) { - + static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) { Vector3 rel = (p_to - p_from); real_t rel_l = rel.length(); - if (rel_l < CMP_EPSILON) + if (rel_l < CMP_EPSILON) { return false; // Both points are the same. + } // First check if they are parallel. Vector3 normal = (rel / rel_l); @@ -321,13 +337,15 @@ public: real_t dist = z_dir.dot(p_from); - if (dist >= p_radius) + if (dist >= p_radius) { return false; // Too far away. + } // Convert to 2D. real_t w2 = p_radius * p_radius - dist * dist; - if (w2 < CMP_EPSILON) + if (w2 < CMP_EPSILON) { return false; // Avoid numerical error. + } Size2 size(Math::sqrt(w2), p_height * 0.5); Vector3 x_dir = z_dir.cross(Vector3(0, 0, 1)).normalized(); @@ -340,7 +358,6 @@ public: int axis = -1; for (int i = 0; i < 2; i++) { - real_t seg_from = from2D[i]; real_t seg_to = to2D[i]; real_t box_begin = -size[i]; @@ -348,17 +365,17 @@ public: real_t cmin, cmax; if (seg_from < seg_to) { - - if (seg_from > box_end || seg_to < box_begin) + if (seg_from > box_end || seg_to < box_begin) { return false; + } real_t length = seg_to - seg_from; cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; } else { - - if (seg_to > box_end || seg_from < box_begin) + if (seg_to > box_end || seg_from < box_begin) { return false; + } real_t length = seg_to - seg_from; cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; @@ -368,10 +385,12 @@ public: min = cmin; axis = i; } - if (cmax < max) + if (cmax < max) { max = cmax; - if (max < min) + } + if (max < min) { return false; + } } // Convert to 3D again. @@ -387,45 +406,47 @@ public: res_normal.normalize(); - if (r_res) + if (r_res) { *r_res = result; - if (r_norm) + } + if (r_norm) { *r_norm = res_normal; + } return true; } static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) { - real_t min = -1e20, max = 1e20; Vector3 rel = p_to - p_from; real_t rel_l = rel.length(); - if (rel_l < CMP_EPSILON) + if (rel_l < CMP_EPSILON) { return false; + } Vector3 dir = rel / rel_l; int min_index = -1; for (int i = 0; i < p_plane_count; i++) { - const Plane &p = p_planes[i]; real_t den = p.normal.dot(dir); - if (Math::abs(den) <= CMP_EPSILON) + if (Math::abs(den) <= CMP_EPSILON) { continue; // Ignore parallel plane. + } real_t dist = -p.distance_to(p_from) / den; if (den > 0) { // Backwards facing plane. - if (dist < max) + if (dist < max) { max = dist; + } } else { - // Front facing plane. if (dist > min) { min = dist; @@ -434,42 +455,46 @@ public: } } - if (max <= min || min < 0 || min > rel_l || min_index == -1) // Exit conditions. + if (max <= min || min < 0 || min > rel_l || min_index == -1) { // Exit conditions. return false; // No intersection. + } - if (p_res) + if (p_res) { *p_res = p_from + dir * min; - if (p_norm) + } + if (p_norm) { *p_norm = p_planes[min_index].normal; + } return true; } static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) { - Vector3 p = p_point - p_segment[0]; Vector3 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); - if (l2 < 1e-20) + if (l2 < 1e-20) { return p_segment[0]; // Both points are the same, just give any. + } real_t d = n.dot(p) / l2; - if (d <= 0.0) + if (d <= 0.0) { return p_segment[0]; // Before first point. - else if (d >= 1.0) + } else if (d >= 1.0) { return p_segment[1]; // After first point. - else + } else { return p_segment[0] + n * d; // Inside. + } } static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) { - Vector3 p = p_point - p_segment[0]; Vector3 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); - if (l2 < 1e-20) + if (l2 < 1e-20) { return p_segment[0]; // Both points are the same, just give any. + } real_t d = n.dot(p) / l2; @@ -477,21 +502,22 @@ public: } static Vector2 get_closest_point_to_segment_2d(const Vector2 &p_point, const Vector2 *p_segment) { - Vector2 p = p_point - p_segment[0]; Vector2 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); - if (l2 < 1e-20) + if (l2 < 1e-20) { return p_segment[0]; // Both points are the