diff options
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r-- | core/math/basis.cpp | 471 |
1 files changed, 255 insertions, 216 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index 566300c716..65353d8118 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -5,8 +5,8 @@ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -34,36 +34,36 @@ #include "core/string/print_string.h" #define cofac(row1, col1, row2, col2) \ - (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) + (rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1]) void Basis::from_z(const Vector3 &p_z) { - if (Math::abs(p_z.z) > Math_SQRT12) { + if (Math::abs(p_z.z) > (real_t)Math_SQRT12) { // choose p in y-z plane real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; - real_t k = 1.0 / Math::sqrt(a); - elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); - elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); + real_t k = 1.0f / Math::sqrt(a); + rows[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); + rows[1] = Vector3(a * k, -p_z[0] * rows[0][2], p_z[0] * rows[0][1]); } else { // choose p in x-y plane real_t a = p_z.x * p_z.x + p_z.y * p_z.y; - real_t k = 1.0 / Math::sqrt(a); - elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0); - elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k); + real_t k = 1.0f / Math::sqrt(a); + rows[0] = Vector3(-p_z.y * k, p_z.x * k, 0); + rows[1] = Vector3(-p_z.z * rows[0].y, p_z.z * rows[0].x, a * k); } - elements[2] = p_z; + rows[2] = p_z; } void Basis::invert() { real_t co[3] = { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; - real_t det = elements[0][0] * co[0] + - elements[0][1] * co[1] + - elements[0][2] * co[2]; + real_t det = rows[0][0] * co[0] + + rows[0][1] * co[1] + + rows[0][2] * co[2]; #ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); #endif - real_t s = 1.0 / det; + real_t s = 1.0f / det; set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, @@ -73,9 +73,9 @@ void Basis::invert() { void Basis::orthonormalize() { // Gram-Schmidt Process - Vector3 x = get_axis(0); - Vector3 y = get_axis(1); - Vector3 z = get_axis(2); + Vector3 x = get_column(0); + Vector3 y = get_column(1); + Vector3 z = get_column(2); x.normalize(); y = (y - x * (x.dot(y))); @@ -83,9 +83,9 @@ void Basis::orthonormalize() { z = (z - x * (x.dot(z)) - y * (y.dot(z))); z.normalize(); - set_axis(0, x); - set_axis(1, y); - set_axis(2, z); + set_column(0, x); + set_column(1, y); + set_column(2, z); } Basis Basis::orthonormalized() const { @@ -94,6 +94,18 @@ Basis Basis::orthonormalized() const { return c; } +void Basis::orthogonalize() { + Vector3 scl = get_scale(); + orthonormalize(); + scale_local(scl); +} + +Basis Basis::orthogonalized() const { + Basis c = *this; + c.orthogonalize(); + return c; +} + bool Basis::is_orthogonal() const { Basis identity; Basis m = (*this) * transposed(); @@ -103,9 +115,9 @@ bool Basis::is_orthogonal() const { bool Basis::is_diagonal() const { return ( - Math::is_zero_approx(elements[0][1]) && Math::is_zero_approx(elements[0][2]) && - Math::is_zero_approx(elements[1][0]) && Math::is_zero_approx(elements[1][2]) && - Math::is_zero_approx(elements[2][0]) && Math::is_zero_approx(elements[2][1])); + Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) && + Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) && + Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1])); } bool Basis::is_rotation() const { @@ -115,13 +127,13 @@ bool Basis::is_rotation() const { #ifdef MATH_CHECKS // This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. bool Basis::is_symmetric() const { - if (!Math::is_equal_approx(elements[0][1], elements[1][0])) { + if (!Math::is_equal_approx(rows[0][1], rows[1][0])) { return false; } - if (!Math::is_equal_approx(elements[0][2], elements[2][0])) { + if (!Math::is_equal_approx(rows[0][2], rows[2][0])) { return false; } - if (!Math::is_equal_approx(elements[1][2], elements[2][1])) { + if (!Math::is_equal_approx(rows[1][2], rows[2][1])) { return