summaryrefslogtreecommitdiff
path: root/core/math/geometry.h
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/geometry.h')
-rw-r--r--core/math/geometry.h532
1 files changed, 405 insertions, 127 deletions
diff --git a/core/math/geometry.h b/core/math/geometry.h
index 3bbd1911ee..a61bf20c4c 100644
--- a/core/math/geometry.h
+++ b/core/math/geometry.h
@@ -31,13 +31,12 @@
#ifndef GEOMETRY_H
#define GEOMETRY_H
-#include "core/math/delaunay.h"
+#include "core/math/delaunay_2d.h"
#include "core/math/face3.h"
#include "core/math/rect2.h"
#include "core/math/triangulate.h"
#include "core/math/vector3.h"
#include "core/object.h"
-
#include "core/print_string.h"
#include "core/vector.h"
@@ -46,7 +45,6 @@ class Geometry {
public:
static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) {
-
Vector2 d1 = q1 - p1; // Direction vector of segment S1.
Vector2 d2 = q2 - p2; // Direction vector of segment S2.
Vector2 r = p1 - p2;
@@ -80,8 +78,9 @@ public:
// clamp to segment S1. Else pick arbitrary s (here 0).
if (denom != 0.0) {
s = CLAMP((b * f - c * e) / denom, 0.0, 1.0);
- } else
+ } else {
s = 0.0;
+ }
// Compute point on L2 closest to S1(s) using
// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
t = (b * s + f) / e;
@@ -104,7 +103,6 @@ public:
}
static void get_closest_points_between_segments(const Vector3 &p1, const Vector3 &p2, const Vector3 &q1, const Vector3 &q2, Vector3 &c1, Vector3 &c2) {
-
// Do the function 'd' as defined by pb. I think is is dot product of some sort.
#define d_of(m, n, o, p) ((m.x - n.x) * (o.x - p.x) + (m.y - n.y) * (o.y - p.y) + (m.z - n.z) * (o.z - p.z))
@@ -113,14 +111,18 @@ public:
real_t mub = (d_of(p1, q1, q2, q1) + mua * d_of(q2, q1, p2, p1)) / d_of(q2, q1, q2, q1);
// Clip the value between [0..1] constraining the solution to lie on the original curves.
- if (mua < 0)
+ if (mua < 0) {
mua = 0;
- if (mub < 0)
+ }
+ if (mub < 0) {
mub = 0;
- if (mua > 1)
+ }
+ if (mua > 1) {
mua = 1;
- if (mub > 1)
+ }
+ if (mub > 1) {
mub = 1;
+ }
c1 = p1.lerp(p2, mua);
c2 = q1.lerp(q2, mub);
}
@@ -161,22 +163,22 @@ public:
if (tN < 0.0) { // tc < 0 => the t=0 edge is visible.
tN = 0.0;
// Recompute sc for this edge.
- if (-d < 0.0)
+ if (-d < 0.0) {
sN = 0.0;
- else if (-d > a)
+ } else if (-d > a) {
sN = sD;
- else {
+ } else {
sN = -d;
sD = a;
}
} else if (tN > tD) { // tc > 1 => the t=1 edge is visible.
tN = tD;
// Recompute sc for this edge.
- if ((-d + b) < 0.0)
+ if ((-d + b) < 0.0) {
sN = 0;
- else if ((-d + b) > a)
+ } else if ((-d + b) > a) {
sN = sD;
- else {
+ } else {
sN = (-d + b);
sD = a;
}
@@ -191,120 +193,134 @@ public:
return dP.length(); // Return the closest distance.
}
- static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = 0) {
+ static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) {
Vector3 e1 = p_v1 - p_v0;
Vector3 e2 = p_v2 - p_v0;
Vector3 h = p_dir.cross(e2);
real_t a = e1.dot(h);
- if (Math::is_zero_approx(a)) // Parallel test.
+ if (Math::is_zero_approx(a)) { // Parallel test.
return false;
+ }
real_t f = 1.0 / a;
Vector3 s = p_from - p_v0;
real_t u = f * s.dot(h);
- if (u < 0.0 || u > 1.0)
+ if (u < 0.0 || u > 1.0) {
return false;
+ }
Vector3 q = s.cross(e1);
real_t v = f * p_dir.dot(q);
- if (v < 0.0 || u + v > 1.0)
+ if (v < 0.0 || u + v > 1.0) {
return false;
+ }
// At this stage we can compute t to find out where
// the intersection point is on the line.
real_t t = f * e2.dot(q);
if (t > 0.00001) { // ray intersection
- if (r_res)
+ if (r_res) {
*r_res = p_from + p_dir * t;
+ }
return true;
- } else // This means that there is a line intersection but not a ray intersection.
