diff options
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r-- | core/math/basis.cpp | 253 |
1 files changed, 213 insertions, 40 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index cbfd09810c..cbdd8a8c9f 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -5,8 +5,8 @@ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -32,7 +32,7 @@ #include "core/math/math_funcs.h" #include "core/os/copymem.h" -#include "core/print_string.h" +#include "core/string/print_string.h" #define cofac(row1, col1, row2, col2) \ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) @@ -113,19 +113,22 @@ bool Basis::is_rotation() const { return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal(); } +#ifdef MATH_CHECKS +// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. bool Basis::is_symmetric() const { - if (!Math::is_equal_approx_ratio(elements[0][1], elements[1][0], UNIT_EPSILON)) { + if (!Math::is_equal_approx(elements[0][1], elements[1][0])) { return false; } - if (!Math::is_equal_approx_ratio(elements[0][2], elements[2][0], UNIT_EPSILON)) { + if (!Math::is_equal_approx(elements[0][2], elements[2][0])) { return false; } - if (!Math::is_equal_approx_ratio(elements[1][2], elements[2][1], UNIT_EPSILON)) { + if (!Math::is_equal_approx(elements[1][2], elements[2][1])) { return false; } return true; } +#endif Basis Basis::diagonalize() { //NOTE: only implemented for symmetric matrices @@ -428,12 +431,9 @@ Vector3 Basis::get_euler_xyz() const { // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; -#ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_rotation(), euler); -#endif real_t sy = elements[0][2]; - if (sy < 1.0) { - if (sy > -1.0) { + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { // is this a pure Y rotation? if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { // return the simplest form (human friendlier in editor and scripts) @@ -446,12 +446,12 @@ Vector3 Basis::get_euler_xyz() const { euler.z = Math::atan2(-elements[0][1], elements[0][0]); } } else { - euler.x = -Math::atan2(elements[0][1], elements[1][1]); + euler.x = Math::atan2(elements[2][1], elements[1][1]); euler.y = -Math_PI / 2.0; euler.z = 0.0; } } else { - euler.x = Math::atan2(elements[0][1], elements[1][1]); + euler.x = Math::atan2(elements[2][1], elements[1][1]); euler.y = Math_PI / 2.0; euler.z = 0.0; } @@ -481,15 +481,106 @@ void Basis::set_euler_xyz(const Vector3 &p_euler) { *this = xmat * (ymat * zmat); } +Vector3 Basis::get_euler_xzy() const { + // Euler angles in XZY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy -sz cz*sy + // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx + // cy*sx*sz cz*sx cx*cy+sx*sz*sy + + Vector3 euler; + real_t sz = elements[0][1]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = Math::asin(-sz); + } else { + // It's -1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + return euler; +} + +void Basis::set_euler_xzy(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = xmat * zmat * ymat; +} + +Vector3 Basis::get_euler_yzx() const { + // Euler angles in YZX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx + // sz cz*cx -cz*sx + // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx + + Vector3 euler; + real_t sz = elements[1][0]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(-elements[1][2], elements[1][1]); + euler.y = Math::atan2(-elements[2][0], elements[0][0]); + euler.z = Math::asin(sz); + } else { + // It's -1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + return euler; +} + +void Basis::set_euler_yzx(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = ymat * zmat * xmat; +} + // get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, // as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned // as the x, y, and z components of a Vector3 respectively. Vector3 Basis::get_euler_yxz() const { - /* checking this is a bad idea, because obtaining from scaled transform is a valid use case -#ifdef MATH_CHECKS - ERR_FAIL_COND(!is_rotation()); -#endif -*/ // Euler angles in YXZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -501,8 +592,8 @@ Vector3 Basis::get_euler_yxz() const { real_t m12 = elements[1][2]; - if (m12 < 1) { - if (m12 > -1) { + if (m12 < (1 - CMP_EPSILON)) { + if (m12 > -(1 - CMP_EPSILON)) { // is this a pure X rotation? if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { // return the simplest form (human friendlier in editor and scripts) @@ -516,12 +607,12 @@ Vector3 Basis::get_euler_yxz() const { } } else { // m12 == -1 euler.x = Math_PI * 0.5; - euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.y = atan2(elements[0][1], elements[0][0]); euler.z = 0; } } else { // m12 == 1 euler.x = -Math_PI * 0.5; - euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.y = -atan2(elements[0][1], elements[0][0]); euler.z = 0; } @@ -551,20 +642,102 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) { *this = ymat * xmat * zmat; } -bool Basis::is_equal_approx(const Basis &p_basis) const { - return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); +Vector3 Basis::get_euler_zxy() const { + // Euler angles in ZXY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx + // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx + // -cx*sy sx cx*cy + Vector3 euler; + real_t sx = elements[2][1]; + if (sx < (1.0 - CMP_EPSILON)) { + if (sx > -(1.0 - CMP_EPSILON)) { + euler.x = Math::asin(sx); + euler.y = Math::atan2(-elements[2][0], elements[2][2]); + euler.z = Math::atan2(-elements[0][1], elements[1][1]); + } else { + // It's -1 + euler.x = -Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + } else { + // It's 1 + euler.x = Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + return euler; } -bool Basis::is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon) const { - for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], p_epsilon)) { - return false; - } +void Basis::set_euler_zxy(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = zmat * xmat * ymat; +} + +Vector3 Basis::get_euler_zyx() const { + // Euler angles in ZYX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy + // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx + // -sy cy*sx cy*cx + Vector3 euler; + real_t sy = elements[2][0]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = Math::asin(-sy); + euler.z = Math::atan2(elements[1][0], elements[0][0]); + } else { + // It's -1 + euler.x = 0; + euler.y = Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); } + } else { + // It's 1 + euler.x = 0; + euler.y = -Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); } + return euler; +} - return true; +void Basis::set_euler_zyx(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = zmat * ymat * xmat; +} + +bool Basis::is_equal_approx(const Basis &p_basis) const { + return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); } bool Basis::operator==(const Basis &p_matrix) const { @@ -591,7 +764,7 @@ Basis::operator String() const { mtx += ", "; } - mtx += rtos(elements[i][j]); + mtx += rtos(elements[j][i]); //matrix is stored transposed for performance, so print it transposed } } @@ -617,8 +790,8 @@ Quat Basis::get_quat() const { temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); } else { int i = m.elements[0][0] < m.elements[1][1] ? - (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : - (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : + (m.elements[0][0] < m.elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; @@ -844,15 +1017,15 @@ void Basis::set_diagonal(const Vector3 &p_diag) { elements[2][2] = p_diag.z; } -Basis Basis::slerp(const Basis &target, const real_t &t) const { +Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { //consider scale Quat from(*this); - Quat to(target); + Quat to(p_to); - Basis b(from.slerp(to, t)); - b.elements[0] *= Math::lerp(elements[0].length(), target.elements[0].length(), t); - b.elements[1] *= Math::lerp(elements[1].length(), target.elements[1].length(), t); - b.elements[2] *= Math::lerp(elements[2].length(), target.elements[2].length(), t); + Basis b(from.slerp(to, p_weight)); + b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight); + b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight); + b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight); return b; } |