diff options
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r-- | core/math/basis.cpp | 174 |
1 files changed, 131 insertions, 43 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index 87abf2dbc1..cbfd09810c 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -38,16 +38,13 @@ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) void Basis::from_z(const Vector3 &p_z) { - if (Math::abs(p_z.z) > Math_SQRT12) { - // choose p in y-z plane real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; real_t k = 1.0 / Math::sqrt(a); elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); } else { - // choose p in x-y plane real_t a = p_z.x * p_z.x + p_z.y * p_z.y; real_t k = 1.0 / Math::sqrt(a); @@ -58,7 +55,6 @@ void Basis::from_z(const Vector3 &p_z) { } void Basis::invert() { - real_t co[3] = { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; @@ -76,7 +72,6 @@ void Basis::invert() { } void Basis::orthonormalize() { - // Gram-Schmidt Process Vector3 x = get_axis(0); @@ -95,7 +90,6 @@ void Basis::orthonormalize() { } Basis Basis::orthonormalized() const { - Basis c = *this; c.orthonormalize(); return c; @@ -120,19 +114,20 @@ bool Basis::is_rotation() const { } bool Basis::is_symmetric() const { - - if (!Math::is_equal_approx_ratio(elements[0][1], elements[1][0], UNIT_EPSILON)) + if (!Math::is_equal_approx_ratio(elements[0][1], elements[1][0], UNIT_EPSILON)) { return false; - if (!Math::is_equal_approx_ratio(elements[0][2], elements[2][0], UNIT_EPSILON)) + } + if (!Math::is_equal_approx_ratio(elements[0][2], elements[2][0], UNIT_EPSILON)) { return false; - if (!Math::is_equal_approx_ratio(elements[1][2], elements[2][1], UNIT_EPSILON)) + } + if (!Math::is_equal_approx_ratio(elements[1][2], elements[2][1], UNIT_EPSILON)) { return false; + } return true; } Basis Basis::diagonalize() { - //NOTE: only implemented for symmetric matrices //with the Jacobi iterative method method #ifdef MATH_CHECKS @@ -193,21 +188,18 @@ Basis Basis::diagonalize() { } Basis Basis::inverse() const { - Basis inv = *this; inv.invert(); return inv; } void Basis::transpose() { - SWAP(elements[0][1], elements[1][0]); SWAP(elements[0][2], elements[2][0]); SWAP(elements[1][2], elements[2][1]); } Basis Basis::transposed() const { - Basis tr = *this; tr.transpose(); return tr; @@ -216,7 +208,6 @@ Basis Basis::transposed() const { // Multiplies the matrix from left by the scaling matrix: M -> S.M // See the comment for Basis::rotated for further explanation. void Basis::scale(const Vector3 &p_scale) { - elements[0][0] *= p_scale.x; elements[0][1] *= p_scale.x; elements[0][2] *= p_scale.x; @@ -260,7 +251,6 @@ Basis Basis::scaled_local(const Vector3 &p_scale) const { } Vector3 Basis::get_scale_abs() const { - return Vector3( Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), @@ -340,8 +330,8 @@ void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) { // M -> (M.R.Minv).M = M.R. *this = rotated_local(p_axis, p_phi); } -Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { +Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { return (*this) * Basis(p_axis, p_phi); } @@ -430,7 +420,6 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates // around the z-axis by a and so on. Vector3 Basis::get_euler_xyz() const { - // Euler angles in XYZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -474,7 +463,6 @@ Vector3 Basis::get_euler_xyz() const { // and similar for other axes. // The current implementation uses XYZ convention (Z is the first rotation). void Basis::set_euler_xyz(const Vector3 &p_euler) { - real_t c, s; c = Math::cos(p_euler.x); @@ -497,7 +485,6 @@ void Basis::set_euler_xyz(const Vector3 &p_euler) { // as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned // as the x, y, and z components of a Vector3 respectively. Vector3 Basis::get_euler_yxz() const { - /* checking this is a bad idea, because obtaining from scaled transform is a valid use case #ifdef MATH_CHECKS ERR_FAIL_COND(!is_rotation()); @@ -546,7 +533,6 @@ Vector3 Basis::get_euler_yxz() const { // and similar for other axes. // The current implementation uses YXZ convention (Z is the first rotation). void Basis::set_euler_yxz(const Vector3 &p_euler) { - real_t c, s; c = Math::cos(p_euler.x); @@ -566,16 +552,15 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) { } bool Basis::is_equal_approx(const Basis &p_basis) const { - return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); } bool Basis::is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon) const { - for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], p_epsilon)) + if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], p_epsilon)) { return false; + } } } @@ -583,11 +568,11 @@ bool Basis::is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsil } bool Basis::operator==(const Basis &p_matrix) const { - for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - if (elements[i][j] != p_matrix.elements[i][j]) + if (elements[i][j] != p_matrix.elements[i][j]) { return false; + } } } @@ -595,19 +580,16 @@ bool Basis::operator==(const Basis &p_matrix) const { } bool Basis::operator!