summaryrefslogtreecommitdiff
path: root/core/math/basis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r--core/math/basis.cpp531
1 files changed, 220 insertions, 311 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index a7f89522d7..566300c716 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -58,8 +58,8 @@ void Basis::invert() {
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
};
real_t det = elements[0][0] * co[0] +
- elements[0][1] * co[1] +
- elements[0][2] * co[2];
+ elements[0][1] * co[1] +
+ elements[0][2] * co[2];
#ifdef MATH_CHECKS
ERR_FAIL_COND(det == 0);
#endif
@@ -261,7 +261,7 @@ Vector3 Basis::get_scale_abs() const {
}
Vector3 Basis::get_scale_local() const {
- real_t det_sign = SGN(determinant());
+ real_t det_sign = SIGN(determinant());
return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length());
}
@@ -287,11 +287,8 @@ Vector3 Basis::get_scale() const {
// matrix elements.
//
// The rotation part of this decomposition is returned by get_rotation* functions.
- real_t det_sign = SGN(determinant());
- return det_sign * Vector3(
- Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
- Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
- Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
+ real_t det_sign = SIGN(determinant());
+ return det_sign * get_scale_abs();
}
// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
@@ -354,7 +351,7 @@ void Basis::rotate(const Quaternion &p_quaternion) {
*this = rotated(p_quaternion);
}
-Vector3 Basis::get_rotation_euler() const {
+Vector3 Basis::get_euler_normalized(EulerOrder p_order) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
@@ -365,7 +362,7 @@ Vector3 Basis::get_rotation_euler() const {
m.scale(Vector3(-1, -1, -1));
}
- return m.get_euler();
+ return m.get_euler(p_order);
}
Quaternion Basis::get_rotation_quaternion() const {
@@ -424,218 +421,203 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons
p_angle = -p_angle;
}
-// get_euler_xyz returns a vector containing the Euler angles in the format
-// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
-// (following the convention they are commonly defined in the literature).
-//
-// The current implementation uses XYZ convention (Z is the first rotation),
-// so euler.z is the angle of the (first) rotation around Z axis and so on,
-//
-// And thus, assuming the matrix is a rotation matrix, this function returns
-// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
-// around the z-axis by a and so on.
-Vector3 Basis::get_euler_xyz() const {
- // Euler angles in XYZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz -cy*sz sy
- // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
-
- Vector3 euler;
- real_t sy = elements[0][2];
- if (sy < (1.0 - CMP_EPSILON)) {
- if (sy > -(1.0 - CMP_EPSILON)) {
- // is this a pure Y rotation?
- if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = 0;
- euler.y = atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
+Vector3 Basis::get_euler(EulerOrder p_order) const {
+ switch (p_order) {
+ case EULER_ORDER_XYZ: {
+ // Euler angles in XYZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz -cy*sz sy
+ // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
+ // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
+
+ Vector3 euler;
+ real_t sy = elements[0][2];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ // is this a pure Y rotation?
+ if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = 0;
+ euler.y = atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ } else {
+ euler.x = Math::atan2(-elements[1][2], elements[2][2]);
+ euler.y = Math::asin(sy);
+ euler.z = Math::atan2(-elements[0][1], elements[0][0]);
+ }
+ } else {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = -Math_PI / 2.0;
+ euler.z = 0.0;
+ }
} else {
- euler.x = Math::atan2(-elements[1][2], elements[2][2]);
- euler.y = Math::asin(sy);
- euler.z = Math::atan2(-elements[0][1], elements[0][0]);
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math_PI / 2.0;
+ euler.z = 0.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_XZY: {
+ // Euler angles in XZY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy -sz cz*sy
+ // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
+ // cy*sx*sz cz*sx cx*cy+sx*sz*sy
+
+ Vector3 euler;
+ real_t sz = elements[0][1];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = Math::asin(-sz);
+ } else {
+ // It's -1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_YXZ: {
+ // Euler angles in YXZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
+ // cx*sz cx*cz -sx
+ // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
+
+ Vector3 euler;
+
+ real_t m12 = elements[1][2];
+
+ if (m12 < (1 - CMP_EPSILON)) {
+ if (m12 > -(1 - CMP_EPSILON)) {
+ // is this a pure X rotation?
