diff options
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r-- | core/math/basis.cpp | 848 |
1 files changed, 848 insertions, 0 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp new file mode 100644 index 0000000000..8e4eacd9a6 --- /dev/null +++ b/core/math/basis.cpp @@ -0,0 +1,848 @@ +/*************************************************************************/ +/* basis.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "basis.h" + +#include "core/math/math_funcs.h" +#include "core/os/copymem.h" +#include "core/print_string.h" + +#define cofac(row1, col1, row2, col2) \ + (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) + +void Basis::from_z(const Vector3 &p_z) { + + if (Math::abs(p_z.z) > Math_SQRT12) { + + // choose p in y-z plane + real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; + real_t k = 1.0 / Math::sqrt(a); + elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); + elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); + } else { + + // choose p in x-y plane + real_t a = p_z.x * p_z.x + p_z.y * p_z.y; + real_t k = 1.0 / Math::sqrt(a); + elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0); + elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k); + } + elements[2] = p_z; +} + +void Basis::invert() { + + real_t co[3] = { + cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) + }; + real_t det = elements[0][0] * co[0] + + elements[0][1] * co[1] + + elements[0][2] * co[2]; +#ifdef MATH_CHECKS + ERR_FAIL_COND(det == 0); +#endif + real_t s = 1.0 / det; + + set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, + co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, + co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); +} + +void Basis::orthonormalize() { +#ifdef MATH_CHECKS + ERR_FAIL_COND(determinant() == 0); +#endif + // Gram-Schmidt Process + + Vector3 x = get_axis(0); + Vector3 y = get_axis(1); + Vector3 z = get_axis(2); + + x.normalize(); + y = (y - x * (x.dot(y))); + y.normalize(); + z = (z - x * (x.dot(z)) - y * (y.dot(z))); + z.normalize(); + + set_axis(0, x); + set_axis(1, y); + set_axis(2, z); +} + +Basis Basis::orthonormalized() const { + + Basis c = *this; + c.orthonormalize(); + return c; +} + +bool Basis::is_orthogonal() const { + Basis id; + Basis m = (*this) * transposed(); + + return is_equal_approx(id, m); +} + +bool Basis::is_diagonal() const { + return ( + Math::is_equal_approx(elements[0][1], 0) && Math::is_equal_approx(elements[0][2], 0) && + Math::is_equal_approx(elements[1][0], 0) && Math::is_equal_approx(elements[1][2], 0) && + Math::is_equal_approx(elements[2][0], 0) && Math::is_equal_approx(elements[2][1], 0)); +} + +bool Basis::is_rotation() const { + return Math::is_equal_approx(determinant(), 1) && is_orthogonal(); +} + +bool Basis::is_symmetric() const { + + if (!Math::is_equal_approx(elements[0][1], elements[1][0])) + return false; + if (!Math::is_equal_approx(elements[0][2], elements[2][0])) + return false; + if (!Math::is_equal_approx(elements[1][2], elements[2][1])) + return false; + + return true; +} + +Basis Basis::diagonalize() { + +//NOTE: only implemented for symmetric matrices +//with the Jacobi iterative method method +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_symmetric(), Basis()); +#endif + const int ite_max = 1024; + + real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; + + int ite = 0; + Basis acc_rot; + while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) { + real_t el01_2 = elements[0][1] * elements[0][1]; + real_t el02_2 = elements[0][2] * elements[0][2]; + real_t el12_2 = elements[1][2] * elements[1][2]; + // Find the pivot element + int i, j; + if (el01_2 > el02_2) { + if (el12_2 > el01_2) { + i = 1; + j = 2; + } else { + i = 0; + j = 1; + } + } else { + if (el12_2 > el02_2) { + i = 1; + j = 2; + } else { + i = 0; + j = 2; + } + } + + // Compute the rotation angle + real_t angle; + if (Math::is_equal_approx(elements[j][j], elements[i][i])) { + angle = Math_PI / 4; + } else { + angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); + } + + // Compute the rotation matrix + Basis rot; + rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle); + rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle)); + + // Update the off matrix norm + off_matrix_norm_2 -= elements[i][j] * elements[i][j]; + + // Apply the rotation + *this = rot * *this * rot.transposed(); + acc_rot = rot * acc_rot; + } + + return acc_rot; +} + +Basis Basis::inverse() const { + + Basis inv = *this; + inv.invert(); + return inv; +} + +void Basis::transpose() { + + SWAP(elements[0][1], elements[1][0]); + SWAP(elements[0][2], elements[2][0]); + SWAP(elements[1][2], elements[2][1]); +} + +Basis Basis::transposed() const { + + Basis tr = *this; + tr.transpose(); + return tr; +} + +// Multiplies the matrix from left by the scaling matrix: M -> S.M +// See the comment for Basis::rotated for further explanation. +void Basis::scale(const Vector3 &p_scale) { + + elements[0][0] *= p_scale.x; + elements[0][1] *= p_scale.x; + elements[0][2] *= p_scale.x; + elements[1][0] *= p_scale.y; + elements[1][1] *= p_scale.y; + elements[1][2] *= p_scale.y; + elements[2][0] *= p_scale.z; + elements[2][1] *= p_scale.z; + elements[2][2] *= p_scale.z; +} + +Basis