false; } @@ -137,14 +149,14 @@ Basis Basis::diagonalize() { #endif const int ite_max = 1024; - real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; + real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2]; int ite = 0; Basis acc_rot; - while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) { - real_t el01_2 = elements[0][1] * elements[0][1]; - real_t el02_2 = elements[0][2] * elements[0][2]; - real_t el12_2 = elements[1][2] * elements[1][2]; + while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) { + real_t el01_2 = rows[0][1] * rows[0][1]; + real_t el02_2 = rows[0][2] * rows[0][2]; + real_t el12_2 = rows[1][2] * rows[1][2]; // Find the pivot element int i, j; if (el01_2 > el02_2) { @@ -167,19 +179,19 @@ Basis Basis::diagonalize() { // Compute the rotation angle real_t angle; - if (Math::is_equal_approx(elements[j][j], elements[i][i])) { + if (Math::is_equal_approx(rows[j][j], rows[i][i])) { angle = Math_PI / 4; } else { - angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); + angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i])); } // Compute the rotation matrix Basis rot; - rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle); - rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle)); + rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle); + rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle)); // Update the off matrix norm - off_matrix_norm_2 -= elements[i][j] * elements[i][j]; + off_matrix_norm_2 -= rows[i][j] * rows[i][j]; // Apply the rotation *this = rot * *this * rot.transposed(); @@ -196,9 +208,9 @@ Basis Basis::inverse() const { } void Basis::transpose() { - SWAP(elements[0][1], elements[1][0]); - SWAP(elements[0][2], elements[2][0]); - SWAP(elements[1][2], elements[2][1]); + SWAP(rows[0][1], rows[1][0]); + SWAP(rows[0][2], rows[2][0]); + SWAP(rows[1][2], rows[2][1]); } Basis Basis::transposed() const { @@ -214,15 +226,15 @@ Basis Basis::from_scale(const Vector3 &p_scale) { // Multiplies the matrix from left by the scaling matrix: M -> S.M // See the comment for Basis::rotated for further explanation. void Basis::scale(const Vector3 &p_scale) { - elements[0][0] *= p_scale.x; - elements[0][1] *= p_scale.x; - elements[0][2] *= p_scale.x; - elements[1][0] *= p_scale.y; - elements[1][1] *= p_scale.y; - elements[1][2] *= p_scale.y; - elements[2][0] *= p_scale.z; - elements[2][1] *= p_scale.z; - elements[2][2] *= p_scale.z; + rows[0][0] *= p_scale.x; + rows[0][1] *= p_scale.x; + rows[0][2] *= p_scale.x; + rows[1][0] *= p_scale.y; + rows[1][1] *= p_scale.y; + rows[1][2] *= p_scale.y; + rows[2][0] *= p_scale.z; + rows[2][1] *= p_scale.z; + rows[2][2] *= p_scale.z; } Basis Basis::scaled(const Vector3 &p_scale) const { @@ -237,15 +249,33 @@ void Basis::scale_local(const Vector3 &p_scale) { *this = scaled_local(p_scale); } +void Basis::scale_orthogonal(const Vector3 &p_scale) { + *this = scaled_orthogonal(p_scale); +} + +Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const { + Basis m = *this; + Vector3 s = Vector3(-1, -1, -1) + p_scale; + Vector3 dots; + Basis b; + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j))); + } + } + m.scale_local(Vector3(1, 1, 1) + dots); + return m; +} + float Basis::get_uniform_scale() const { - return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; + return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; } void Basis::make_scale_uniform() { - float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; + float l = (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; for (int i = 0; i < 3; i++) { - elements[i].normalize(); - elements[i] *= l; + rows[i].normalize(); + rows[i] *= l; } } @@ -255,14 +285,14 @@ Basis Basis::scaled_local(const Vector3 &p_scale) const { Vector3 Basis::get_scale_abs() const { return Vector3( - Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), - Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), - Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); + Vector3(rows[0][0], rows[1][0], rows[2][0]).length(), + Vector3(rows[0][1], rows[1][1], rows[2][1]).length(), + Vector3(rows[0][2], rows[1][2], rows[2][2]).length()); } Vector3 