summaryrefslogtreecommitdiff
path: root/core/math/geometry.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/geometry.cpp')
-rw-r--r--core/math/geometry.cpp131
1 files changed, 131 insertions, 0 deletions
diff --git a/core/math/geometry.cpp b/core/math/geometry.cpp
index cb76b9ed0f..2d525dd1ce 100644
--- a/core/math/geometry.cpp
+++ b/core/math/geometry.cpp
@@ -1004,3 +1004,134 @@ DVector<Plane> Geometry::build_capsule_planes(float p_radius, float p_height, in
}
+
+struct _AtlasWorkRect {
+
+ Size2i s;
+ Point2i p;
+ int idx;
+ _FORCE_INLINE_ bool operator<(const _AtlasWorkRect& p_r) const { return s.width > p_r.s.width; };
+};
+
+struct _AtlasWorkRectResult {
+
+ Vector<_AtlasWorkRect> result;
+ int max_w;
+ int max_h;
+};
+
+void Geometry::make_atlas(const Vector<Size2i>& p_rects,Vector<Point2i>& r_result, Size2i& r_size) {
+
+ //super simple, almost brute force scanline stacking fitter
+ //it's pretty basic for now, but it tries to make sure that the aspect ratio of the
+ //resulting atlas is somehow square. This is necesary because video cards have limits
+ //on texture size (usually 2048 or 4096), so the more square a texture, the more chances
+ //it will work in every hardware.
+ // for example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
+ // 256x8192 atlas (won't work anywhere).
+
+ ERR_FAIL_COND(p_rects.size()==0);
+
+ Vector<_AtlasWorkRect> wrects;
+ wrects.resize(p_rects.size());
+ for(int i=0;i<p_rects.size();i++) {
+ wrects[i].s=p_rects[i];
+ wrects[i].idx=i;
+ }
+ wrects.sort();
+ int widest = wrects[0].s.width;
+
+ Vector<_AtlasWorkRectResult> results;
+
+ for(int i=0;i<=12;i++) {
+
+ int w = 1<<i;
+ int max_h=0;
+ int max_w=0;
+ if ( w < widest )
+ continue;
+
+ Vector<int> hmax;
+ hmax.resize(w);
+ for(int j=0;j<w;j++)
+ hmax[j]=0;
+
+ //place them
+ int ofs=0;
+ int limit_h=0;
+ for(int j=0;j<wrects.size();j++) {
+
+
+ if (ofs+wrects[j].s.width > w) {
+
+ ofs=0;
+ }
+
+ int from_y=0;
+ for(int k=0;k<wrects[j].s.width;k++) {
+
+ if (hmax[ofs+k] > from_y)
+ from_y=hmax[ofs+k];
+ }
+
+ wrects[j].p.x=ofs;
+ wrects[j].p.y=from_y;
+ int end_h = from_y+wrects[j].s.height;
+ int end_w = ofs+wrects[j].s.width;
+ if (ofs==0)
+ limit_h=end_h;
+
+ for(int k=0;k<wrects[j].s.width;k++) {
+
+ hmax[ofs+k]=end_h;
+ }
+
+ if (end_h > max_h)
+ max_h=end_h;
+
+ if (end_w > max_w)
+ max_w=end_w;
+
+ if (ofs==0 || end_h>limit_h ) //while h limit not reched, keep stacking
+ ofs+=wrects[j].s.width;
+
+ }
+
+ _AtlasWorkRectResult result;
+ result.result=wrects;
+ result.max_h=max_h;
+ result.max_w=max_w;
+ results.push_back(result);
+
+ }
+
+ //find the result with the best aspect ratio
+
+ int best=-1;
+ float best_aspect=1e20;
+
+ for(int i=0;i<results.size();i++) {
+
+ float h = nearest_power_of_2(results[i].max_h);
+ float w = nearest_power_of_2(results[i].max_w);
+ float aspect = h>w ? h/w : w/h;
+ if (aspect < best_aspect) {
+ best=i;
+ best_aspect=aspect;
+ }
+ }
+
+ r_result.resize(p_rects.size());
+
+ for(int i=0;i<p_rects.size();i++) {
+
+ r_result[ results[best].result[i].idx ]=results[best].result[i].p;
+ }
+
+ r_size=Size2(results[best].max_w,results[best].max_h );
+
+}
+
+
+
+