=(const Basis &p_matrix) const { - return (!(*this == p_matrix)); } Basis::operator String() const { - String mtx; for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - - if (i != 0 || j != 0) + if (i != 0 || j != 0) { mtx += ", "; + } mtx += rtos(elements[i][j]); } @@ -617,7 +599,6 @@ Basis::operator String() const { } Quat Basis::get_quat() const { - #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_rotation(), Quat(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead."); #endif @@ -681,35 +662,33 @@ static const Basis _ortho_bases[24] = { }; int Basis::get_orthogonal_index() const { - //could be sped up if i come up with a way Basis orth = *this; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - real_t v = orth[i][j]; - if (v > 0.5) + if (v > 0.5) { v = 1.0; - else if (v < -0.5) + } else if (v < -0.5) { v = -1.0; - else + } else { v = 0; + } orth[i][j] = v; } } for (int i = 0; i < 24; i++) { - - if (_ortho_bases[i] == orth) + if (_ortho_bases[i] == orth) { return i; + } } return 0; } void Basis::set_orthogonal_index(int p_index) { - //there only exist 24 orthogonal bases in r3 ERR_FAIL_INDEX(p_index, 24); @@ -783,8 +762,9 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); - if (angle < 0) + if (angle < 0) { s = -s; + } x = (elements[2][1] - elements[1][2]) / s; y = (elements[0][2] - elements[2][0]) / s; z = (elements[1][0] - elements[0][1]) / s; @@ -794,7 +774,6 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { } void Basis::set_quat(const Quat &p_quat) { - real_t d = p_quat.length_squared(); real_t s = 2.0 / d; real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; @@ -866,7 +845,6 @@ void Basis::set_diagonal(const Vector3 &p_diag) { } Basis Basis::slerp(const Basis &target, const real_t &t) const { - //consider scale Quat from(*this); Quat to(target); @@ -878,3 +856,113 @@ Basis Basis::slerp(const Basis &target, const real_t &t) const { return b; } + +void Basis::rotate_sh(real_t *p_values) { + // code by John Hable + // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/ + // this code is Public Domain + + const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi)) + const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi)) + const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi)) + + const static real_t s_c_scale = 1.0 / 0.91529123286551084; + const static real_t s_c_scale_inv = 0.91529123286551084; + + const static real_t s_rc2 = 1.5853309190550713 * s_c_scale; + const static real_t s_c4_div_c3 = s_c4 / s_c3; + const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0; + + const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; + const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; + + real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; + + real_t m00 = elements[0][0]; + real_t m01 = elements[0][1]; + real_t m02 = elements[0][2]; + real_t m10 = elements[1][0]; + real_t m11 = elements[1][1]; + real_t m12 = elements[1][2]; + real_t m20 = elements[2][0]; + real_t m21 = elements[2][1]; + real_t m22 = elements[2][2]; + + p_values[0] = src[0]; + p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; + p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3]; + p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3]; + + real_t sh0 = src[7] + src[8] + src[8] - src[5]; + real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8]; + real_t sh2 = src[4]; + real_t sh3 = -src[7]; + real_t sh4 = -src[5]; + + // Rotations. R0 and R1 just use the raw matrix columns + real_t r2x = m00 + m01; + real_t r2y = m10 + m11; + real_t r2z = m20 + m21; + + real_t r3x = m00 + m02; + real_t r3y = m10 + m12; + real_t r3z = m20 + m22; + + real_t r4x = m01 + m02; + real_t r4y = m11 + m12; + real_t r4z = m21 + m22; + + // dense matrix multiplication one column at a time + + // column 0 + real_t sh0_x = sh0 * m00; + real_t sh0_y = sh0 * m10; + real_t d0 = sh0_x * m10; + real_t d1 = sh0_y * m20; + real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3); + real_t d3 = sh0_x * m20; + real_t d4 = sh0_x * m00 - sh0_y * m10; + + // column 1 + real_t sh1_x = sh1 * m02; + real_t sh1_y = sh1 * m12; + d0 += sh1_x * m12; + d1 += sh1_y * m22; + d2 += sh1 * (m22 * m22 + s_c4_div_c3); + d3 += sh1_x * m22; + d4 += sh1_x * m02 - sh1_y * m12; + + // column 2 + real_t sh2_x = sh2 * r2x; + real_t sh2_y = sh2 * r2y; + d0 += sh2_x * r2y; + d1 += sh2_y * r2z; + d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2); + d3 += sh2_x * r2z; + d4 += sh2_x * r2x - sh2_y * r2y; + + // column 3 + real_t sh3_x = sh3 * r3x; + real_t sh3_y = sh3 * r3y; + d0 += sh3_x * r3y; + d1 += sh3_y * r3z; + d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2); + d3 += sh3_x * r3z; + d4 += sh3_x * r3x - sh3_y * r3y; + + // column 4 + real_t sh4_x = sh4 * r4x; + real_t sh4_y = sh4 * r4y; + d0 += sh4_x * r4y; + d1 += sh4_y * r4z; + d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2); + d3 += sh4_x * r4z; + d4 += sh4_x * r4x - sh4_y * r4y; + + // extra multipliers + p_values[4] = d0; + p_values[5] = -d1; + p_values[6] = d2 * s_scale_dst2; + p_values[7] = -d3; + p_values[8] = d4 * s_scale_dst4; +} |