diff options
Diffstat (limited to 'core/math/delaunay_3d.h')
-rw-r--r-- | core/math/delaunay_3d.h | 386 |
1 files changed, 386 insertions, 0 deletions
diff --git a/core/math/delaunay_3d.h b/core/math/delaunay_3d.h new file mode 100644 index 0000000000..6280ec8071 --- /dev/null +++ b/core/math/delaunay_3d.h @@ -0,0 +1,386 @@ +#ifndef DELAUNAY_3D_H +#define DELAUNAY_3D_H + +#include "core/local_vector.h" +#include "core/math/aabb.h" +#include "core/math/camera_matrix.h" +#include "core/math/vector3.h" +#include "core/oa_hash_map.h" +#include "core/os/file_access.h" +#include "core/print_string.h" +#include "core/variant.h" +#include "core/vector.h" +#include "thirdparty/r128/r128.h" + +class Delaunay3D { + struct Simplex; + + enum { + ACCEL_GRID_SIZE = 16 + }; + struct GridPos { + Vector3i pos; + List<Simplex *>::Element *E = nullptr; + }; + + struct Simplex { + + uint32_t points[4]; + R128 circum_center_x; + R128 circum_center_y; + R128 circum_center_z; + R128 circum_r2; + LocalVector<GridPos> grid_positions; + List<Simplex *>::Element *SE = nullptr; + + _FORCE_INLINE_ Simplex() {} + _FORCE_INLINE_ Simplex(uint32_t p_a, uint32_t p_b, uint32_t p_c, uint32_t p_d) { + points[0] = p_a; + points[1] = p_b; + points[2] = p_c; + points[3] = p_d; + } + }; + + struct Triangle { + uint32_t triangle[3]; + bool bad; + _FORCE_INLINE_ bool operator==(const Triangle &p_triangle) const { + return triangle[0] == p_triangle.triangle[0] && triangle[1] == p_triangle.triangle[1] && triangle[2] == p_triangle.triangle[2]; + } + + _FORCE_INLINE_ Triangle() { bad = false; } + _FORCE_INLINE_ Triangle(uint32_t p_a, uint32_t p_b, uint32_t p_c) { + if (p_a > p_b) + SWAP(p_a, p_b); + if (p_b > p_c) + SWAP(p_b, p_c); + if (p_a > p_b) + SWAP(p_a, p_b); + + bad = false; + triangle[0] = p_a; + triangle[1] = p_b; + triangle[2] = p_c; + } + }; + + struct TriangleHasher { + _FORCE_INLINE_ static uint32_t hash(const Triangle &p_triangle) { + uint32_t h = hash_djb2_one_32(p_triangle.triangle[0]); + h = hash_djb2_one_32(p_triangle.triangle[1], h); + return hash_djb2_one_32(p_triangle.triangle[2], h); + } + }; + + struct FPVal { + }; + + _FORCE_INLINE_ static void circum_sphere_compute(const Vector3 *p_points, Simplex *p_simplex) { + + // the only part in the algorithm where there may be precision errors is this one, so ensure that + // we do it as maximum precision as possible + + R128 v0_x = p_points[p_simplex->points[0]].x; + R128 v0_y = p_points[p_simplex->points[0]].y; + R128 v0_z = p_points[p_simplex->points[0]].z; + R128 v1_x = p_points[p_simplex->points[1]].x; + R128 v1_y = p_points[p_simplex->points[1]].y; + R128 v1_z = p_points[p_simplex->points[1]].z; + R128 v2_x = p_points[p_simplex->points[2]].x; + R128 v2_y = p_points[p_simplex->points[2]].y; + R128 v2_z = p_points[p_simplex->points[2]].z; + R128 v3_x = p_points[p_simplex->points[3]].x; + R128 v3_y = p_points[p_simplex->points[3]].y; + R128 v3_z = p_points[p_simplex->points[3]].z; + + //Create the rows of our "unrolled" 3x3 matrix + R128 row1_x = v1_x - v0_x; + R128 row1_y = v1_y - v0_y; + R128 row1_z = v1_z - v0_z; + + R128 row2_x = v2_x - v0_x; + R128 