same, just give any. + } real_t d = n.dot(p) / l2; - if (d <= 0.0) + if (d <= 0.0) { return p_segment[0]; // Before first point. - else if (d >= 1.0) + } else if (d >= 1.0) { return p_segment[1]; // After first point. - else + } else { return p_segment[0] + n * d; // Inside. + } } static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) { @@ -501,19 +527,20 @@ public: bool orientation = an.cross(bn) > 0; - if ((bn.cross(cn) > 0) != orientation) + if ((bn.cross(cn) > 0) != orientation) { return false; + } return (cn.cross(an) > 0) == orientation; } static Vector2 get_closest_point_to_segment_uncapped_2d(const Vector2 &p_point, const Vector2 *p_segment) { - Vector2 p = p_point - p_segment[0]; Vector2 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); - if (l2 < 1e-20) + if (l2 < 1e-20) { return p_segment[0]; // Both points are the same, just give any. + } real_t d = n.dot(p) / l2; @@ -521,7 +548,6 @@ public: } static bool line_intersects_line_2d(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) { - // See http://paulbourke.net/geometry/pointlineplane/ const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y; @@ -536,62 +562,68 @@ public: } static bool segment_intersects_segment_2d(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) { - Vector2 B = p_to_a - p_from_a; Vector2 C = p_from_b - p_from_a; Vector2 D = p_to_b - p_from_a; real_t ABlen = B.dot(B); - if (ABlen <= 0) + if (ABlen <= 0) { return false; + } Vector2 Bn = B / ABlen; C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y); D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y); - if ((C.y < 0 && D.y < 0) || (C.y >= 0 && D.y >= 0)) + if ((C.y < 0 && D.y < 0) || (C.y >= 0 && D.y >= 0)) { return false; + } real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y); // Fail if segment C-D crosses line A-B outside of segment A-B. - if (ABpos < 0 || ABpos > 1.0) + if (ABpos < 0 || ABpos > 1.0) { return false; + } // (4) Apply the discovered position to line A-B in the original coordinate system. - if (r_result) + if (r_result) { *r_result = p_from_a + B * ABpos; + } return true; } static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) { - Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2); Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2); - if (face_n.dot(n1) < 0) + if (face_n.dot(n1) < 0) { return false; + } Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point); - if (face_n.dot(n2) < 0) + if (face_n.dot(n2) < 0) { return false; + } Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2); - if (face_n.dot(n3) < 0) + if (face_n.dot(n3) < 0) { return false; + } return true; } static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) { - real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]); - if (d > p_sphere_radius || d < -p_sphere_radius) // Not touching the plane of the face, return. + if (d > p_sphere_radius || d < -p_sphere_radius) { + // Not touching the plane of the face, return. return false; + } Vector3 contact = p_sphere_pos - (p_normal * d); @@ -609,7 +641,6 @@ public: const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly for (int i = 0; i < 3; i++) { - // Check edge cylinder. Vector3 n1 = verts[i] - verts[i + 1]; @@ -634,7 +665,6 @@ public: real_t sphere_at = n1.dot(n2); if (sphere_at >= 0 && sphere_at < n1.dot(n1)) { - r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2)); r_sphere_contact = p_sphere_pos - axis * p_sphere_radius; // Point inside here. @@ -644,7 +674,6 @@ public: real_t r2 = p_sphere_radius * p_sphere_radius; if (n2.length_squared() < r2) { - Vector3 n = (p_sphere_pos - verts[i + 1]).normalized(); r_triangle_contact = verts[i + 1]; @@ -667,12 +696,10 @@ public: } static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) { - return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius; } static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) { - Vector2 line_vec = p_to - p_from; Vector2 vec_to_line = p_from - p_circle_pos; @@ -688,8 +715,9 @@ public: // If the term we intend to square root is less than 0 then the answer won't be real, // so it definitely won't be t in the range 0 to 1. - if (sqrtterm < 0) + if (sqrtterm < 0) { return -1; + } // If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection) // then the following can be skipped and we can just return the equivalent of res1. @@ -697,23 +725,25 @@ public: real_t res1 = (-b - sqrtterm) / (2 * a); real_t res2 = (-b + sqrtterm) / (2 * a); - if (res1 >= 0 && res1 <= 1) + if (res1 >= 0 && res1 <= 1) { return res1; - if (res2 >= 0 && res2 <= 1) + } + if (res2 >= 0 && res2 <= 1) { return res2; + } return -1; } static inline Vector<Vector3> clip_polygon(const Vector<Vector3> &polygon, const Plane &p_plane) { - enum LocationCache { LOC_INSIDE = 1, LOC_BOUNDARY = 0, LOC_OUTSIDE = -1 }; - if (polygon.size() == 0) + if (polygon.size() == 0) { return polygon; + } int *location_cache = (int *)alloca(sizeof(int) * polygon.size()); int inside_count = 0; @@ -735,11 +765,8 @@ public: } if (outside_count == 0) { - return polygon; // No changes. - } else if (inside_count == 0) { - return Vector<Vector3>(); // Empty. } @@ -799,49 +826,40 @@ public: }; static Vector<Vector<Point2>> merge_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) { - return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b); } static Vector<Vector<Point2>> clip_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) { - return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b); } static Vector<Vector<Point2>> intersect_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) { - return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b); } static Vector<Vector<Point2>> exclude_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) { - return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b); } static Vector<Vector<Point2>> clip_polyline_with_polygon_2d(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) { - return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true); } static Vector<Vector<Point2>> intersect_polyline_with_polygon_2d(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) { - return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true); } static Vector<Vector<Point2>> offset_polygon_2d(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) { - return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON); } static Vector<Vector<Point2>> offset_polyline_2d(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) { - ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon_2d instead)."); return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type); } static Vector<int> triangulate_delaunay_2d(const Vector<Vector2> &p_points) { - Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points); Vector<int> triangles; @@ -854,17 +872,18 @@ public: } static Vector<int> triangulate_polygon(const Vector<Vector2> &p_polygon) { - Vector<int> triangles; - if (!Triangulate::triangulate(p_polygon, triangles)) + if (!Triangulate::triangulate(p_polygon, triangles)) { return Vector<int>(); //fail + } return triangles; } static bool is_polygon_clockwise(const Vector<Vector2> &p_polygon) { int c = p_polygon.size(); - if (c < 3) + if (c < 3) { return false; + } const Vector2 *p = p_polygon.ptr(); real_t sum = 0; for (int i = 0; i < c; i++) { @@ -879,8 +898,9 @@ public: // Alternate implementation that should be faster. static bool is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) { int c = p_polygon.size(); - if (c < 3) + if (c < 3) { return false; + } const Vector2 *p = p_polygon.ptr(); Vector2 further_away(-1e20, -1e20); Vector2 further_away_opposite(1e20, 1e20); @@ -913,7 +933,6 @@ public: static Vector<Face3> wrap_geometry(Vector<Face3> p_array, real_t *p_error = nullptr); struct MeshData { - struct Face { Plane plane; Vector<int> indices; @@ -922,7 +941,6 @@ public: Vector<Face> faces; struct Edge { - int a, b; }; @@ -934,7 +952,6 @@ public: }; _FORCE_INLINE_ static int get_uv84_normal_bit(const