+ } else { // This means that there is a line intersection but not a ray intersection.
return false;
+ }
}
- static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = 0) {
-
+ static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) {
Vector3 rel = p_to - p_from;
Vector3 e1 = p_v1 - p_v0;
Vector3 e2 = p_v2 - p_v0;
Vector3 h = rel.cross(e2);
real_t a = e1.dot(h);
- if (Math::is_zero_approx(a)) // Parallel test.
+ if (Math::is_zero_approx(a)) { // Parallel test.
return false;
+ }
real_t f = 1.0 / a;
Vector3 s = p_from - p_v0;
real_t u = f * s.dot(h);
- if (u < 0.0 || u > 1.0)
+ if (u < 0.0 || u > 1.0) {
return false;
+ }
Vector3 q = s.cross(e1);
real_t v = f * rel.dot(q);
- if (v < 0.0 || u + v > 1.0)
+ if (v < 0.0 || u + v > 1.0) {
return false;
+ }
// At this stage we can compute t to find out where
// the intersection point is on the line.
real_t t = f * e2.dot(q);
if (t > CMP_EPSILON && t <= 1.0) { // Ray intersection.
- if (r_res)
+ if (r_res) {
*r_res = p_from + rel * t;
+ }
return true;
- } else // This means that there is a line intersection but not a ray intersection.
+ } else { // This means that there is a line intersection but not a ray intersection.
return false;
+ }
}
- static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = 0, Vector3 *r_norm = 0) {
-
+ static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) {
Vector3 sphere_pos = p_sphere_pos - p_from;
Vector3 rel = (p_to - p_from);
real_t rel_l = rel.length();
- if (rel_l < CMP_EPSILON)
+ if (rel_l < CMP_EPSILON) {
return false; // Both points are the same.
+ }
Vector3 normal = rel / rel_l;
real_t sphere_d = normal.dot(sphere_pos);
real_t ray_distance = sphere_pos.distance_to(normal * sphere_d);
- if (ray_distance >= p_sphere_radius)
+ if (ray_distance >= p_sphere_radius) {
return false;
+ }
real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance;
real_t inters_d = sphere_d;
- if (inters_d2 >= CMP_EPSILON)
+ if (inters_d2 >= CMP_EPSILON) {
inters_d -= Math::sqrt(inters_d2);
+ }
// Check in segment.
- if (inters_d < 0 || inters_d > rel_l)
+ if (inters_d < 0 || inters_d > rel_l) {
return false;
+ }
Vector3 result = p_from + normal * inters_d;
- if (r_res)
+ if (r_res) {
*r_res = result;
- if (r_norm)
+ }
+ if (r_norm) {
*r_norm = (result - p_sphere_pos).normalized();
+ }
return true;
}
- static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = 0, Vector3 *r_norm = 0) {
-
+ static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) {
Vector3 rel = (p_to - p_from);
real_t rel_l = rel.length();
- if (rel_l < CMP_EPSILON)
+ if (rel_l < CMP_EPSILON) {
return false; // Both points are the same.
+ }
// First check if they are parallel.
Vector3 normal = (rel / rel_l);
@@ -321,13 +337,15 @@ public:
real_t dist = z_dir.dot(p_from);
- if (dist >= p_radius)
+ if (dist >= p_radius) {
return false; // Too far away.
+ }
// Convert to 2D.
real_t w2 = p_radius * p_radius - dist * dist;
- if (w2 < CMP_EPSILON)
+ if (w2 < CMP_EPSILON) {
return false; // Avoid numerical error.