Basis::scaled(const Vector3 &p_scale) const { + Basis m = *this; + m.scale(p_scale); + return m; +} + +void Basis::scale_local(const Vector3 &p_scale) { + // performs a scaling in object-local coordinate system: + // M -> (M.S.Minv).M = M.S. + *this = scaled_local(p_scale); +} + +Basis Basis::scaled_local(const Vector3 &p_scale) const { + Basis b; + b.set_diagonal(p_scale); + + return (*this) * b; +} + +Vector3 Basis::get_scale_abs() const { + + return Vector3( + Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), + Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), + Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); +} + +Vector3 Basis::get_scale_local() const { + real_t det_sign = determinant() > 0 ? 1 : -1; + return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length()); +} + +// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. +Vector3 Basis::get_scale() const { + // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S. + // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and + // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal). + // + // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition + // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where + // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix, + // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P, + // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique. + // Therefore, we are going to do this decomposition by sticking to a particular convention. + // This may lead to confusion for some users though. + // + // The convention we use here is to absorb the sign flip into the scaling matrix. + // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ... + // + // A proper way to get rid of this issue would be to store the scaling values (or at least their signs) + // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the + // matrix elements. + // + // The rotation part of this decomposition is returned by get_rotation* functions. + real_t det_sign = determinant() > 0 ? 1 : -1; + return det_sign * Vector3( + Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), + Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), + Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); +} + +// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. +// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3. +// This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so. +Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(determinant() == 0, Vector3()); + + Basis m = transposed() * (*this); + ERR_FAIL_COND_V(!m.is_diagonal(), Vector3()); +#endif + Vector3 scale = get_scale(); + Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale + rotref = (*this) * inv_scale; + +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3()); +#endif + return scale.abs(); +} + +// Multiplies the matrix from left by the rotation matrix: M -> R.M +// Note that this does *not* rotate the matrix itself. +// +// The main use of Basis is as Transform.basis, which is used a the transformation matrix +// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), +// not the matrix itself (which is R * (*this) * R.transposed()). +Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const { + return Basis(p_axis, p_phi) * (*this); +} + +void Basis::rotate(const Vector3 &p_axis, real_t p_phi) { + *this = rotated(p_axis, p_phi); +} + +void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) { + // performs a rotation in object-local coordinate system: + // M -> (M.R.Minv).M = M.R. + *this = rotated_local(p_axis, p_phi); +} +Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { + + return (*this) * Basis(p_axis, p_phi); +} + +Basis Basis::rotated(const Vector3 &p_euler) const { + return Basis(p_euler) * (*this); +} + +void Basis::rotate(const Vector3 &p_euler) { + *this = rotated(p_euler); +} + +Basis Basis::rotated(const Quat &p_quat) const { + return Basis(p_quat) * (*this); +} + +void Basis::rotate(const Quat &p_quat) { + *this = rotated(p_quat); +} + +Vector3 Basis::get_rotation_euler() const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + return m.get_euler(); +} + +Quat Basis::get_rotation_quat() const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + return m.get_quat(); +} + +void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + m.get_axis_angle(p_axis, p_angle); +} + +void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = transposed(); + m.orthonormalize(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + m.get_axis_angle(p_axis, p_angle); + p_angle = -p_angle; +} + +// get_euler_xyz returns a vector containing the Euler angles in the format +// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last +// (following the convention they are commonly defined in the literature). +// +// The current implementation uses XYZ convention (Z is the first rotation), +// so euler.z is the angle of the (first) rotation around Z axis and so on, +// +// And thus, assuming the matrix is a rotation matrix, this function returns +// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates +// around the z-axis by a and so on. +Vector3 