summaryrefslogtreecommitdiff
path: root/core/math/basis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r--core/math/basis.cpp115
1 files changed, 69 insertions, 46 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index 26b4caba39..a7f89522d7 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -31,7 +31,6 @@
#include "basis.h"
#include "core/math/math_funcs.h"
-#include "core/os/copymem.h"
#include "core/string/print_string.h"
#define cofac(row1, col1, row2, col2) \
@@ -110,7 +109,7 @@ bool Basis::is_diagonal() const {
}
bool Basis::is_rotation() const {
- return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal();
+ return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal();
}
#ifdef MATH_CHECKS
@@ -132,7 +131,7 @@ bool Basis::is_symmetric() const {
Basis Basis::diagonalize() {
//NOTE: only implemented for symmetric matrices
-//with the Jacobi iterative method method
+//with the Jacobi iterative method
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!is_symmetric(), Basis());
#endif
@@ -208,6 +207,10 @@ Basis Basis::transposed() const {
return tr;
}
+Basis Basis::from_scale(const Vector3 &p_scale) {
+ return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z);
+}
+
// Multiplies the matrix from left by the scaling matrix: M -> S.M
// See the comment for Basis::rotated for further explanation.
void Basis::scale(const Vector3 &p_scale) {
@@ -247,10 +250,7 @@ void Basis::make_scale_uniform() {
}
Basis Basis::scaled_local(const Vector3 &p_scale) const {
- Basis b;
- b.set_diagonal(p_scale);
-
- return (*this) * b;
+ return (*this) * Basis::from_scale(p_scale);
}
Vector3 Basis::get_scale_abs() const {
@@ -317,7 +317,7 @@ Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
// Multiplies the matrix from left by the rotation matrix: M -> R.M
// Note that this does *not* rotate the matrix itself.
//
-// The main use of Basis is as Transform.basis, which is used a the transformation matrix
+// The main use of Basis is as Transform.basis, which is used by the transformation matrix
// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
// not the matrix itself (which is R * (*this) * R.transposed()).
Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const {
@@ -346,12 +346,12 @@ void Basis::rotate(const Vector3 &p_euler) {
*this = rotated(p_euler);
}
-Basis Basis::rotated(const Quat &p_quat) const {
- return Basis(p_quat) * (*this);
+Basis Basis::rotated(const Quaternion &p_quaternion) const {
+ return Basis(p_quaternion) * (*this);
}
-void Basis::rotate(const Quat &p_quat) {
- *this = rotated(p_quat);
+void Basis::rotate(const Quaternion &p_quaternion) {
+ *this = rotated(p_quaternion);
}
Vector3 Basis::get_rotation_euler() const {
@@ -368,7 +368,7 @@ Vector3 Basis::get_rotation_euler() const {
return m.get_euler();
}
-Quat Basis::get_rotation_quat() const {
+Quaternion Basis::get_rotation_quaternion() const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
@@ -379,7 +379,19 @@ Quat Basis::get_rotation_quat() const {
m.scale(Vector3(-1, -1, -1));
}
- return m.get_quat();
+ return m.get_quaternion();
+}
+
+void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) {
+ // Takes two vectors and rotates the basis from the first vector to the second vector.
+ // Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724
+ const Vector3 axis = p_start_direction.cross(p_end_direction).normalized();
+ if (axis.length_squared() != 0) {
+ real_t dot = p_start_direction.dot(p_end_direction);
+ dot = CLAMP(dot, -1.0, 1.0);
+ const real_t angle_rads = Math::acos(dot);
+ set_axis_angle(axis, angle_rads);
+ }
}
void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
@@ -757,23 +769,14 @@ bool Basis::operator!=(const Basis &p_matrix) const {
}
Basis::operator String() const {
- String mtx;
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- if (i != 0 || j != 0) {
- mtx += ", ";
- }
-
- mtx += rtos(elements[j][i]); //matrix is stored transposed for performance, so print it transposed
- }
- }
-
- return mtx;
+ return "[X: " + get_axis(0).operator String() +
+ ", Y: " + get_axis(1).operator String() +
+ ", Z: " + get_axis(2).operator String() + "]";
}
-Quat Basis::get_quat() const {
+Quaternion Basis::get_quaternion() const {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_rotation(), Quat(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead.");
+ ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors.");
#endif
/* Allow getting a quaternion from an unnormalized transform */
Basis m = *this;
@@ -790,8 +793,8 @@ Quat Basis::get_quat() const {
temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
} else {
int i = m.elements[0][0] < m.elements[1][1] ?