+ }
Size2 size(Math::sqrt(w2), p_height * 0.5);
Vector3 x_dir = z_dir.cross(Vector3(0, 0, 1)).normalized();
@@ -340,7 +358,6 @@ public:
int axis = -1;
for (int i = 0; i < 2; i++) {
-
real_t seg_from = from2D[i];
real_t seg_to = to2D[i];
real_t box_begin = -size[i];
@@ -348,17 +365,17 @@ public:
real_t cmin, cmax;
if (seg_from < seg_to) {
-
- if (seg_from > box_end || seg_to < box_begin)
+ if (seg_from > box_end || seg_to < box_begin) {
return false;
+ }
real_t length = seg_to - seg_from;
cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
} else {
-
- if (seg_to > box_end || seg_from < box_begin)
+ if (seg_to > box_end || seg_from < box_begin) {
return false;
+ }
real_t length = seg_to - seg_from;
cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
@@ -368,10 +385,12 @@ public:
min = cmin;
axis = i;
}
- if (cmax < max)
+ if (cmax < max) {
max = cmax;
- if (max < min)
+ }
+ if (max < min) {
return false;
+ }
}
// Convert to 3D again.
@@ -387,45 +406,47 @@ public:
res_normal.normalize();
- if (r_res)
+ if (r_res) {
*r_res = result;
- if (r_norm)
+ }
+ if (r_norm) {
*r_norm = res_normal;
+ }
return true;
}
static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) {
-
real_t min = -1e20, max = 1e20;
Vector3 rel = p_to - p_from;
real_t rel_l = rel.length();
- if (rel_l < CMP_EPSILON)
+ if (rel_l < CMP_EPSILON) {
return false;
+ }
Vector3 dir = rel / rel_l;
int min_index = -1;
for (int i = 0; i < p_plane_count; i++) {
-
const Plane &p = p_planes[i];
real_t den = p.normal.dot(dir);
- if (Math::abs(den) <= CMP_EPSILON)
+ if (Math::abs(den) <= CMP_EPSILON) {
continue; // Ignore parallel plane.
+ }
real_t dist = -p.distance_to(p_from) / den;
if (den > 0) {
// Backwards facing plane.
- if (dist < max)
+ if (dist < max) {
max = dist;
+ }
} else {
-
// Front facing plane.
if (dist > min) {
min = dist;
@@ -434,42 +455,46 @@ public:
}
}
- if (max <= min || min < 0 || min > rel_l || min_index == -1) // Exit conditions.
+ if (max <= min || min < 0 || min > rel_l || min_index == -1) { // Exit conditions.
return false; // No intersection.
+ }
- if (p_res)
+ if (p_res) {
*p_res = p_from + dir * min;
- if (p_norm)
+ }
+ if (p_norm) {
*p_norm = p_planes[min_index].normal;
+ }
return true;
}
static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) {
-
Vector3 p = p_point - p_segment[0];
Vector3 n = p_segment[1] - p_segment[0];
real_t l2 = n.length_squared();
- if (l2 < 1e-20)
+ if (l2 < 1e-20) {
return p_segment[0]; // Both points are the same, just give any.
+ }
real_t d = n.dot(p) / l2;
- if (d <= 0.0)
+ if (d <= 0.0) {
return p_segment[0]; // Before first point.
- else if (d >= 1.0)
+ } else if (d >= 1.0) {
return p_segment[1]; // After first point.
- else
+ } else {
return p_segment[0] + n * d; // Inside.
+ }
}
static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) {
-
Vector3 p = p_point - p_segment[0];
Vector3 n = p_segment[1] - p_segment[0];
real_t l2 = n.length_squared();
- if (l2 < 1e-20)
+ if (l2 < 1e-20) {
return p_segment[0]; // Both points are the same, just give any.
+ }
real_t d = n.dot(p) / l2;
@@ -477,21 +502,22 @@ public:
}
static Vector2 get_closest_point_to_segment_2d(const Vector2 &p_point, const Vector2 *p_segment) {
-
Vector2 p = p_point - p_segment[0];
Vector2 n = p_segment[1] - p_segment[0];
real_t l2 = n.length_squared();
- if (l2 < 1e-20)
+ if (l2 < 1e-20) {
return p_segment[0]; // Both points are the same, just give any.
+ }
real_t d = n.dot(p) / l2;
- if (d <= 0.0)
+ if (d <= 0.0) {
return p_segment[0]; // Before first point.
- else if (d >= 1.0)
+ } else if (d >= 1.0) {
return p_segment[1]; // After first point.
- else
+ } else {
return p_segment[0] + n * d; // Inside.
