diff options
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r-- | core/math/basis.cpp | 486 |
1 files changed, 373 insertions, 113 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index ddf5f13d55..aa3831d4cf 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -5,8 +5,8 @@ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -31,23 +31,19 @@ #include "basis.h" #include "core/math/math_funcs.h" -#include "core/os/copymem.h" -#include "core/print_string.h" +#include "core/string/print_string.h" #define cofac(row1, col1, row2, col2) \ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) void Basis::from_z(const Vector3 &p_z) { - if (Math::abs(p_z.z) > Math_SQRT12) { - // choose p in y-z plane real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; real_t k = 1.0 / Math::sqrt(a); elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); } else { - // choose p in x-y plane real_t a = p_z.x * p_z.x + p_z.y * p_z.y; real_t k = 1.0 / Math::sqrt(a); @@ -58,7 +54,6 @@ void Basis::from_z(const Vector3 &p_z) { } void Basis::invert() { - real_t co[3] = { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; @@ -76,11 +71,6 @@ void Basis::invert() { } void Basis::orthonormalize() { - -#ifdef MATH_CHECKS - ERR_FAIL_COND(determinant() == 0); -#endif - // Gram-Schmidt Process Vector3 x = get_axis(0); @@ -99,7 +89,6 @@ void Basis::orthonormalize() { } Basis Basis::orthonormalized() const { - Basis c = *this; c.orthonormalize(); return c; @@ -120,25 +109,29 @@ bool Basis::is_diagonal() const { } bool Basis::is_rotation() const { - return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal(); + return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal(); } +#ifdef MATH_CHECKS +// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. bool Basis::is_symmetric() const { - - if (!Math::is_equal_approx_ratio(elements[0][1], elements[1][0], UNIT_EPSILON)) + if (!Math::is_equal_approx(elements[0][1], elements[1][0])) { return false; - if (!Math::is_equal_approx_ratio(elements[0][2], elements[2][0], UNIT_EPSILON)) + } + if (!Math::is_equal_approx(elements[0][2], elements[2][0])) { return false; - if (!Math::is_equal_approx_ratio(elements[1][2], elements[2][1], UNIT_EPSILON)) + } + if (!Math::is_equal_approx(elements[1][2], elements[2][1])) { return false; + } return true; } +#endif Basis Basis::diagonalize() { - //NOTE: only implemented for symmetric matrices -//with the Jacobi iterative method method +//with the Jacobi iterative method #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_symmetric(), Basis()); #endif @@ -197,21 +190,18 @@ Basis Basis::diagonalize() { } Basis Basis::inverse() const { - Basis inv = *this; inv.invert(); return inv; } void Basis::transpose() { - SWAP(elements[0][1], elements[1][0]); SWAP(elements[0][2], elements[2][0]); SWAP(elements[1][2], elements[2][1]); } Basis Basis::transposed() const { - Basis tr = *this; tr.transpose(); return tr; @@ -220,7 +210,6 @@ Basis Basis::transposed() const { // Multiplies the matrix from left by the scaling matrix: M -> S.M // See the comment for Basis::rotated for further explanation. void Basis::scale(const Vector3 &p_scale) { - elements[0][0] *= p_scale.x; elements[0][1] *= p_scale.x; elements[0][2] *= p_scale.x; @@ -244,6 +233,18 @@ void Basis::scale_local(const Vector3 &p_scale) { *this = scaled_local(p_scale); } +float Basis::get_uniform_scale() const { + return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; +} + +void Basis::make_scale_uniform() { + float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; + for (int i = 0; i < 3; i++) { + elements[i].normalize(); + elements[i] *= l; + } +} + Basis Basis::scaled_local(const Vector3 &p_scale) const { Basis b; b.set_diagonal(p_scale); @@ -252,7 +253,6 @@ Basis Basis::scaled_local(const Vector3 &p_scale) const { } Vector3 Basis::get_scale_abs() const { - return Vector3( Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), @@ -316,7 +316,7 @@ Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { // Multiplies the matrix from left by the rotation matrix: M -> R.M // Note that this does *not* rotate the matrix itself. // -// The main use of Basis is as Transform.basis, which is used a the transformation matrix +// The main use of Basis is as Transform.basis, which is used by the transformation matrix // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), // not the matrix itself (which is R * (*this) * R.transposed()). Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const { @@ -332,8 +332,8 @@ void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) { // M -> (M.R.Minv).M = M.R. *this = rotated_local(p_axis, p_phi); } -Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { +Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { return (*this) * Basis(p_axis, p_phi); } @@ -345,12 +345,12 @@ void Basis::rotate(const Vector3 &p_euler) { *this = rotated(p_euler); } -Basis Basis::rotated(const Quat &p_quat) const { - return Basis(p_quat) * (*this); +Basis Basis::rotated(const Quaternion &p_quaternion) const { + return Basis(p_quaternion) * (*this); } -void Basis::rotate(const Quat &p_quat) { - *this = rotated(p_quat); +void Basis::rotate(const Quaternion &p_quaternion) { + *this = rotated(p_quaternion); } Vector3 Basis::get_rotation_euler() const { @@ -367,7 +367,7 @@ Vector3 Basis::get_rotation_euler() const { return m.get_euler(); } -Quat Basis::get_rotation_quat() const { +Quaternion Basis::get_rotation_quaternion() const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. @@ -378,7 +378,7 @@ Quat Basis::get_rotation_quat() const { m.scale(Vector3(-1, -1, -1)); } - return m.get_quat(); + return m.get_quaternion(); } void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { @@ -422,7 +422,6 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates // around the z-axis by a and so on. Vector3 Basis::get_euler_xyz() const { - // Euler angles in XYZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -431,12 +430,9 @@ Vector3 Basis::get_euler_xyz() const { // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; -#ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_rotation(), euler); -#endif real_t sy = elements[0][2]; - if (sy < 1.0) { - if (sy > -1.0) { + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { // is this a pure Y rotation? if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { // return the simplest form (human friendlier in editor and scripts) @@ -449,12 +445,12 @@ Vector3 Basis::get_euler_xyz() const { euler.z = Math::atan2(-elements[0][1], elements[0][0]); } } else { - euler.x = -Math::atan2(elements[0][1], elements[1][1]); + euler.x = Math::atan2(elements[2][1], elements[1][1]); euler.y = -Math_PI / 2.0; euler.z = 0.0; } } else { - euler.x = Math::atan2(elements[0][1], elements[1][1]); + euler.x = Math::atan2(elements[2][1], elements[1][1]); euler.y = Math_PI / 2.0; euler.z = 0.0; } @@ -466,7 +462,6 @@ Vector3 Basis::get_euler_xyz() const { // and similar for other axes. // The current implementation uses XYZ convention (Z is the first rotation). void Basis::set_euler_xyz(const Vector3 &p_euler) { - real_t c, s; c = Math::cos(p_euler.x); @@ -485,16 +480,106 @@ void Basis::set_euler_xyz(const Vector3 &p_euler) { *this = xmat * (ymat * zmat); } +Vector3 Basis::get_euler_xzy() const { + // Euler angles in XZY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy -sz cz*sy + // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx + // cy*sx*sz cz*sx cx*cy+sx*sz*sy + + Vector3 euler; + real_t sz = elements[0][1]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = Math::asin(-sz); + } else { + // It's -1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + return euler; +} + +void Basis::set_euler_xzy(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = xmat * zmat * ymat; +} + +Vector3 Basis::get_euler_yzx() const { + // Euler angles in YZX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx + // sz cz*cx -cz*sx + // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx + + Vector3 euler; + real_t sz = elements[1][0]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(-elements[1][2], elements[1][1]); + euler.y = Math::atan2(-elements[2][0], elements[0][0]); + euler.z = Math::asin(sz); + } else { + // It's -1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + return euler; +} + +void Basis::set_euler_yzx(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = ymat * zmat * xmat; +} + // get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, // as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned // as the x, y, and z components of a Vector3 respectively. Vector3 Basis::get_euler_yxz() const { - - /* checking this is a bad idea, because obtaining from scaled transform is a valid use case -#ifdef MATH_CHECKS - ERR_FAIL_COND(!is_rotation()); -#endif -*/ // Euler angles in YXZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -506,8 +591,8 @@ Vector3 Basis::get_euler_yxz() const { real_t m12 = elements[1][2]; - if (m12 < 1) { - if (m12 > -1) { + if (m12 < (1 - CMP_EPSILON)) { + if (m12 > -(1 - CMP_EPSILON)) { // is this a pure X rotation? if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { // return the simplest form (human friendlier in editor and scripts) @@ -521,12 +606,12 @@ Vector3 Basis::get_euler_yxz() const { } } else { // m12 == -1 euler.x = Math_PI * 0.5; - euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.y = atan2(elements[0][1], elements[0][0]); euler.z = 0; } } else { // m12 == 1 euler.x = -Math_PI * 0.5; - euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.y = -atan2(elements[0][1], elements[0][0]); euler.z = 0; } @@ -538,7 +623,6 @@ Vector3 Basis::get_euler_yxz() const { // and similar for other axes. // The current implementation uses YXZ convention (Z is the first rotation). void Basis::set_euler_yxz(const Vector3 &p_euler) { - real_t c, s; c = Math::cos(p_euler.x); @@ -557,29 +641,110 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) { *this = ymat * xmat * zmat; } -bool Basis::is_equal_approx(const Basis &p_basis) const { - - return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); +Vector3 Basis::get_euler_zxy() const { + // Euler