Vector3 &p_vector) { - int lat = Math::fast_ftoi(Math::floor(Math::acos(p_vector.dot(Vector3(0, 1, 0))) * 4.0 / Math_PI + 0.5)); if (lat == 0) { @@ -949,33 +966,35 @@ public: } _FORCE_INLINE_ static int get_uv84_normal_bit_neighbors(int p_idx) { - if (p_idx == 24) { return 1 | 2 | 4 | 8; } else if (p_idx == 25) { return (1 << 23) | (1 << 22) | (1 << 21) | (1 << 20); } else { - int ret = 0; - if ((p_idx % 8) == 0) + if ((p_idx % 8) == 0) { ret |= (1 << (p_idx + 7)); - else + } else { ret |= (1 << (p_idx - 1)); - if ((p_idx % 8) == 7) + } + if ((p_idx % 8) == 7) { ret |= (1 << (p_idx - 7)); - else + } else { ret |= (1 << (p_idx + 1)); + } int mask = ret | (1 << p_idx); - if (p_idx < 8) + if (p_idx < 8) { ret |= 24; - else + } else { ret |= mask >> 8; + } - if (p_idx >= 16) + if (p_idx >= 16) { ret |= 25; - else + } else { ret |= mask << 8; + } return ret; } @@ -997,15 +1016,17 @@ public: // Build lower hull. for (int i = 0; i < n; ++i) { - while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) + while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) { k--; + } H.write[k++] = P[i]; } // Build upper hull. for (int i = n - 2, t = k + 1; i >= 0; i--) { - while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) + while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) { k--; + } H.write[k++] = P[i]; } @@ -1024,6 +1045,263 @@ public: static Vector<Vector3> compute_convex_mesh_points(const Plane *p_planes, int p_plane_count); +#define FINDMINMAX(x0, x1, x2, min, max) \ + min = max = x0; \ + if (x1 < min) { \ + min = x1; \ + } \ + if (x1 > max) { \ + max = x1; \ + } \ + if (x2 < min) { \ + min = x2; \ + } \ + if (x2 > max) { \ + max = x2; \ + } + + _FORCE_INLINE_ static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { + int q; + Vector3 vmin, vmax; + for (q = 0; q <= 2; q++) { + if (normal[q] > 0.0f) { + vmin[q] = -maxbox[q]; + vmax[q] = maxbox[q]; + } else { + vmin[q] = maxbox[q]; + vmax[q] = -maxbox[q]; + } + } + if (normal.dot(vmin) + d > 0.0f) { + return false; + } + if (normal.dot(vmax) + d >= 0.0f) { + return true; + } + + return false; + } + +/*======================== X-tests ========================*/ +#define AXISTEST_X01(a, b, fa, fb) \ + p0 = a * v0.y - b * v0.z; \ + p2 = a * v2.y - b * v2.z; \ + if (p0 < p2) { \ + min = p0; \ + max = p2; \ + } else { \ + min = p2; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) { \ + return false; \ + } + +#define AXISTEST_X2(a, b, fa, fb) \ + p0 = a * v0.y - b * v0.z; \ + p1 = a * v1.y - b * v1.z; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) { \ + return false; \ + } + +/*======================== Y-tests ========================*/ +#define AXISTEST_Y02(a, b, fa, fb) \ + p0 = -a * v0.x + b * v0.z; \ + p2 = -a * v2.x + b * v2.z; \ + if (p0 < p2) { \ + min = p0; \ + max = p2; \ + } else { \ + min = p2; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) { \ + return false; \ + } + +#define AXISTEST_Y1(a, b, fa, fb) \ + p0 = -a * v0.x + b * v0.z; \ + p1 = -a * v1.x + b * v1.z; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) { \ + return false; \ + } + + /*======================== Z-tests ========================*/ + +#define AXISTEST_Z12(a, b, fa, fb) \ + p1 = a * v1.x - b * v1.y; \ + p2 = a * v2.x - b * v2.y; \ + if (p2 < p1) { \ + min = p2; \ + max = p1; \ + } else { \ + min = p1; \ + max = p2; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if (min > rad || max < -rad) { \ + return false; \ + } + +#define AXISTEST_Z0(a, b, fa, fb) \ + p0 = a * v0.x - b * v0.y; \ + p1 = a * v1.x - b * v1.y; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if (min > rad || max < -rad) { \ + return false; \ + } + + _FORCE_INLINE_ static bool triangle_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { + /* use separating axis theorem to test overlap between triangle and box */ + /* need to test for overlap in these directions: */ + /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ + /* we do not even need to test