+ }
}
static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) {
@@ -501,19 +527,20 @@ public:
bool orientation = an.cross(bn) > 0;
- if ((bn.cross(cn) > 0) != orientation)
+ if ((bn.cross(cn) > 0) != orientation) {
return false;
+ }
return (cn.cross(an) > 0) == orientation;
}
static Vector2 get_closest_point_to_segment_uncapped_2d(const Vector2 &p_point, const Vector2 *p_segment) {
-
Vector2 p = p_point - p_segment[0];
Vector2 n = p_segment[1] - p_segment[0];
real_t l2 = n.length_squared();
- if (l2 < 1e-20)
+ if (l2 < 1e-20) {
return p_segment[0]; // Both points are the same, just give any.
+ }
real_t d = n.dot(p) / l2;
@@ -521,7 +548,6 @@ public:
}
static bool line_intersects_line_2d(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) {
-
// See http://paulbourke.net/geometry/pointlineplane/
const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y;
@@ -536,62 +562,68 @@ public:
}
static bool segment_intersects_segment_2d(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) {
-
Vector2 B = p_to_a - p_from_a;
Vector2 C = p_from_b - p_from_a;
Vector2 D = p_to_b - p_from_a;
real_t ABlen = B.dot(B);
- if (ABlen <= 0)
+ if (ABlen <= 0) {
return false;
+ }
Vector2 Bn = B / ABlen;
C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y);
D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y);
- if ((C.y < 0 && D.y < 0) || (C.y >= 0 && D.y >= 0))
+ if ((C.y < 0 && D.y < 0) || (C.y >= 0 && D.y >= 0)) {
return false;
+ }
real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y);
// Fail if segment C-D crosses line A-B outside of segment A-B.
- if (ABpos < 0 || ABpos > 1.0)
+ if (ABpos < 0 || ABpos > 1.0) {
return false;
+ }
// (4) Apply the discovered position to line A-B in the original coordinate system.
- if (r_result)
+ if (r_result) {
*r_result = p_from_a + B * ABpos;
+ }
return true;
}
static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) {
-
Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2);
Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2);
- if (face_n.dot(n1) < 0)
+ if (face_n.dot(n1) < 0) {
return false;
+ }
Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point);
- if (face_n.dot(n2) < 0)
+ if (face_n.dot(n2) < 0) {
return false;
+ }
Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2);
- if (face_n.dot(n3) < 0)
+ if (face_n.dot(n3) < 0) {
return false;
+ }
return true;
}
static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) {
-
real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]);
- if (d > p_sphere_radius || d < -p_sphere_radius) // Not touching the plane of the face, return.
+ if (d > p_sphere_radius || d < -p_sphere_radius) {
+ // Not touching the plane of the face, return.
return false;
+ }
Vector3 contact = p_sphere_pos - (p_normal * d);
@@ -609,7 +641,6 @@ public:
const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly
for (int i = 0; i < 3; i++) {
-
// Check edge cylinder.
Vector3 n1 = verts[i] - verts[i + 1];
@@ -634,7 +665,6 @@ public:
real_t sphere_at = n1.dot(n2);
if (sphere_at >= 0 && sphere_at < n1.dot(n1)) {
-
r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2));
r_sphere_contact = p_sphere_pos - axis * p_sphere_radius;
// Point inside here.
@@ -644,7 +674,6 @@ public:
real_t r2 = p_sphere_radius * p_sphere_radius;
if (n2.length_squared() < r2) {
-
Vector3 n = (p_sphere_pos - verts[i + 1]).normalized();
r_triangle_contact = verts[i + 1];
@@ -667,12 +696,10 @@ public:
}
static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) {
-
return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius;
}
static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) {
-
Vector2 line_vec = p_to - p_from;
Vector2 vec_to_line = p_from - p_circle_pos;
@@ -688,8 +715,9 @@ public:
// If the term we intend to square root is less than 0 then the answer won't be real,
// so it definitely won't be t in the range 0 to 1.
- if (sqrtterm < 0)
+ if (sqrtterm < 0) {
return -1;
+ }
// If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection)
// then the following can be skipped and we can just return the equivalent of res1.
@@ -697,23 +725,25 @@ public:
real_t res1 = (-b - sqrtterm) / (2 * a);
real_t res2 = (-b + sqrtterm) / (2 * a);
- if (res1 >= 0 && res1 <= 1)
+ if (res1 >= 0 && res1 <= 1) {
return res1;
- if (res2 >= 0 && res2 <= 1)
+ }
+ if (res2 >= 0 && res2 <= 1) {
return res2;
+ }
return -1;
}
static inline Vector<Vector3> clip_polygon(const Vector<Vector3> &polygon, const Plane &p_plane) {
-
enum LocationCache {
LOC_INSIDE = 1,
LOC_BOUNDARY = 0,
LOC_OUTSIDE = -1
};
- if (polygon.size() == 0)
+ if (polygon.size() == 0) {
return polygon;
+ }
int *location_cache = (int *)alloca(sizeof(int) * polygon.size());
int inside_count = 0;
@@ -735,11 +765,8 @@ public:
}
if (outside_count == 0) {
-
return polygon; // No changes.