angles in ZXY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx + // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx + // -cx*sy sx cx*cy + Vector3 euler; + real_t sx = elements[2][1]; + if (sx < (1.0 - CMP_EPSILON)) { + if (sx > -(1.0 - CMP_EPSILON)) { + euler.x = Math::asin(sx); + euler.y = Math::atan2(-elements[2][0], elements[2][2]); + euler.z = Math::atan2(-elements[0][1], elements[1][1]); + } else { + // It's -1 + euler.x = -Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + } else { + // It's 1 + euler.x = Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + return euler; } -bool Basis::is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon) const { +void Basis::set_euler_zxy(const Vector3 &p_euler) { + real_t c, s; - for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], p_epsilon)) - return false; + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = zmat * xmat * ymat; +} + +Vector3 Basis::get_euler_zyx() const { + // Euler angles in ZYX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy + // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx + // -sy cy*sx cy*cx + Vector3 euler; + real_t sy = elements[2][0]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = Math::asin(-sy); + euler.z = Math::atan2(elements[1][0], elements[0][0]); + } else { + // It's -1 + euler.x = 0; + euler.y = Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); } + } else { + // It's 1 + euler.x = 0; + euler.y = -Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); } + return euler; +} - return true; +void Basis::set_euler_zyx(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = zmat * ymat * xmat; } -bool Basis::operator==(const Basis &p_matrix) const { +bool Basis::is_equal_approx(const Basis &p_basis) const { + return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); +} +bool Basis::operator==(const Basis &p_matrix) const { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - if (elements[i][j] != p_matrix.elements[i][j]) + if (elements[i][j] != p_matrix.elements[i][j]) { return false; + } } } @@ -587,31 +752,18 @@ bool Basis::operator==(const Basis &p_matrix) const { } bool Basis::operator!=(const Basis &p_matrix) const { - return (!(*this == p_matrix)); } Basis::operator String() const { - - String mtx; - for (int i = 0; i < 3; i++) { - - for (int j = 0; j < 3; j++) { - - if (i != 0 || j != 0) - mtx += ", "; - - mtx += rtos(elements[i][j]); - } - } - - return mtx; + return "[X: " + get_axis(0).operator String() + + ", Y: " + get_axis(1).operator String() + + ", Z: " + get_axis(2).operator String() + "]"; } -Quat Basis::get_quat() const { - +Quaternion Basis::get_quaternion() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_rotation(), Quat(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead."); + ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() instead."); #endif /* Allow getting a quaternion from an unnormalized transform */ Basis m = *this; @@ -628,8 +780,8 @@ Quat Basis::get_quat() const { temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); } else { int i = m.elements[0][0] < m.elements[1][1] ? - (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : - (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : + (m.elements[0][0] < m.elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; @@ -642,7 +794,7 @@ Quat Basis::get_quat() const { temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; } - return Quat(temp[0], temp[1], temp[2], temp[3]); + return Quaternion(temp[0], temp[1], temp[2], temp[3]); } static const Basis _ortho_bases[24] = { @@ -673,35 +825,33 @@ static const Basis _ortho_bases[24] = { }; int Basis::get_orthogonal_index() const { - //could be sped up if i come up with a way Basis orth = *this; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - real_t v = orth[i][j]; - if (v > 0.5) + if (v > 0.5) { v = 1.0; - else if (v < -0.5) + } else if (v < -0.5) { v = -1.0; - else + } else { v = 0; + } orth[i][j] = v; } } for (int i = 0; i < 24; i++) { - - if (_ortho_bases[i] == orth) + if (_ortho_bases[i] == orth) { return i; + } } return 0; } void Basis::set_orthogonal_index(int p_index) { - //there only exist 24 orthogonal bases in r3 ERR_FAIL_INDEX(p_index, 24); @@ -721,7 +871,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { // singularity found // first check for identity matrix which must have +1 for all terms - // in leading diagonaland zero in other terms + // in leading diagonal and zero in other terms if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { // this singularity is identity matrix so angle = 0 r_axis = Vector3(0, 1, 0); @@ -775,7 +925,9 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); - if (angle < 0) s = -s; + if (angle < 0) { + s = -s; + } x = (elements[2][1] - elements[1][2]) / s; y = (elements[0][2] - elements[2][0]) / s; z = (elements[1][0] - elements[0][1]) / s; @@ -784,14 +936,13 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = angle; } -void Basis::set_quat(const Quat &p_quat) { - - real_t d = p_quat.length_squared(); +void Basis::set_quaternion(const