- (m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
- (m.elements[0][0] < m.elements[2][2] ? 2 : 0);
+ (m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
+ (m.elements[0][0] < m.elements[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
@@ -804,7 +807,7 @@ Quat Basis::get_quat() const {
temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
}
- return Quat(temp[0], temp[1], temp[2], temp[3]);
+ return Quaternion(temp[0], temp[1], temp[2], temp[3]);
}
static const Basis _ortho_bases[24] = {
@@ -881,7 +884,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
// singularity found
// first check for identity matrix which must have +1 for all terms
- // in leading diagonaland zero in other terms
+ // in leading diagonal and zero in other terms
if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
// this singularity is identity matrix so angle = 0
r_axis = Vector3(0, 1, 0);
@@ -946,13 +949,13 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = angle;
}
-void Basis::set_quat(const Quat &p_quat) {
- real_t d = p_quat.length_squared();
+void Basis::set_quaternion(const Quaternion &p_quaternion) {
+ real_t d = p_quaternion.length_squared();
real_t s = 2.0 / d;
- real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
- real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
- real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
- real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
+ real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
+ real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs;
+ real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs;
+ real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs;
set(1.0 - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0 - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0 - (xx + yy));
@@ -989,21 +992,23 @@ void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
}
void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) {
- set_diagonal(p_scale);
+ _set_diagonal(p_scale);
rotate(p_axis, p_phi);
}
void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) {
- set_diagonal(p_scale);
+ _set_diagonal(p_scale);
rotate(p_euler);
}
-void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) {
- set_diagonal(p_scale);
- rotate(p_quat);
+void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) {
+ _set_diagonal(p_scale);
+ rotate(p_quaternion);
}
-void Basis::set_diagonal(const Vector3 &p_diag) {
+// This also sets the non-diagonal elements to 0, which is misleading from the
+// name, so we want this method to be private. Use `from_scale` externally.
+void Basis::_set_diagonal(const Vector3 &p_diag) {
elements[0][0] = p_diag.x;
elements[0][1] = 0;
elements[0][2] = 0;
@@ -1019,8 +1024,8 @@ void Basis::set_diagonal(const Vector3 &p_diag) {
Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
//consider scale
- Quat from(*this);
- Quat to(p_to);
+ Quaternion from(*this);
+ Quaternion to(p_to);
Basis b(from.slerp(to, p_weight));
b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight);
@@ -1139,3 +1144,21 @@ void Basis::rotate_sh(real_t *p_values) {
p_values[7] = -d3;
p_values[8] = d4 * s_scale_dst4;
}
+
+Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V_MSG(p_target.is_equal_approx(Vector3()), Basis(), "The target vector can't be zero.");
+ ERR_FAIL_COND_V_MSG(p_up.is_equal_approx(Vector3()), Basis(), "The up vector can't be zero.");
+#endif
+ Vector3 v_z = -p_target.normalized();
+ Vector3 v_x = p_up.cross(v_z);
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V_MSG(v_x.is_equal_approx(Vector3()), Basis(), "The target vector and up vector can't be parallel to each other.");
+#endif
+ v_x.normalize();
+ Vector3 v_y = v_z.cross(v_x);
+
+ Basis basis;
+ basis.set(v_x, v_y, v_z);
+ return basis;
+}