-
} else if (inside_count == 0) {
-
return Vector<Vector3>(); // Empty.
}
@@ -799,49 +826,40 @@ public:
};
static Vector<Vector<Point2>> merge_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
-
return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b);
}
static Vector<Vector<Point2>> clip_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
-
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b);
}
static Vector<Vector<Point2>> intersect_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
-
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b);
}
static Vector<Vector<Point2>> exclude_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
-
return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b);
}
static Vector<Vector<Point2>> clip_polyline_with_polygon_2d(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
-
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true);
}
static Vector<Vector<Point2>> intersect_polyline_with_polygon_2d(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
-
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true);
}
static Vector<Vector<Point2>> offset_polygon_2d(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) {
-
return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON);
}
static Vector<Vector<Point2>> offset_polyline_2d(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
-
ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon_2d instead).");
return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type);
}
static Vector<int> triangulate_delaunay_2d(const Vector<Vector2> &p_points) {
-
Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points);
Vector<int> triangles;
@@ -854,17 +872,18 @@ public:
}
static Vector<int> triangulate_polygon(const Vector<Vector2> &p_polygon) {
-
Vector<int> triangles;
- if (!Triangulate::triangulate(p_polygon, triangles))
+ if (!Triangulate::triangulate(p_polygon, triangles)) {
return Vector<int>(); //fail
+ }
return triangles;
}
static bool is_polygon_clockwise(const Vector<Vector2> &p_polygon) {
int c = p_polygon.size();
- if (c < 3)
+ if (c < 3) {
return false;
+ }
const Vector2 *p = p_polygon.ptr();
real_t sum = 0;
for (int i = 0; i < c; i++) {
@@ -879,8 +898,9 @@ public:
// Alternate implementation that should be faster.
static bool is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
int c = p_polygon.size();
- if (c < 3)
+ if (c < 3) {
return false;
+ }
const Vector2 *p = p_polygon.ptr();
Vector2 further_away(-1e20, -1e20);
Vector2 further_away_opposite(1e20, 1e20);
@@ -913,7 +933,6 @@ public:
static Vector<Face3> wrap_geometry(Vector<Face3> p_array, real_t *p_error = nullptr);
struct MeshData {
-
struct Face {
Plane plane;
Vector<int> indices;
@@ -922,7 +941,6 @@ public:
Vector<Face> faces;
struct Edge {
-
int a, b;
};
@@ -934,7 +952,6 @@ public:
};
_FORCE_INLINE_ static int get_uv84_normal_bit(const Vector3 &p_vector) {
-
int lat = Math::fast_ftoi(Math::floor(Math::acos(p_vector.dot(Vector3(0, 1, 0))) * 4.0 / Math_PI + 0.5));
if (lat == 0) {
@@ -949,33 +966,35 @@ public:
}
_FORCE_INLINE_ static int get_uv84_normal_bit_neighbors(int p_idx) {
-
if (p_idx == 24) {
return 1 | 2 | 4 | 8;
} else if (p_idx == 25) {
return (1 << 23) | (1 << 22) | (1 << 21) | (1 << 20);
} else {
-
int ret = 0;
- if ((p_idx % 8) == 0)
+ if ((p_idx % 8) == 0) {
ret |= (1 << (p_idx + 7));
- else
+ } else {
ret |= (1 << (p_idx - 1));
- if ((p_idx % 8) == 7)
+ }
+ if ((p_idx % 8) == 7) {
ret |= (1 << (p_idx - 7));
- else
+ } else {
ret |= (1 << (p_idx + 1));
+ }
int mask = ret | (1 << p_idx);
- if (p_idx < 8)
+ if (p_idx < 8) {
ret |= 24;
- else
+ } else {
ret |= mask >> 8;
+ }
- if (p_idx >= 16)
+ if (p_idx >= 16) {
ret |= 25;
- else
+ } else {
ret |= mask << 8;
+ }
return ret;
}
@@ -997,15 +1016,17 @@ public:
// Build lower hull.