Basis::get_euler_xyz() const { + + // Euler angles in XYZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz -cy*sz sy + // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx + // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy + + Vector3 euler; +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_rotation(), euler); +#endif + real_t sy = elements[0][2]; + if (sy < 1.0) { + if (sy > -1.0) { + // is this a pure Y rotation? + if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = 0; + euler.y = atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } else { + euler.x = Math::atan2(-elements[1][2], elements[2][2]); + euler.y = Math::asin(sy); + euler.z = Math::atan2(-elements[0][1], elements[0][0]); + } + } else { + euler.x = -Math::atan2(elements[0][1], elements[1][1]); + euler.y = -Math_PI / 2.0; + euler.z = 0.0; + } + } else { + euler.x = Math::atan2(elements[0][1], elements[1][1]); + euler.y = Math_PI / 2.0; + euler.z = 0.0; + } + return euler; +} + +// set_euler_xyz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// The current implementation uses XYZ convention (Z is the first rotation). +void Basis::set_euler_xyz(const Vector3 &p_euler) { + + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + //optimizer will optimize away all this anyway + *this = xmat * (ymat * zmat); +} + +// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, +// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned +// as the x, y, and z components of a Vector3 respectively. +Vector3 Basis::get_euler_yxz() const { + + // Euler angles in YXZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy + // cx*sz cx*cz -sx + // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx + + Vector3 euler; +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_rotation(), euler); +#endif + real_t m12 = elements[1][2]; + + if (m12 < 1) { + if (m12 > -1) { + // is this a pure X rotation? + if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = atan2(-m12, elements[1][1]); + euler.y = 0; + euler.z = 0; + } else { + euler.x = asin(-m12); + euler.y = atan2(elements[0][2], elements[2][2]); + euler.z = atan2(elements[1][0], elements[1][1]); + } + } else { // m12 == -1 + euler.x = Math_PI * 0.5; + euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.z = 0; + } + } else { // m12 == 1 + euler.x = -Math_PI * 0.5; + euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.z = 0; + } + + return euler; +} + +// set_euler_yxz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// The current implementation uses YXZ convention (Z is the first rotation). +void Basis::set_euler_yxz(const Vector3 &p_euler) { + + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + //optimizer will optimize away all this anyway + *this = ymat * xmat * zmat; +} + +bool Basis::is_equal_approx(const Basis &a, const Basis &b) const { + + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + if (!Math::is_equal_approx(a.elements[i][j], b.elements[i][j])) + return false; + } + } + + return true; +} + +bool Basis::operator==(const Basis &p_matrix) const { + + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + if (elements[i][j] != p_matrix.elements[i][j]) + return false; + } + } + + return true; +} + +bool Basis::operator!=(const Basis &p_matrix) const { + + return (!(*this == p_matrix)); +} + +Basis::operator String() const { + + String mtx; + for (int i = 0; i < 3; i++) { + + for (int j = 0; j < 3; j++) { + + if (i != 0 || j != 0) + mtx += ", "; + + mtx += rtos(elements[i][j]); + } + } + + return mtx; +} + +Quat Basis::get_quat() const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_rotation(), Quat()); +#endif + real_t trace = elements[0][0] + elements[1][1] + elements[2][2]; + real_t temp[4]; + + if (trace > 0.0) { + real_t s = Math::sqrt(trace + 1.0); + temp[3] = (s * 0.5); + s = 0.5 / s; + + temp[0] = ((elements[2][1] - elements[1][2]) * s); + temp[1] = ((elements[0][2] - elements[2][0]) * s); + temp[2] = ((elements[1][0] - elements[0][1]) * s); + } else { + int i = elements[0][0] < elements[1][1] ? + (elements[1][1] < elements[2][2] ? 2 : 1) : + (elements[0][0] < elements[2][2] ? 2 : 0); + int j = (i + 1) % 3; + int k = (i + 2) % 3; + + real_t s = Math::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0); + temp[i] = s * 0.5; + s = 0.5 / s; + + temp[3] = (elements[k][j] - elements[j][k]) * s; + temp[j] = (elements[j][i] + elements[i][j]) * s; + temp[k] = (elements[k][i] + elements[i][k]) * s; + } + + return Quat(temp[0], temp[1], temp[2], temp[3]); +} + +static const Basis _ortho_bases[24] = { + Basis(1, 0, 0, 0, 1, 0, 0, 0, 1), + Basis(0, -1, 0, 1, 0, 0, 0, 0, 1), + Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1), + Basis(0, 1, 0, -1, 0, 0, 0, 0, 1), + Basis(1, 0, 0, 0, 0, -1, 0, 1, 0), + Basis(0, 0, 1, 1, 0, 0, 0, 1, 0), + Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0), + Basis(0, 0, -1, -1, 0, 0, 0, 1, 0), + Basis(1, 0, 0, 0, -1, 0, 0, 0, -1), + Basis(0, 1, 0, 1, 0, 0, 0, 0, -1), + Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1), + Basis(0, -1, 0, -1, 0, 0, 0, 0, -1), + Basis(1, 0, 0, 0, 0, 1, 0, -1, 0), + Basis(0, 0, -1, 1, 0, 0, 0, -1, 0), + Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0), + Basis(0, 