summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--COPYRIGHT.txt2
-rw-r--r--core/input/input.cpp23
-rw-r--r--core/input/input_map.cpp47
-rw-r--r--core/input/input_map.h1
-rw-r--r--doc/classes/Image.xml3
-rw-r--r--editor/plugins/visual_shader_editor_plugin.cpp93
-rw-r--r--editor/plugins/visual_shader_editor_plugin.h14
-rw-r--r--editor/scene_tree_dock.cpp6
-rw-r--r--misc/dist/html/editor.html65
-rw-r--r--modules/etcpak/image_compress_etcpak.cpp (renamed from modules/etcpak/image_etcpak.cpp)148
-rw-r--r--modules/etcpak/image_compress_etcpak.h (renamed from modules/etcpak/image_etcpak.h)17
-rw-r--r--modules/etcpak/register_types.cpp2
-rw-r--r--modules/etcpak/register_types.h5
-rw-r--r--modules/squish/image_decompress_squish.cpp (renamed from modules/squish/image_compress_squish.cpp)4
-rw-r--r--modules/squish/image_decompress_squish.h (renamed from modules/squish/image_compress_squish.h)8
-rw-r--r--modules/squish/register_types.cpp3
-rw-r--r--scene/resources/particles_material.cpp257
-rw-r--r--scene/resources/visual_shader.cpp79
-rw-r--r--scene/resources/visual_shader.h1
-rw-r--r--servers/rendering/renderer_rd/renderer_storage_rd.cpp1
-rw-r--r--servers/rendering/renderer_rd/shader_rd.cpp1
-rw-r--r--servers/rendering/renderer_rd/shaders/particles.glsl214
-rw-r--r--servers/rendering/shader_types.cpp26
-rw-r--r--thirdparty/README.md3
-rw-r--r--thirdparty/meshoptimizer/LICENSE.md2
-rw-r--r--thirdparty/meshoptimizer/clusterizer.cpp616
-rw-r--r--thirdparty/meshoptimizer/indexgenerator.cpp206
-rw-r--r--thirdparty/meshoptimizer/meshoptimizer.h104
-rw-r--r--thirdparty/meshoptimizer/simplifier.cpp2
-rw-r--r--thirdparty/meshoptimizer/vertexcodec.cpp14
30 files changed, 1468 insertions, 499 deletions
diff --git a/COPYRIGHT.txt b/COPYRIGHT.txt
index 653ebd46cd..078aac1f13 100644
--- a/COPYRIGHT.txt
+++ b/COPYRIGHT.txt
@@ -261,7 +261,7 @@ License: Apache-2.0
Files: ./thirdparty/meshoptimizer/
Comment: meshoptimizer
-Copyright: 2016-2020, Arseny Kapoulkine
+Copyright: 2016-2021, Arseny Kapoulkine
License: Expat
Files: ./thirdparty/minimp3/
diff --git a/core/input/input.cpp b/core/input/input.cpp
index 627944210f..2304c05bf8 100644
--- a/core/input/input.cpp
+++ b/core/input/input.cpp
@@ -1329,9 +1329,10 @@ void Input::add_joy_mapping(String p_mapping, bool p_update_existing) {
if (p_update_existing) {
Vector<String> entry = p_mapping.split(",");
String uid = entry[0];
- for (int i = 0; i < joy_names.size(); i++) {
- if (uid == joy_names[i].uid) {
- joy_names[i].mapping = map_db.size() - 1;
+ for (Map<int, Joypad>::Element *E = joy_names.front(); E; E = E->next()) {
+ Joypad &joy = E->get();
+ if (joy.uid == uid) {
+ joy.mapping = map_db.size() - 1;
}
}
}
@@ -1343,9 +1344,10 @@ void Input::remove_joy_mapping(String p_guid) {
map_db.remove(i);
}
}
- for (int i = 0; i < joy_names.size(); i++) {
- if (joy_names[i].uid == p_guid) {
- joy_names[i].mapping = -1;
+ for (Map<int, Joypad>::Element *E = joy_names.front(); E; E = E->next()) {
+ Joypad &joy = E->get();
+ if (joy.uid == p_guid) {
+ joy.mapping = -1;
}
}
}
@@ -1361,8 +1363,13 @@ void Input::set_fallback_mapping(String p_guid) {
//platforms that use the remapping system can override and call to these ones
bool Input::is_joy_known(int p_device) {
- int mapping = joy_names[p_device].mapping;