Basis::get_scale_local() const { real_t det_sign = SIGN(determinant()); - return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length()); + return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length()); } // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. @@ -317,22 +347,22 @@ Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { // The main use of Basis is as Transform.basis, which is used by the transformation matrix // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), // not the matrix itself (which is R * (*this) * R.transposed()). -Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const { - return Basis(p_axis, p_phi) * (*this); +Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const { + return Basis(p_axis, p_angle) * (*this); } -void Basis::rotate(const Vector3 &p_axis, real_t p_phi) { - *this = rotated(p_axis, p_phi); +void Basis::rotate(const Vector3 &p_axis, real_t p_angle) { + *this = rotated(p_axis, p_angle); } -void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) { +void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) { // performs a rotation in object-local coordinate system: // M -> (M.R.Minv).M = M.R. - *this = rotated_local(p_axis, p_phi); + *this = rotated_local(p_axis, p_angle); } -Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { - return (*this) * Basis(p_axis, p_phi); +Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const { + return (*this) * Basis(p_axis, p_angle); } Basis Basis::rotated(const Vector3 &p_euler) const { @@ -385,7 +415,7 @@ void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) const Vector3 axis = p_start_direction.cross(p_end_direction).normalized(); if (axis.length_squared() != 0) { real_t dot = p_start_direction.dot(p_end_direction); - dot = CLAMP(dot, -1.0, 1.0); + dot = CLAMP(dot, -1.0f, 1.0f); const real_t angle_rads = Math::acos(dot); set_axis_angle(axis, angle_rads); } @@ -432,29 +462,29 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; - real_t sy = elements[0][2]; - if (sy < (1.0 - CMP_EPSILON)) { - if (sy > -(1.0 - CMP_EPSILON)) { + real_t sy = rows[0][2]; + if (sy < (1.0f - (real_t)CMP_EPSILON)) { + if (sy > -(1.0f - (real_t)CMP_EPSILON)) { // is this a pure Y rotation? - if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { + if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) { // return the simplest form (human friendlier in editor and scripts) euler.x = 0; - euler.y = atan2(elements[0][2], elements[0][0]); + euler.y = atan2(rows[0][2], rows[0][0]); euler.z = 0; } else { - euler.x = Math::atan2(-elements[1][2], elements[2][2]); + euler.x = Math::atan2(-rows[1][2], rows[2][2]); euler.y = Math::asin(sy); - euler.z = Math::atan2(-elements[0][1], elements[0][0]); + euler.z = Math::atan2(-rows[0][1], rows[0][0]); } } else { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = -Math_PI / 2.0; - euler.z = 0.0; + euler.x = Math::atan2(rows[2][1], rows[1][1]); + euler.y = -Math_PI / 2.0f; + euler.z = 0.0f; } } else { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = Math_PI / 2.0; - euler.z = 0.0; + euler.x = Math::atan2(rows[2][1], rows[1][1]); + euler.y = Math_PI / 2.0f; + euler.z = 0.0f; } return euler; } break; @@ -467,23 +497,23 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { // cy*sx*sz cz*sx cx*cy+sx*sz*sy Vector3 euler; - real_t sz = elements[0][1]; - if (sz < (1.0 - CMP_EPSILON)) { - if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = Math::atan2(elements[0][2], elements[0][0]); + real_t sz = rows[0][1]; + if (sz < (1.0f - (real_t)CMP_EPSILON)) { + if (sz > -(1.0f - (real_t)CMP_EPSILON)) { + euler.x = Math::atan2(rows[2][1], rows[1][1]); + euler.y = Math::atan2(rows[0][2], rows[0][0]); euler.z = Math::asin(-sz); } else { // It's -1 - euler.x = -Math::atan2(elements[1][2], elements[2][2]); - euler.y = 0.0; - euler.z = Math_PI / 2.0; + euler.x = -Math::atan2(rows[1][2], rows[2][2]); + euler.y = 0.0f; + euler.z = Math_PI / 2.0f; } } else { // It's 1 - euler.x = -Math::atan2(elements[1][2], elements[2][2]); - euler.y = 0.0; - euler.z = -Math_PI / 2.0; + euler.x = -Math::atan2(rows[1][2], rows[2][2]); + euler.y = 0.0f; + euler.z = -Math_PI / 2.0f; } return euler; } break; @@ -497,29 +527,29 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { Vector3 euler; - real_t m12 = elements[1][2]; + real_t m12 = rows[1][2]; - if (m12 < (1 - CMP_EPSILON)) { - if (m12 > -(1 - CMP_EPSILON)) { + if (m12 < (1 - (real_t)CMP_EPSILON)) { + if (m12 > -(1 - (real_t)CMP_EPSILON)) { // is this a pure X rotation? - if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { + if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) { // return the simplest form (human friendlier in editor and scripts) - euler.x = atan2(-m12, elements[1][1]); + euler.x = atan2(-m12, rows[1][1]); euler.y = 0; euler.z = 0; } else { euler.x = asin(-m12); - euler.y = atan2(elements[0][2], elements[2][2]); - euler.z = atan2(elements[1][0], elements[1][1]); + euler.y = atan2(rows[0][2], rows[2][2]); + euler.z = atan2(rows[1][0], rows[1][1]); } } else { // m12 == -1 - euler.x = Math_PI * 0.5; - euler.y = atan2(elements[0][1], elements[0][0]); + euler.x = Math_PI * 0.5f; + euler.y = atan2(rows[0][1], rows[0][0]); euler.z = 0; } } else { // m12 == 1 - euler.x = -Math_PI * 0.5; - euler.y = -atan2(elements[0][1], elements[0][0]); + euler.x = -Math_PI * 0.5f; + euler.y = -atan2(rows[0][1], rows[0][0]); euler.z = 0; } @@ -534,23 +564,23 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx Vector3 euler; - real_t sz = elements[1][0]; - if (sz < (1.0 - CMP_EPSILON)) { - if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(-elements[1][2], elements[1][1]); - euler.y = Math::atan2(-elements[2][0], elements[0][0]); + real_t sz = rows[1][0]; + if (sz < (1.0f - (real_t)CMP_EPSILON)) { + if (sz > -(1.0f - (real_t)CMP_EPSILON)) { + euler.x = Math::atan2(-rows[1][2], rows[1][1]); + euler.y = Math::atan2(-rows[2][0], rows[0][0]); euler.z = Math::asin(sz); } else { // It's -1 - euler.x = Math::atan2(elements[2][1], elements[2][2]); - euler.y = 0.0; - euler.z = -Math_PI / 2.0; + euler.x = Math::atan2(rows[2][1], rows[2][2]); + euler.y = 0.0f; + euler.z = -Math_PI / 2.0f; } } else { // It's 1 - euler.x = Math::atan2(elements[2][1], elements[2][2]); - euler.y = 0.0; - euler.z = Math_PI / 2.0; + euler.x = Math::atan2(rows[2][1], rows[2][2]); + euler.y = 0.0f; + euler.z = Math_PI / 2.0f; } return euler; } break; @@ -562,22 +592,22 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx // -cx*sy sx cx*cy Vector3 euler; - real_t sx = elements[2][1]; - if (sx < (1.0 - CMP_EPSILON)) { - if (sx > -(1.0 - CMP_EPSILON)) { + real_t sx = rows[2][1]; + if (sx < (1.0f - (real_t)CMP_EPSILON)) { + if (sx > -(1.0f - (real_t)CMP_EPSILON)) { euler.x = Math::asin(sx); - euler.y = Math::atan2(-elements[2][0], elements[2][2]); - euler.z = Math::atan2(-elements[0][1], elements[1][1]); + euler.y = Math::atan2(-rows[2][0], rows[2][2]); + euler.z = Math::atan2(-rows[0][1], rows[1][1]); } else { // It's -1 - euler.x = -Math_PI / 2.0; - euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.x = -Math_PI / 2.0f; + euler.y = Math::atan2(rows[0][2], rows[0][0]); euler.z = 0; } } else { // It's 1 - euler.x = Math_PI / 2.0; - euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.x = Math_PI / 2.0f; + euler.y = Math::atan2(rows[0][2], rows[0][0]); euler.z = 0; } return euler; @@ -590,23 +620,23 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx // -sy cy*sx cy*cx Vector3 euler; - real_t sy = elements[2][0]; - if (sy < (1.0 - CMP_EPSILON)) { - if (sy > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(elements[2][1], elements[2][2]); + real_t sy = rows[2][0]; + if (sy < (1.0f - (real_t)CMP_EPSILON)) { + if (sy > -(1.0f - (real_t)CMP_EPSILON)) { + euler.x = Math::atan2(rows[2][1], rows[2][2]); euler.y = Math::asin(-sy); - euler.z = Math::atan2(elements[1][0], elements[0][0]); + euler.z = Math::atan2(rows[1][0], rows[0][0]); } else { // It's -1 euler.x = 0; - euler.y = Math_PI / 2.0; - euler.z = -Math::atan2(elements[0][1], elements[1][1]); + euler.y = Math_PI / 2.0f; + euler.z = -Math::atan2(rows[0][1], rows[1][1]); } } else { // It's 1 euler.x = 0; - euler.y = -Math_PI / 2.0; - euler.z = -Math::atan2(elements[0][1], elements[1][1]); + euler.y = -Math_PI / 2.0f; + euler.z = -Math::atan2(rows[0][1], rows[1][1]); } return euler; } break; @@ -622,15 +652,15 @@ void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { c = Math::cos(p_euler.x); s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + Basis xmat(1, 0, 0, 0, c, -s, 0, s, c); c = Math::cos(p_euler.y); s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c); c = Math::cos(p_euler.z); s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1); switch (p_order) { case EULER_ORDER_XYZ: { @@ -658,13 +688,13 @@ void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { } bool Basis::is_equal_approx(const Basis &p_basis) const { - return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); + return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]); } bool Basis::operator==(const Basis &p_matrix) const { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - if (elements[i][j] != p_matrix.elements[i][j]) { + if (rows[i][j] != p_matrix.rows[i][j]) { return false; } } @@ -678,9 +708,9 @@ bool Basis::operator!=(const Basis &p_matrix) const { } Basis::operator String() const { - return "[X: " + get_axis(0).operator String() + - ", Y: " + get_axis(1).operator String() + - ", Z: " + get_axis(2).operator String() + "]"; + return "[X: " + get_column(0).operator String() + + ", Y: " + get_column(1).operator String() + + ", Z: " + get_column(2).operator String() + "]"; } Quaternion Basis::get_quaternion() const { @@ -689,31 +719,31 @@ Quaternion Basis::get_quaternion() const { #endif /* Allow getting a quaternion from an unnormalized transform */ Basis m = *this; - real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2]; + real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2]; real_t temp[4]; - if (trace > 0.0) { - real_t s = Math::sqrt(trace + 1.0); - temp[3] = (s * 0.5); - s = 0.5 / s; + if (trace > 0.0f) { + real_t s = Math::sqrt(trace + 1.0f); + temp[3] = (s * 0.5f); + s = 0.5f / s; - temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s); - temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s); - temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); + temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s); + temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s); + temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s); } else { - int i = m.elements[0][0] < m.elements[1][1] - ? (m.elements[1][1] < m.elements[2][2] ? 2 : 1) - : (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + int i = m.rows[0][0] < m.rows[1][1] + ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1) + : (m.rows[0][0] < m.rows[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; - real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0); - temp[i] = s * 0.5; - s = 0.5 / s; + real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f); + temp[i] = s * 0.5f; + s = 0.5f / s; - temp[3] = (m.elements[k][j] - m.elements[j][k]) * s; - temp[j] = (m.elements[j][i] + m.elements[i][j]) * s; - temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; + temp[3] = (m.rows[k][j] - m.rows[j][k]) * s; + temp[j] = (m.rows[j][i] + m.rows[i][j]) * s; + temp[k] = (m.rows[k][i] + m.rows[i][k]) * s; } return Quaternion(temp[0], temp[1], temp[2], temp[3]); @@ -752,10 +782,10 @@ int Basis::get_orthogonal_index() const { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { real_t v = orth[i][j]; - if (v > 0.5) { - v = 1.0; - } else if (v < -0.5) { - v = -1.0; + if (v > 0.5f) { + v = 1.0f; + } else if (v < -0.5f) { + v = -1.0f; } else { v = 0; } @@ -790,11 +820,11 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { real_t epsilon = 0.01; // margin