0, 1, -1, 0, 0, 0, -1, 0), + Basis(0, 0, 1, 0, 1, 0, -1, 0, 0), + Basis(0, -1, 0, 0, 0, 1, -1, 0, 0), + Basis(0, 0, -1, 0, -1, 0, -1, 0, 0), + Basis(0, 1, 0, 0, 0, -1, -1, 0, 0), + Basis(0, 0, 1, 0, -1, 0, 1, 0, 0), + Basis(0, 1, 0, 0, 0, 1, 1, 0, 0), + Basis(0, 0, -1, 0, 1, 0, 1, 0, 0), + Basis(0, -1, 0, 0, 0, -1, 1, 0, 0) +}; + +int Basis::get_orthogonal_index() const { + + //could be sped up if i come up with a way + Basis orth = *this; + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + + real_t v = orth[i][j]; + if (v > 0.5) + v = 1.0; + else if (v < -0.5) + v = -1.0; + else + v = 0; + + orth[i][j] = v; + } + } + + for (int i = 0; i < 24; i++) { + + if (_ortho_bases[i] == orth) + return i; + } + + return 0; +} + +void Basis::set_orthogonal_index(int p_index) { + + //there only exist 24 orthogonal bases in r3 + ERR_FAIL_INDEX(p_index, 24); + + *this = _ortho_bases[p_index]; +} + +void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND(!is_rotation()); +#endif + real_t angle, x, y, z; // variables for result + real_t epsilon = 0.01; // margin to allow for rounding errors + real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees + + if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { + // singularity found + // first check for identity matrix which must have +1 for all terms + // in leading diagonaland zero in other terms + if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { + // this singularity is identity matrix so angle = 0 + r_axis = Vector3(0, 1, 0); + r_angle = 0; + return; + } + // otherwise this singularity is angle = 180 + angle = Math_PI; + real_t xx = (elements[0][0] + 1) / 2; + real_t yy = (elements[1][1] + 1) / 2; + real_t zz = (elements[2][2] + 1) / 2; + real_t xy = (elements[1][0] + elements[0][1]) / 4; + real_t xz = (elements[2][0] + elements[0][2]) / 4; + real_t yz = (elements[2][1] + elements[1][2]) / 4; + if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term + if (xx < epsilon) { + x = 0; + y = 0.7071; + z = 0.7071; + } else { + x = Math::sqrt(xx); + y = xy / x; + z = xz / x; + } + } else if (yy > zz) { // elements[1][1] is the largest diagonal term + if (yy < epsilon) { + x = 0.7071; + y = 0; + z = 0.7071; + } else { + y = Math::sqrt(yy); + x = xy / y; + z = yz / y; + } + } else { // elements[2][2] is the largest diagonal term so base result on this + if (zz < epsilon) { + x = 0.7071; + y = 0.7071; + z = 0; + } else { + z = Math::sqrt(zz); + x = xz / z; + y = yz / z; + } + } + r_axis = Vector3(x, y, z); + r_angle = angle; + return; + } + // as we have reached here there are no singularities so we can handle normally + real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise + + angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); + if (angle < 0) s = -s; + x = (elements[2][1] - elements[1][2]) / s; + y = (elements[0][2] - elements[2][0]) / s; + z = (elements[1][0] - elements[0][1]) / s; + + r_axis = Vector3(x, y, z); + r_angle = angle; +} + +void Basis::set_quat(const Quat &p_quat) { + + real_t d = p_quat.length_squared(); + real_t s = 2.0 / d; + real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; + real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; + real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; + real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; + set(1.0 - (yy + zz), xy - wz, xz + wy, + xy + wz, 1.0 - (xx + zz), yz - wx, + xz - wy, yz + wx, 1.0 - (xx + yy)); +} + +void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { +// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle +#ifdef MATH_CHECKS + ERR_FAIL_COND(!p_axis.is_normalized()); +#endif + Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); + + real_t cosine = Math::cos(p_phi); + real_t sine = Math::sin(p_phi); + + elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); + elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine; + elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine; + + elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine; + elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); + elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine; + + elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine; + elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine; + elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); +} + +void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_axis, p_phi); +} + +void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_euler); +} + +void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_quat); +} + +void Basis::set_diagonal(const Vector3 p_diag) { + elements[0][0] = p_diag.x; + elements[0][1] = 0; + elements[0][2] = 0; + + elements[1][0] = 0; + elements[1][1] = p_diag.y; + elements[1][2] = 0; + + elements[2][0] = 0; + elements[2][1] = 0; + elements[2][2] = p_diag.z; +} + +Basis Basis::slerp(const Basis &target, const real_t &t) const { +// TODO: implement this directly without using quaternions to make it more efficient +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_rotation(), Basis()); + ERR_FAIL_COND_V(!target.is_rotation(), Basis()); +#endif + + Quat from(*this); + Quat to(target); + + return Basis(from.slerp(to, t)); +} |