for (int i = 0; i < n; ++i) {
- while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0)
+ while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
k--;
+ }
H.write[k++] = P[i];
}
// Build upper hull.
for (int i = n - 2, t = k + 1; i >= 0; i--) {
- while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0)
+ while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
k--;
+ }
H.write[k++] = P[i];
}
@@ -1024,6 +1045,263 @@ public:
static Vector<Vector3> compute_convex_mesh_points(const Plane *p_planes, int p_plane_count);
+#define FINDMINMAX(x0, x1, x2, min, max) \
+ min = max = x0; \
+ if (x1 < min) { \
+ min = x1; \
+ } \
+ if (x1 > max) { \
+ max = x1; \
+ } \
+ if (x2 < min) { \
+ min = x2; \
+ } \
+ if (x2 > max) { \
+ max = x2; \
+ }
+
+ _FORCE_INLINE_ static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
+ int q;
+ Vector3 vmin, vmax;
+ for (q = 0; q <= 2; q++) {
+ if (normal[q] > 0.0f) {
+ vmin[q] = -maxbox[q];
+ vmax[q] = maxbox[q];
+ } else {
+ vmin[q] = maxbox[q];
+ vmax[q] = -maxbox[q];
+ }
+ }
+ if (normal.dot(vmin) + d > 0.0f) {
+ return false;
+ }
+ if (normal.dot(vmax) + d >= 0.0f) {
+ return true;
+ }
+
+ return false;
+ }
+
+/*======================== X-tests ========================*/
+#define AXISTEST_X01(a, b, fa, fb) \
+ p0 = a * v0.y - b * v0.z; \
+ p2 = a * v2.y - b * v2.z; \
+ if (p0 < p2) { \
+ min = p0; \
+ max = p2; \
+ } else { \
+ min = p2; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) { \
+ return false; \
+ }
+
+#define AXISTEST_X2(a, b, fa, fb) \
+ p0 = a * v0.y - b * v0.z; \
+ p1 = a * v1.y - b * v1.z; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) { \
+ return false; \
+ }
+
+/*======================== Y-tests ========================*/
+#define AXISTEST_Y02(a, b, fa, fb) \
+ p0 = -a * v0.x + b * v0.z; \
+ p2 = -a * v2.x + b * v2.z; \
+ if (p0 < p2) { \
+ min = p0; \
+ max = p2; \
+ } else { \
+ min = p2; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) { \
+ return false; \
+ }
+
+#define AXISTEST_Y1(a, b, fa, fb) \
+ p0 = -a * v0.x + b * v0.z; \
+ p1 = -a * v1.x + b * v1.z; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) { \
+ return false; \
+ }
+
+ /*======================== Z-tests ========================*/
+
+#define AXISTEST_Z12(a, b, fa, fb) \
+ p1 = a * v1.x - b * v1.y; \
+ p2 = a * v2.x - b * v2.y; \
+ if (p2 < p1) { \
+ min = p2; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p2; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+ if (min > rad || max < -rad) { \
+ return false; \
+ }
+
+#define AXISTEST_Z0(a, b, fa, fb) \
+ p0 = a * v0.x - b * v0.y; \
+ p1 = a * v1.x - b * v1.y; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+ if (min > rad || max < -rad) { \
+ return false; \
+ }
+
+ _FORCE_INLINE_ static bool triangle_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
+ /* use separating axis theorem to test overlap between triangle and box */
+ /* need to test for overlap in these directions: */
+ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
+ /* we do not even need to test these) */
+ /* 2) normal of the triangle */
+ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
+ /* this gives 3x3=9 more tests */
+ Vector3 v0, v1, v2;
+ float min, max, d, p0, p1, p2, rad, fex, fey, fez;
+ Vector3 normal, e0, e1, e2;
+
+ /* This is the fastest branch on Sun */
+ /* move everything so that the boxcenter is in (0,0,0) */
+
+ v0 = triverts[0] - boxcenter;
+ v1 = triverts[1] - boxcenter;
+ v2 = triverts[2] - boxcenter;
+
+ /* compute triangle edges */