row2_y = v2_y - v0_y; + R128 row2_z = v2_z - v0_z; + + R128 row3_x = v3_x - v0_x; + R128 row3_y = v3_y - v0_y; + R128 row3_z = v3_z - v0_z; + + R128 sq_lenght1 = row1_x * row1_x + row1_y * row1_y + row1_z * row1_z; + R128 sq_lenght2 = row2_x * row2_x + row2_y * row2_y + row2_z * row2_z; + R128 sq_lenght3 = row3_x * row3_x + row3_y * row3_y + row3_z * row3_z; + + //Compute the determinant of said matrix + R128 determinant = row1_x * (row2_y * row3_z - row3_y * row2_z) - row2_x * (row1_y * row3_z - row3_y * row1_z) + row3_x * (row1_y * row2_z - row2_y * row1_z); + + // Compute the volume of the tetrahedron, and precompute a scalar quantity for re-use in the formula + R128 volume = determinant / R128(6.f); + R128 i12volume = R128(1.f) / (volume * R128(12.f)); + + R128 center_x = v0_x + i12volume * ((row2_y * row3_z - row3_y * row2_z) * sq_lenght1 - (row1_y * row3_z - row3_y * row1_z) * sq_lenght2 + (row1_y * row2_z - row2_y * row1_z) * sq_lenght3); + R128 center_y = v0_y + i12volume * (-(row2_x * row3_z - row3_x * row2_z) * sq_lenght1 + (row1_x * row3_z - row3_x * row1_z) * sq_lenght2 - (row1_x * row2_z - row2_x * row1_z) * sq_lenght3); + R128 center_z = v0_z + i12volume * ((row2_x * row3_y - row3_x * row2_y) * sq_lenght1 - (row1_x * row3_y - row3_x * row1_y) * sq_lenght2 + (row1_x * row2_y - row2_x * row1_y) * sq_lenght3); + + //Once we know the center, the radius is clearly the distance to any vertex + + R128 rel1_x = center_x - v0_x; + R128 rel1_y = center_y - v0_y; + R128 rel1_z = center_z - v0_z; + + R128 radius1 = rel1_x * rel1_x + rel1_y * rel1_y + rel1_z * rel1_z; + + p_simplex->circum_center_x = center_x; + p_simplex->circum_center_y = center_y; + p_simplex->circum_center_z = center_z; + p_simplex->circum_r2 = radius1; + } + + _FORCE_INLINE_ static bool simplex_contains(const Vector3 *p_points, const Simplex &p_simplex, uint32_t p_vertex) { + + R128 v_x = p_points[p_vertex].x; + R128 v_y = p_points[p_vertex].y; + R128 v_z = p_points[p_vertex].z; + + R128 rel2_x = p_simplex.circum_center_x - v_x; + R128 rel2_y = p_simplex.circum_center_y - v_y; + R128 rel2_z = p_simplex.circum_center_z - v_z; + + R128 radius2 = rel2_x * rel2_x + rel2_y * rel2_y + rel2_z * rel2_z; + + return radius2 < (p_simplex.circum_r2 - R128(0.00001)); + } + + static bool simplex_is_coplanar(const Vector3 *p_points, const Simplex &p_simplex) { + + Plane p(p_points[p_simplex.points[0]], p_points[p_simplex.points[1]], p_points[p_simplex.points[2]]); + if (ABS(p.distance_to(p_points[p_simplex.points[3]])) < CMP_EPSILON) { + return true; + } + + CameraMatrix cm; + + cm.matrix[0][0] = p_points[p_simplex.points[0]].x; + cm.matrix[0][1] = p_points[p_simplex.points[1]].x; + cm.matrix[0][2] = p_points[p_simplex.points[2]].x; + cm.matrix[0][3] = p_points[p_simplex.points[3]].x; + + cm.matrix[1][0] = p_points[p_simplex.points[0]].y; + cm.matrix[1][1] = p_points[p_simplex.points[1]].y; + cm.matrix[1][2] = p_points[p_simplex.points[2]].y; + cm.matrix[1][3] = p_points[p_simplex.points[3]].y; + + cm.matrix[2][0] = p_points[p_simplex.points[0]].z; + cm.matrix[2][1] = p_points[p_simplex.points[1]].z; + cm.matrix[2][2] = p_points[p_simplex.points[2]].z; + cm.matrix[2][3] = p_points[p_simplex.points[3]].z; + + cm.matrix[3][0] = 