these) */ + /* 2) normal of the triangle */ + /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ + /* this gives 3x3=9 more tests */ + Vector3 v0, v1, v2; + float min, max, d, p0, p1, p2, rad, fex, fey, fez; + Vector3 normal, e0, e1, e2; + + /* This is the fastest branch on Sun */ + /* move everything so that the boxcenter is in (0,0,0) */ + + v0 = triverts[0] - boxcenter; + v1 = triverts[1] - boxcenter; + v2 = triverts[2] - boxcenter; + + /* compute triangle edges */ + e0 = v1 - v0; /* tri edge 0 */ + e1 = v2 - v1; /* tri edge 1 */ + e2 = v0 - v2; /* tri edge 2 */ + + /* Bullet 3: */ + /* test the 9 tests first (this was faster) */ + fex = Math::abs(e0.x); + fey = Math::abs(e0.y); + fez = Math::abs(e0.z); + AXISTEST_X01(e0.z, e0.y, fez, fey); + AXISTEST_Y02(e0.z, e0.x, fez, fex); + AXISTEST_Z12(e0.y, e0.x, fey, fex); + + fex = Math::abs(e1.x); + fey = Math::abs(e1.y); + fez = Math::abs(e1.z); + AXISTEST_X01(e1.z, e1.y, fez, fey); + AXISTEST_Y02(e1.z, e1.x, fez, fex); + AXISTEST_Z0(e1.y, e1.x, fey, fex); + + fex = Math::abs(e2.x); + fey = Math::abs(e2.y); + fez = Math::abs(e2.z); + AXISTEST_X2(e2.z, e2.y, fez, fey); + AXISTEST_Y1(e2.z, e2.x, fez, fex); + AXISTEST_Z12(e2.y, e2.x, fey, fex); + + /* Bullet 1: */ + /* first test overlap in the {x,y,z}-directions */ + /* find min, max of the triangle each direction, and test for overlap in */ + /* that direction -- this is equivalent to testing a minimal AABB around */ + /* the triangle against the AABB */ + + /* test in X-direction */ + FINDMINMAX(v0.x, v1.x, v2.x, min, max); + if (min > boxhalfsize.x || max < -boxhalfsize.x) { + return false; + } + + /* test in Y-direction */ + FINDMINMAX(v0.y, v1.y, v2.y, min, max); + if (min > boxhalfsize.y || max < -boxhalfsize.y) { + return false; + } + + /* test in Z-direction */ + FINDMINMAX(v0.z, v1.z, v2.z, min, max); + if (min > boxhalfsize.z || max < -boxhalfsize.z) { + return false; + } + + /* Bullet 2: */ + /* test if the box intersects the plane of the triangle */ + /* compute plane equation of triangle: normal*x+d=0 */ + normal = e0.cross(e1); + d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ + return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ + } + + static Vector<Point2i> pack_rects(const Vector<Size2i> &p_sizes, const Size2i &p_atlas_size); + static Vector<Vector3i> partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size); + + static Vector<uint32_t> generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative); + static Vector<int8_t> generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative); + + static Vector3 triangle_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_pos) { + Vector3 v0 = p_b - p_a; + Vector3 v1 = p_c - p_a; + Vector3 v2 = p_pos - p_a; + + float d00 = v0.dot(v0); + float d01 = v0.dot(v1); + float d11 = v1.dot(v1); + float d20 = v2.dot(v0); + float d21 = v2.dot(v1); + float denom = (d00 * d11 - d01 * d01); + if (denom == 0) { + return Vector3(); //invalid triangle, return empty + } + float v = (d11 * d20 - d01 * d21) / denom; + float w = (d00 * d21 - d01 * d20) / denom; + float u = 1.0f - v - w; + return Vector3(u, v, w); + } + + static Color tetrahedron_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_d, const Vector3 &p_pos) { + Vector3 vap = p_pos - p_a; + Vector3 vbp = p_pos - p_b; + + Vector3 vab = p_b - p_a; + Vector3 vac = p_c - p_a; + Vector3 vad = p_d - p_a; + + Vector3 vbc = p_c - p_b; + Vector3 vbd = p_d - p_b; + // ScTP computes the scalar triple product +#define STP(m_a, m_b, m_c) ((m_a).dot((m_b).cross((m_c)))) + float va6 = STP(vbp, vbd, vbc); + float vb6 = STP(vap, vac, vad); + float vc6 = STP(vap, vad, vab); + float vd6 = STP(vap, vab, vac); + float v6 = 1 / STP(vab, vac, vad); + return Color(va6 * v6, vb6 * v6, vc6 * v6, vd6 * v6); +#undef STP + } + private: static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open = false); static Vector<Vector<Point2>> _polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type); |