+ if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = atan2(-m12, elements[1][1]);
+ euler.y = 0;
+ euler.z = 0;
+ } else {
+ euler.x = asin(-m12);
+ euler.y = atan2(elements[0][2], elements[2][2]);
+ euler.z = atan2(elements[1][0], elements[1][1]);
+ }
+ } else { // m12 == -1
+ euler.x = Math_PI * 0.5;
+ euler.y = atan2(elements[0][1], elements[0][0]);
+ euler.z = 0;
+ }
+ } else { // m12 == 1
+ euler.x = -Math_PI * 0.5;
+ euler.y = -atan2(elements[0][1], elements[0][0]);
+ euler.z = 0;
}
- } else {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = -Math_PI / 2.0;
- euler.z = 0.0;
- }
- } else {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = Math_PI / 2.0;
- euler.z = 0.0;
- }
- return euler;
-}
-
-// set_euler_xyz expects a vector containing the Euler angles in the format
-// (ax,ay,az), where ax is the angle of rotation around x axis,
-// and similar for other axes.
-// The current implementation uses XYZ convention (Z is the first rotation).
-void Basis::set_euler_xyz(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- //optimizer will optimize away all this anyway
- *this = xmat * (ymat * zmat);
-}
-
-Vector3 Basis::get_euler_xzy() const {
- // Euler angles in XZY convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy -sz cz*sy
- // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
- // cy*sx*sz cz*sx cx*cy+sx*sz*sy
-
- Vector3 euler;
- real_t sz = elements[0][1];
- if (sz < (1.0 - CMP_EPSILON)) {
- if (sz > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = Math::asin(-sz);
- } else {
- // It's -1
- euler.x = -Math::atan2(elements[1][2], elements[2][2]);
- euler.y = 0.0;
- euler.z = Math_PI / 2.0;
- }
- } else {
- // It's 1
- euler.x = -Math::atan2(elements[1][2], elements[2][2]);
- euler.y = 0.0;
- euler.z = -Math_PI / 2.0;
- }
- return euler;
-}
-
-void Basis::set_euler_xzy(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = xmat * zmat * ymat;
-}
-
-Vector3 Basis::get_euler_yzx() const {
- // Euler angles in YZX convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
- // sz cz*cx -cz*sx
- // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
-
- Vector3 euler;
- real_t sz = elements[1][0];
- if (sz < (1.0 - CMP_EPSILON)) {
- if (sz > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(-elements[1][2], elements[1][1]);
- euler.y = Math::atan2(-elements[2][0], elements[0][0]);
- euler.z = Math::asin(sz);
- } else {
- // It's -1
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = 0.0;
- euler.z = -Math_PI / 2.0;
- }
- } else {
- // It's 1
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = 0.0;
- euler.z = Math_PI / 2.0;
- }
- return euler;
-}
-
-void Basis::set_euler_yzx(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = ymat * zmat * xmat;
-}
-
-// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
-// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
-// as the x, y, and z components of a Vector3 respectively.
-Vector3 Basis::get_euler_yxz() const {
- // Euler angles in YXZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
- // cx*sz cx*cz -sx
- // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
-
- Vector3 euler;
-
- real_t m12 = elements[1][2];
- if (m12 < (1 - CMP_EPSILON)) {
- if (m12 > -(1 - CMP_EPSILON)) {
- // is this a pure X rotation?
- if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = atan2(-m12, elements[1][1]);
- euler.y = 0;
+ return euler;
+ } break;
+ case EULER_ORDER_YZX: {
+ // Euler angles in YZX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
+ // sz cz*cx -cz*sx
+ // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
+
+ Vector3 euler;
+ real_t sz = elements[1][0];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(-elements[1][2], elements[1][1]);
+ euler.y = Math::atan2(-elements[2][0], elements[0][0]);
+ euler.z = Math::asin(sz);
+ } else {
+ // It's -1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_ZXY: {
+ // Euler angles in ZXY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
+ // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
+ // -cx*sy sx cx*cy
+ Vector3 euler;
+ real_t sx = elements[2][1];
+ if (sx < (1.0 - CMP_EPSILON)) {
+ if (sx > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::asin(sx);
+ euler.y = Math::atan2(-elements[2][0], elements[2][2]);
+ euler.z = Math::atan2(-elements[0][1], elements[1][1]);
+ } else {
+ // It's -1
+ euler.x = -Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
euler.z = 0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_ZYX: {
+ // Euler angles in ZYX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
+ // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
+ // -sy cy*sx cy*cx
+ Vector3 euler;
+ real_t sy = elements[2][0];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = Math::asin(-sy);
+ euler.z = Math::atan2(elements[1][0], elements[0][0]);
+ } else {
+ // It's -1
+ euler.x = 0;
+ euler.y = Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ }
} else {
- euler.x = asin(-m12);
- euler.y = atan2(elements[0][2], elements[2][2]);
- euler.z = atan2(elements[1][0], elements[1][1]);
+ // It's 1
+ euler.x = 0;
+ euler.y = -Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
}
- } else { // m12 == -1
- euler.x = Math_PI * 0.5;
- euler.y = atan2(elements[0][1], elements[0][0]);
- euler.z = 0;
+ return euler;
+ } break;
+ default: {
+ ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)");
}
- } else { // m12 == 1
- euler.x = -Math_PI * 0.5;
- euler.y = -atan2(elements[0][1], elements[0][0]);
- euler.z = 0;
}
-
- return euler;
+ return Vector3();
}
-// set_euler_yxz expects a vector containing the Euler angles in the format
-// (ax,ay,az), where ax is the angle of rotation around x axis,
-// and similar for other axes.