1.0; + cm.matrix[3][1] = 1.0; + cm.matrix[3][2] = 1.0; + cm.matrix[3][3] = 1.0; + + return ABS(cm.determinant()) <= CMP_EPSILON; + } + +public: + struct OutputSimplex { + uint32_t points[4]; + }; + + static Vector<OutputSimplex> tetrahedralize(const Vector<Vector3> &p_points) { + + uint32_t point_count = p_points.size(); + Vector3 *points = (Vector3 *)memalloc(sizeof(Vector3) * (point_count + 4)); + + { + const Vector3 *src_points = p_points.ptr(); + AABB rect; + for (uint32_t i = 0; i < point_count; i++) { + Vector3 point = src_points[i]; + if (i == 0) { + rect.position = point; + } else { + rect.expand_to(point); + } + points[i] = point; + } + + for (uint32_t i = 0; i < point_count; i++) { + points[i] = (points[i] - rect.position) / rect.size; + } + + float delta_max = Math::sqrt(2.0) * 20.0; + Vector3 center = Vector3(0.5, 0.5, 0.5); + + // any simplex that contains everything is good + points[point_count + 0] = center + Vector3(0, 1, 0) * delta_max; + points[point_count + 1] = center + Vector3(0, -1, 1) * delta_max; + points[point_count + 2] = center + Vector3(1, -1, -1) * delta_max; + points[point_count + 3] = center + Vector3(-1, -1, -1) * delta_max; + } + + List<Simplex *> acceleration_grid[ACCEL_GRID_SIZE][ACCEL_GRID_SIZE][ACCEL_GRID_SIZE]; + + List<Simplex *> simplex_list; + { + //create root simplex + Simplex *root = memnew(Simplex(point_count + 0, point_count + 1, point_count + 2, point_count + 3)); + root->SE = simplex_list.push_back(root); + + for (uint32_t i = 0; i < ACCEL_GRID_SIZE; i++) { + for (uint32_t j = 0; j < ACCEL_GRID_SIZE; j++) { + for (uint32_t k = 0; k < ACCEL_GRID_SIZE; k++) { + GridPos gp; + gp.E = acceleration_grid[i][j][k].push_back(root); + gp.pos = Vector3i(i, j, k); + root->grid_positions.push_back(gp); + } + } + } + + circum_sphere_compute(points, root); + } + + OAHashMap<Triangle, uint32_t, TriangleHasher> triangles_inserted; + LocalVector<Triangle> triangles; + + for (uint32_t i = 0; i < point_count; i++) { + + bool unique = true; + for (uint32_t j = i + 1; j < point_count; j++) { + if (points[i].is_equal_approx(points[j])) { + unique = false; + break; + } + } + if (!unique) { + continue; + } + + Vector3i grid_pos = Vector3i(points[i] * ACCEL_GRID_SIZE); + grid_pos.x = CLAMP(grid_pos.x, 0, ACCEL_GRID_SIZE - 1); + grid_pos.y = CLAMP(grid_pos.y, 0, ACCEL_GRID_SIZE - 1); + grid_pos.z = CLAMP(grid_pos.z, 0, ACCEL_GRID_SIZE - 1); + + for (List<Simplex *>::Element *E = acceleration_grid[grid_pos.x][grid_pos.y][grid_pos.z].front(); E;) { + List<Simplex *>::Element *N = E->next(); //may be deleted + + Simplex *simplex = E->get(); + + if (simplex_contains(points, *simplex, i)) { + + static const uint32_t triangle_order[4][3] = { + { 0, 1, 2 }, + { 0, 1, 3 }, + { 0, 2, 3 }, + { 1, 2, 3 }, + }; + + for (uint32_t k = 0; k < 4; k++) { + Triangle t = Triangle(simplex->points[triangle_order[k][0]], simplex->points[triangle_order[k][1]], simplex->points[triangle_order[k][2]]); + uint32_t *p = triangles_inserted.lookup_ptr(t); + if (p) { + triangles[*p].bad = true; + } else { + triangles_inserted.insert(t, triangles.size()); + triangles.push_back(t); + } + } + + //remove simplex and continue + simplex_list.erase(simplex->SE); + + for (uint32_t k = 0; k < simplex->grid_positions.size(); k++) { + Vector3i p = simplex->grid_positions[k].pos; + acceleration_grid[p.x][p.y][p.z].erase(simplex->grid_positions[k].E); + } + memdelete(simplex); + } + E = N; + } + + uint32_t good_triangles = 0; + for (uint32_t j = 0; j < triangles.size(); j++) { + + if (triangles[j].bad) { + continue; + } + Simplex *new_simplex = memnew(Simplex(triangles[j].triangle[0], triangles[j].triangle[1], triangles[j].triangle[2], i)); + circum_sphere_compute(points, new_simplex); + new_simplex->SE = simplex_list.push_back(new_simplex); + { + Vector3 center; + center.x = double(new_simplex->circum_center_x); + center.y = double(new_simplex->circum_center_y); + center.z = double(new_simplex->circum_center_z); + + float radius2 = Math::sqrt(double(new_simplex->circum_r2)); + radius2 += 0.0001; // + Vector3 extents = Vector3(radius2, radius2, radius2); + Vector3i from = Vector3i((center - extents) * ACCEL_GRID_SIZE); + Vector3i to = Vector3i((center + extents) * ACCEL_GRID_SIZE); + from.x = CLAMP(from.x, 0, ACCEL_GRID_SIZE - 1); + from.y = CLAMP(from.y, 0, ACCEL_GRID_SIZE - 1); + from.z = CLAMP(from.z, 0, ACCEL_GRID_SIZE - 1); + to.x = CLAMP(to.x, 0, ACCEL_GRID_SIZE - 1); + to.y = CLAMP(to.y, 0, ACCEL_GRID_SIZE - 1); + to.z = CLAMP(to.z, 0, ACCEL_GRID_SIZE - 1); + + for (int32_t x = from.x; x <= to.x; x++) { + for (int32_t y = from.y; y <= to.y; y++) { + for (int32_t z = from.z; z <= to.z; z++) { + GridPos gp; + gp.pos = Vector3(x, y, z); + gp.E = acceleration_grid[x][y][z].push_back(new_simplex); + new_simplex->grid_positions.push_back(gp); + } + } + } + } + + good_triangles++; + } + + //print_line("at point " + itos(i) + "/" + itos(point_count) + " simplices added " + itos(good_triangles) + "/" + itos(simplex_list.size()) + " - triangles: " + itos(triangles.size())); + triangles.clear(); + triangles_inserted.clear(); + } + + //print_line("end with simplices: " + itos(simplex_list.size())); + Vector<OutputSimplex> ret_simplices; + ret_simplices.resize(simplex_list.size()); + OutputSimplex *ret_simplicesw = ret_simplices.ptrw(); + uint32_t simplices_written = 0; + + for (List<Simplex *>::Element *E = simplex_list.front(); E; E = E->next()) { + Simplex *simplex = E->get(); + bool invalid = false; + for (int j = 0; j < 4; j++) { + if (simplex->points[j] >= point_count) { + invalid = true; + break; + } + } + if (invalid || simplex_is_coplanar(points, *simplex)) { + memdelete(simplex); + continue; + } + + ret_simplicesw[simplices_written].points[0] = simplex->points[0]; + ret_simplicesw[simplices_written].points[1] = simplex->points[1]; + ret_simplicesw[simplices_written].points[2] = simplex->points[2]; + ret_simplicesw[simplices_written].points[3] = simplex->points[3]; + simplices_written++; + memdelete(simplex); + } + + ret_simplices.resize(simplices_written); + + memfree(points); + + return ret_simplices; + } +}; + +#endif // DELAUNAY_3D_H |