Quaternion &p_quaternion) { + real_t d = p_quaternion.length_squared(); real_t s = 2.0 / d; - real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; - real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; - real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; - real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; + real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s; + real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs; + real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs; + real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs; set(1.0 - (yy + zz), xy - wz, xz + wy, xy + wz, 1.0 - (xx + zz), yz - wx, xz - wy, yz + wx, 1.0 - (xx + yy)); @@ -837,9 +988,9 @@ void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) { rotate(p_euler); } -void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) { +void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_diagonal(p_scale); - rotate(p_quat); + rotate(p_quaternion); } void Basis::set_diagonal(const Vector3 &p_diag) { @@ -856,16 +1007,125 @@ void Basis::set_diagonal(const Vector3 &p_diag) { elements[2][2] = p_diag.z; } -Basis Basis::slerp(const Basis &target, const real_t &t) const { - +Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { //consider scale - Quat from(*this); - Quat to(target); + Quaternion from(*this); + Quaternion to(p_to); - Basis b(from.slerp(to, t)); - b.elements[0] *= Math::lerp(elements[0].length(), target.elements[0].length(), t); - b.elements[1] *= Math::lerp(elements[1].length(), target.elements[1].length(), t); - b.elements[2] *= Math::lerp(elements[2].length(), target.elements[2].length(), t); + Basis b(from.slerp(to, p_weight)); + b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight); + b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight); + b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight); return b; } + +void Basis::rotate_sh(real_t *p_values) { + // code by John Hable + // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/ + // this code is Public Domain + + const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi)) + const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi)) + const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi)) + + const static real_t s_c_scale = 1.0 / 0.91529123286551084; + const static real_t s_c_scale_inv = 0.91529123286551084; + + const static real_t s_rc2 = 1.5853309190550713 * s_c_scale; + const static real_t s_c4_div_c3 = s_c4 / s_c3; + const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0; + + const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; + const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; + + real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; + + real_t m00 = elements[0][0]; + real_t m01 = elements[0][1]; + real_t m02 = elements[0][2]; + real_t m10 = elements[1][0]; + real_t m11 = elements[1][1]; + real_t m12 = elements[1][2]; + real_t m20 = elements[2][0]; + real_t m21 = elements[2][1]; + real_t m22 = elements[2][2]; + + p_values[0] = src[0]; + p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; + p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3]; + p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3]; + + real_t sh0 = src[7] + src[8] + src[8] - src[5]; + real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8]; + real_t sh2 = src[4]; + real_t sh3 = -src[7]; + real_t sh4 = -src[5]; + + // Rotations. R0 and R1 just use the raw matrix columns + real_t r2x = m00 + m01; + real_t r2y = m10 + m11; + real_t r2z = m20 + m21; + + real_t r3x = m00 + m02; + real_t r3y = m10 + m12; + real_t r3z = m20 + m22; + + real_t r4x = m01 + m02; + real_t r4y = m11 + m12; + real_t r4z = m21 + m22; + + // dense matrix multiplication one column at a time + + // column 0 + real_t sh0_x = sh0 * m00; + real_t sh0_y = sh0 * m10; + real_t d0 = sh0_x * m10; + real_t d1 = sh0_y * m20; + real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3); + real_t d3 = sh0_x * m20; + real_t d4 = sh0_x * m00 - sh0_y * m10; + + // column 1 + real_t sh1_x = sh1 * m02; + real_t sh1_y = sh1 * m12; + d0 += sh1_x * m12; + d1 += sh1_y * m22; + d2 += sh1 * (m22 * m22 + s_c4_div_c3); + d3 += sh1_x * m22; + d4 += sh1_x * m02 - sh1_y * m12; + + // column 2 + real_t sh2_x = sh2 * r2x; + real_t sh2_y = sh2 * r2y; + d0 += sh2_x * r2y; + d1 += sh2_y * r2z; + d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2); + d3 += sh2_x * r2z; + d4 += sh2_x * r2x - sh2_y * r2y; + + // column 3 + real_t sh3_x = sh3 * r3x; + real_t sh3_y = sh3 * r3y; + d0 += sh3_x * r3y; + d1 += sh3_y * r3z; + d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2); + d3 += sh3_x * r3z; + d4 += sh3_x * r3x - sh3_y * r3y; + + // column 4 + real_t sh4_x = sh4 * r4x; + real_t sh4_y = sh4 * r4y; + d0 += sh4_x * r4y; + d1 += sh4_y * r4z; + d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2); + d3 += sh4_x * r4z; + d4 += sh4_x * r4x - sh4_y * r4y; + + // extra multipliers + p_values[4] = d0; + p_values[5] = -d1; + p_values[6] = d2 * s_scale_dst2; + p_values[7] = -d3; + p_values[8] = d4 * s_scale_dst4; +} |