summaryrefslogtreecommitdiff
path: root/core/math/basis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r--core/math/basis.cpp214
1 files changed, 198 insertions, 16 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index cbfd09810c..df5199b0f9 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -428,12 +428,9 @@ Vector3 Basis::get_euler_xyz() const {
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Vector3 euler;
-#ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_rotation(), euler);
-#endif
real_t sy = elements[0][2];
- if (sy < 1.0) {
- if (sy > -1.0) {
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
// is this a pure Y rotation?
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
// return the simplest form (human friendlier in editor and scripts)
@@ -446,12 +443,12 @@ Vector3 Basis::get_euler_xyz() const {
euler.z = Math::atan2(-elements[0][1], elements[0][0]);
}
} else {
- euler.x = -Math::atan2(elements[0][1], elements[1][1]);
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
euler.y = -Math_PI / 2.0;
euler.z = 0.0;
}
} else {
- euler.x = Math::atan2(elements[0][1], elements[1][1]);
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
euler.y = Math_PI / 2.0;
euler.z = 0.0;
}
@@ -481,15 +478,106 @@ void Basis::set_euler_xyz(const Vector3 &p_euler) {
*this = xmat * (ymat * zmat);
}
+Vector3 Basis::get_euler_xzy() const {
+ // Euler angles in XZY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy -sz cz*sy
+ // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
+ // cy*sx*sz cz*sx cx*cy+sx*sz*sy
+
+ Vector3 euler;
+ real_t sz = elements[0][1];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = Math::asin(-sz);
+ } else {
+ // It's -1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ return euler;
+}
+
+void Basis::set_euler_xzy(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ *this = xmat * zmat * ymat;
+}
+
+Vector3 Basis::get_euler_yzx() const {
+ // Euler angles in YZX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
+ // sz cz*cx -cz*sx
+ // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
+
+ Vector3 euler;
+ real_t sz = elements[1][0];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(-elements[1][2], elements[1][1]);
+ euler.y = Math::atan2(-elements[2][0], elements[0][0]);
+ euler.z = Math::asin(sz);
+ } else {
+ // It's -1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ return euler;
+}
+
+void Basis::set_euler_yzx(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ *this = ymat * zmat * xmat;
+}
+
// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
// as the x, y, and z components of a Vector3 respectively.
Vector3 Basis::get_euler_yxz() const {
- /* checking this is a bad idea, because obtaining from scaled transform is a valid use case
-#ifdef MATH_CHECKS
- ERR_FAIL_COND(!is_rotation());
-#endif
-*/
// Euler angles in YXZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
@@ -501,8 +589,8 @@ Vector3 Basis::get_euler_yxz() const {
real_t m12 = elements[1][2];
- if (m12 < 1) {
- if (m12 > -1) {
+ if (m12 < (1 - CMP_EPSILON)) {
+ if (m12 > -(1 - CMP_EPSILON)) {
// is this a pure X rotation?
if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
// return the simplest form (human friendlier in editor and scripts)
@@ -516,12 +604,12 @@ Vector3 Basis::get_euler_yxz() const {
}
} else { // m12 == -1
euler.x = Math_PI * 0.5;
- euler.y = -atan2(-elements[0][1], elements[0][0]);
+ euler.y = atan2(elements[0][1], elements[0][0]);
euler.z = 0;
}
} else { // m12 == 1
euler.x = -Math_PI * 0.5;
- euler.y = -atan2(-elements[0][1], elements[0][0]);
+ euler.y = -atan2(elements[0][1], elements[0][0]);
euler.z = 0;
}
@@ -551,6 +639,100 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) {
*this = ymat * xmat * zmat;
}
+Vector3 Basis::get_euler_zxy() const {
+ // Euler angles in ZXY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
+ // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
+ // -cx*sy sx cx*cy
+ Vector3 euler;
+ real_t sx = elements[2][1];
+ if (sx < (1.0 - CMP_EPSILON)) {
+ if (sx > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::asin(sx);
+ euler.y = Math::atan2(-elements[2][0], elements[2][2]);
+ euler.z = Math::atan2(-elements[0][1], elements[1][1]);
+ } else {
+ // It's -1
+ euler.x = -Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ }
+ return euler;
+}
+
+void Basis::set_euler_zxy(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ *this = zmat * xmat * ymat;
+}
+
+Vector3 Basis::get_euler_zyx() const {
+ // Euler angles in ZYX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
+ // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
+ // -sy cy*sx cy*cx
+ Vector3 euler;
+ real_t sy = elements[2][0];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = Math::asin(-sy);
+ euler.z = Math::atan2(elements[1][0], elements[0][0]);
+ } else {
+ // It's -1
+ euler.x = 0;
+ euler.y = Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ }
+ } else {
+ // It's 1
+ euler.x = 0;
+ euler.y = -Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ }
+ return euler;
+}
+
+void Basis::set_euler_zyx(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ *this = zmat * ymat * xmat;
+}
+
bool Basis::is_equal_approx(const Basis &p_basis) const {
return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]);
}