to allow for rounding errors real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees - if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { + if ((Math::abs(rows[1][0] - rows[0][1]) < epsilon) && (Math::abs(rows[2][0] - rows[0][2]) < epsilon) && (Math::abs(rows[2][1] - rows[1][2]) < epsilon)) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms - if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { + if ((Math::abs(rows[1][0] + rows[0][1]) < epsilon2) && (Math::abs(rows[2][0] + rows[0][2]) < epsilon2) && (Math::abs(rows[2][1] + rows[1][2]) < epsilon2) && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < epsilon2)) { // this singularity is identity matrix so angle = 0 r_axis = Vector3(0, 1, 0); r_angle = 0; @@ -802,13 +832,13 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { } // otherwise this singularity is angle = 180 angle = Math_PI; - real_t xx = (elements[0][0] + 1) / 2; - real_t yy = (elements[1][1] + 1) / 2; - real_t zz = (elements[2][2] + 1) / 2; - real_t xy = (elements[1][0] + elements[0][1]) / 4; - real_t xz = (elements[2][0] + elements[0][2]) / 4; - real_t yz = (elements[2][1] + elements[1][2]) / 4; - if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term + real_t xx = (rows[0][0] + 1) / 2; + real_t yy = (rows[1][1] + 1) / 2; + real_t zz = (rows[2][2] + 1) / 2; + real_t xy = (rows[1][0] + rows[0][1]) / 4; + real_t xz = (rows[2][0] + rows[0][2]) / 4; + real_t yz = (rows[2][1] + rows[1][2]) / 4; + if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term if (xx < epsilon) { x = 0; y = Math_SQRT12; @@ -818,7 +848,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { y = xy / x; z = xz / x; } - } else if (yy > zz) { // elements[1][1] is the largest diagonal term + } else if (yy > zz) { // rows[1][1] is the largest diagonal term if (yy < epsilon) { x = Math_SQRT12; y = 0; @@ -828,7 +858,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { x = xy / y; z = yz / y; } - } else { // elements[2][2] is the largest diagonal term so base result on this + } else { // rows[2][2] is the largest diagonal term so base result on this if (zz < epsilon) { x = Math_SQRT12; y = Math_SQRT12; @@ -844,15 +874,15 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { return; } // as we have reached here there are no singularities so we can handle normally - real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise + real_t s = Math::sqrt((rows[1][2] - rows[2][1]) * (rows[1][2] - rows[2][1]) + (rows[2][0] - rows[0][2]) * (rows[2][0] - rows[0][2]) + (rows[0][1] - rows[1][0]) * (rows[0][1] - rows[1][0])); // s=|axis||sin(angle)|, used to normalise - angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); + angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2); if (angle < 0) { s = -s; } - x = (elements[2][1] - elements[1][2]) / s; - y = (elements[0][2] - elements[2][0]) / s; - z = (elements[1][0] - elements[0][1]) / s; + x = (rows[2][1] - rows[1][2]) / s; + y = (rows[0][2] - rows[2][0]) / s; + z = (rows[1][0] - rows[0][1]) / s; r_axis = Vector3(x, y, z); r_angle = angle; @@ -860,49 +890,49 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { void Basis::set_quaternion(const Quaternion &p_quaternion) { real_t d = p_quaternion.length_squared(); - real_t s = 2.0 / d; + real_t s = 2.0f / d; real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s; real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs; real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs; real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs; - set(1.0 - (yy + zz), xy - wz, xz + wy, - xy + wz, 1.0 - (xx + zz), yz - wx, - xz - wy, yz + wx, 1.0 - (xx + yy)); + set(1.0f - (yy + zz), xy - wz, xz + wy, + xy + wz, 1.0f - (xx + zz), yz - wx, + xz - wy, yz + wx, 1.0f - (xx + yy)); } -void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { +void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) { // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle #ifdef MATH_CHECKS ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); #endif Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); - real_t cosine = Math::cos(p_phi); - elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); - elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); - elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); + real_t cosine = Math::cos(p_angle); + rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x); + rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y); + rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z); - real_t sine = Math::sin(p_phi); + real_t sine = Math::sin(p_angle); real_t t = 1 - cosine; real_t xyzt = p_axis.x * p_axis.y * t; real_t zyxs = p_axis.z * sine; - elements[0][1] = xyzt - zyxs; - elements[1][0] = xyzt + zyxs; + rows[0][1] = xyzt - zyxs; + rows[1][0] = xyzt + zyxs; xyzt = p_axis.x * p_axis.z * t; zyxs = p_axis.y * sine; - elements[0][2] = xyzt + zyxs; - elements[2][0] = xyzt - zyxs; + rows[0][2] = xyzt + zyxs; + rows[2][0] = xyzt - zyxs; xyzt = p_axis.y * p_axis.z * t; zyxs = p_axis.x * sine; - elements[1][2] = xyzt - zyxs; - elements[2][1] = xyzt + zyxs; + rows[1][2] = xyzt - zyxs; + rows[2][1] = xyzt + zyxs; } -void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { +void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { _set_diagonal(p_scale); - rotate(p_axis, p_phi); + rotate(p_axis, p_angle); } void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) { @@ -918,17 +948,26 @@ void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 & // This also sets the non-diagonal elements to 0, which is misleading from the // name, so we want this method to be private. Use `from_scale` externally. void Basis::_set_diagonal(const Vector3 &p_diag) { - elements[0][0] = p_diag.x; - elements[0][1] = 0; - elements[0][2] = 0; + rows[0][0] = p_diag.x; + rows[0][1] = 0; + rows[0][2] = 0; + + rows[1][0] = 0; + rows[1][1] = p_diag.y; + rows[1][2] = 0; - elements[1][0] = 0; - elements[1][1] = p_diag.y; - elements[1][2] = 0; + rows[2][0] = 0; + rows[2][1] = 0; + rows[2][2] = p_diag.z; +} - elements[2][0] = 0; - elements[2][1] = 0; - elements[2][2] = p_diag.z; +Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const { + Basis b; + b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight); + b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight); + b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight); + + return b; } Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { @@ -937,9 +976,9 @@ Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { Quaternion to(p_to); Basis b(from.slerp(to, p_weight)); - b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight); - b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight); - b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight); + b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight); + b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight); + b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight); return b; } @@ -963,17 +1002,17 @@ void Basis::rotate_sh(real_t *p_values) { const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; - real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; + const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; - real_t m00 = elements[0][0]; - real_t m01 = elements[0][1]; - real_t m02 = elements[0][2]; - real_t m10 = elements[1][0]; - real_t m11 = elements[1][1]; - real_t m12 = elements[1][2]; - real_t m20 = elements[2][0]; - real_t m21 = elements[2][1]; - real_t m22 = elements[2][2]; + real_t m00 = rows[0][0]; + real_t m01 = rows[0][1]; + real_t m02 = rows[0][2]; + real_t m10 = rows[1][0]; + real_t m11 = rows[1][1]; + real_t m12 = rows[1][2]; + real_t m20 = rows[2][0]; + real_t m21 = rows[2][1]; + real_t m22 = rows[2][2]; p_values[0] = src[0]; p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; @@ -1068,6 +1107,6 @@ Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) { Vector3 v_y = v_z.cross(v_x); Basis basis; - basis.set(v_x, v_y, v_z); + basis.set_columns(v_x, v_y, v_z); return basis; } |