+ e0 = v1 - v0; /* tri edge 0 */
+ e1 = v2 - v1; /* tri edge 1 */
+ e2 = v0 - v2; /* tri edge 2 */
+
+ /* Bullet 3: */
+ /* test the 9 tests first (this was faster) */
+ fex = Math::abs(e0.x);
+ fey = Math::abs(e0.y);
+ fez = Math::abs(e0.z);
+ AXISTEST_X01(e0.z, e0.y, fez, fey);
+ AXISTEST_Y02(e0.z, e0.x, fez, fex);
+ AXISTEST_Z12(e0.y, e0.x, fey, fex);
+
+ fex = Math::abs(e1.x);
+ fey = Math::abs(e1.y);
+ fez = Math::abs(e1.z);
+ AXISTEST_X01(e1.z, e1.y, fez, fey);
+ AXISTEST_Y02(e1.z, e1.x, fez, fex);
+ AXISTEST_Z0(e1.y, e1.x, fey, fex);
+
+ fex = Math::abs(e2.x);
+ fey = Math::abs(e2.y);
+ fez = Math::abs(e2.z);
+ AXISTEST_X2(e2.z, e2.y, fez, fey);
+ AXISTEST_Y1(e2.z, e2.x, fez, fex);
+ AXISTEST_Z12(e2.y, e2.x, fey, fex);
+
+ /* Bullet 1: */
+ /* first test overlap in the {x,y,z}-directions */
+ /* find min, max of the triangle each direction, and test for overlap in */
+ /* that direction -- this is equivalent to testing a minimal AABB around */
+ /* the triangle against the AABB */
+
+ /* test in X-direction */
+ FINDMINMAX(v0.x, v1.x, v2.x, min, max);
+ if (min > boxhalfsize.x || max < -boxhalfsize.x) {
+ return false;
+ }
+
+ /* test in Y-direction */
+ FINDMINMAX(v0.y, v1.y, v2.y, min, max);
+ if (min > boxhalfsize.y || max < -boxhalfsize.y) {
+ return false;
+ }
+
+ /* test in Z-direction */
+ FINDMINMAX(v0.z, v1.z, v2.z, min, max);
+ if (min > boxhalfsize.z || max < -boxhalfsize.z) {
+ return false;
+ }
+
+ /* Bullet 2: */
+ /* test if the box intersects the plane of the triangle */
+ /* compute plane equation of triangle: normal*x+d=0 */
+ normal = e0.cross(e1);
+ d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
+ return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */
+ }
+
+ static Vector<Point2i> pack_rects(const Vector<Size2i> &p_sizes, const Size2i &p_atlas_size);
+ static Vector<Vector3i> partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size);
+
+ static Vector<uint32_t> generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative);
+ static Vector<int8_t> generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative);
+
+ static Vector3 triangle_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_pos) {
+ Vector3 v0 = p_b - p_a;
+ Vector3 v1 = p_c - p_a;
+ Vector3 v2 = p_pos - p_a;
+
+ float d00 = v0.dot(v0);
+ float d01 = v0.dot(v1);
+ float d11 = v1.dot(v1);
+ float d20 = v2.dot(v0);
+ float d21 = v2.dot(v1);
+ float denom = (d00 * d11 - d01 * d01);
+ if (denom == 0) {
+ return Vector3(); //invalid triangle, return empty
+ }
+ float v = (d11 * d20 - d01 * d21) / denom;
+ float w = (d00 * d21 - d01 * d20) / denom;
+ float u = 1.0f - v - w;
+ return Vector3(u, v, w);
+ }
+
+ static Color tetrahedron_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_d, const Vector3 &p_pos) {
+ Vector3 vap = p_pos - p_a;
+ Vector3 vbp = p_pos - p_b;
+
+ Vector3 vab = p_b - p_a;
+ Vector3 vac = p_c - p_a;
+ Vector3 vad = p_d - p_a;
+
+ Vector3 vbc = p_c - p_b;
+ Vector3 vbd = p_d - p_b;
+ // ScTP computes the scalar triple product
+#define STP(m_a, m_b, m_c) ((m_a).dot((m_b).cross((m_c))))
+ float va6 = STP(vbp, vbd, vbc);
+ float vb6 = STP(vap, vac, vad);
+ float vc6 = STP(vap, vad, vab);
+ float vd6 = STP(vap, vab, vac);
+ float v6 = 1 / STP(vab, vac, vad);
+ return Color(va6 * v6, vb6 * v6, vc6 * v6, vd6 * v6);
+#undef STP
+ }
+
private:
static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open = false);
static Vector<Vector<Point2>> _polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type);