-// The current implementation uses YXZ convention (Z is the first rotation).
-void Basis::set_euler_yxz(const Vector3 &p_euler) {
+void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
real_t c, s;
c = Math::cos(p_euler.x);
@@ -650,102 +632,29 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) {
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
- //optimizer will optimize away all this anyway
- *this = ymat * xmat * zmat;
-}
-
-Vector3 Basis::get_euler_zxy() const {
- // Euler angles in ZXY convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
- // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
- // -cx*sy sx cx*cy
- Vector3 euler;
- real_t sx = elements[2][1];
- if (sx < (1.0 - CMP_EPSILON)) {
- if (sx > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::asin(sx);
- euler.y = Math::atan2(-elements[2][0], elements[2][2]);
- euler.z = Math::atan2(-elements[0][1], elements[1][1]);
- } else {
- // It's -1
- euler.x = -Math_PI / 2.0;
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
+ switch (p_order) {
+ case EULER_ORDER_XYZ: {
+ *this = xmat * (ymat * zmat);
+ } break;
+ case EULER_ORDER_XZY: {
+ *this = xmat * zmat * ymat;
+ } break;
+ case EULER_ORDER_YXZ: {
+ *this = ymat * xmat * zmat;
+ } break;
+ case EULER_ORDER_YZX: {
+ *this = ymat * zmat * xmat;
+ } break;
+ case EULER_ORDER_ZXY: {
+ *this = zmat * xmat * ymat;
+ } break;
+ case EULER_ORDER_ZYX: {
+ *this = zmat * ymat * xmat;
+ } break;
+ default: {
+ ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)");
}
- } else {
- // It's 1
- euler.x = Math_PI / 2.0;
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
}
- return euler;
-}
-
-void Basis::set_euler_zxy(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = zmat * xmat * ymat;
-}
-
-Vector3 Basis::get_euler_zyx() const {
- // Euler angles in ZYX convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
- // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
- // -sy cy*sx cy*cx
- Vector3 euler;
- real_t sy = elements[2][0];
- if (sy < (1.0 - CMP_EPSILON)) {
- if (sy > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = Math::asin(-sy);
- euler.z = Math::atan2(elements[1][0], elements[0][0]);
- } else {
- // It's -1
- euler.x = 0;
- euler.y = Math_PI / 2.0;
- euler.z = -Math::atan2(elements[0][1], elements[1][1]);
- }
- } else {
- // It's 1
- euler.x = 0;
- euler.y = -Math_PI / 2.0;
- euler.z = -Math::atan2(elements[0][1], elements[1][1]);
- }
- return euler;
-}
-
-void Basis::set_euler_zyx(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = zmat * ymat * xmat;
}
bool Basis::is_equal_approx(const Basis &p_basis) const {
@@ -770,8 +679,8 @@ bool Basis::operator!=(const Basis &p_matrix) const {
Basis::operator String() const {
return "[X: " + get_axis(0).operator String() +
- ", Y: " + get_axis(1).operator String() +
- ", Z: " + get_axis(2).operator String() + "]";
+ ", Y: " + get_axis(1).operator String() +
+ ", Z: " + get_axis(2).operator String() + "]";
}
Quaternion Basis::get_quaternion() const {
@@ -792,9 +701,9 @@ Quaternion Basis::get_quaternion() const {
temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s);
temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
} else {
- int i = m.elements[0][0] < m.elements[1][1] ?
- (m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
- (m.elements[0][0] < m.elements[2][2] ? 2 : 0);
+ int i = m.elements[0][0] < m.elements[1][1]
+ ? (m.elements[1][1] < m.elements[2][2] ? 2 : 1)
+ : (m.elements[0][0] < m.elements[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;