- return mapping != -1 ? (mapping != fallback_mapping) : false;
+ if (joy_names.has(p_device)) {
+ int mapping = joy_names[p_device].mapping;
+ if (mapping != -1 && mapping != fallback_mapping) {
+ return true;
+ }
+ }
+ return false;
}
String Input::get_joy_guid(int p_device) const {
diff --git a/core/input/input_map.cpp b/core/input/input_map.cpp
index 7d85fd6492..aab4e6593c 100644
--- a/core/input/input_map.cpp
+++ b/core/input/input_map.cpp
@@ -54,8 +54,36 @@ void InputMap::_bind_methods() {
ClassDB::bind_method(D_METHOD("load_from_project_settings"), &InputMap::load_from_project_settings);
}
+/**
+ * Returns an nonexistent action error message with a suggestion of the closest
+ * matching action name (if possible).
+ */
+String InputMap::_suggest_actions(const StringName &p_action) const {
+ List<StringName> actions = get_actions();
+ StringName closest_action;
+ float closest_similarity = 0.0;
+
+ // Find the most action with the most similar name.
+ for (List<StringName>::Element *E = actions.front(); E; E = E->next()) {
+ const float similarity = String(E->get()).similarity(p_action);
+
+ if (similarity > closest_similarity) {
+ closest_action = E->get();
+ closest_similarity = similarity;
+ }
+ }
+
+ String error_message = vformat("The InputMap action \"%s\" doesn't exist.", p_action);
+
+ if (closest_similarity >= 0.4) {
+ // Only include a suggestion in the error message if it's similar enough.
+ error_message += vformat(" Did you mean \"%s\"?", closest_action);
+ }
+ return error_message;
+}
+
void InputMap::add_action(const StringName &p_action, float p_deadzone) {
- ERR_FAIL_COND_MSG(input_map.has(p_action), "InputMap already has action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_MSG(input_map.has(p_action), "InputMap already has action \"" + String(p_action) + "\".");
input_map[p_action] = Action();
static int last_id = 1;
input_map[p_action].id = last_id;
@@ -64,7 +92,8 @@ void InputMap::add_action(const StringName &p_action, float p_deadzone) {
}
void InputMap::erase_action(const StringName &p_action) {
- ERR_FAIL_COND_MSG(!input_map.has(p_action), "Request for nonexistent InputMap action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_MSG(!input_map.has(p_action), _suggest_actions(p_action));
+
input_map.erase(p_action);
}
@@ -122,20 +151,20 @@ bool InputMap::has_action(const StringName &p_action) const {
}
float InputMap::action_get_deadzone(const StringName &p_action) {
- ERR_FAIL_COND_V_MSG(!input_map.has(p_action), 0.0f, "Request for nonexistent InputMap action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_V_MSG(!input_map.has(p_action), 0.0f, _suggest_actions(p_action));
return input_map[p_action].deadzone;
}
void InputMap::action_set_deadzone(const StringName &p_action, float p_deadzone) {
- ERR_FAIL_COND_MSG(!input_map.has(p_action), "Request for nonexistent InputMap action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_MSG(!input_map.has(p_action), _suggest_actions(p_action));
input_map[p_action].deadzone = p_deadzone;
}
void InputMap::action_add_event(const StringName &p_action, const Ref<InputEvent> &p_event) {
ERR_FAIL_COND_MSG(p_event.is_null(), "It's not a reference to a valid InputEvent object.");
- ERR_FAIL_COND_MSG(!input_map.has(p_action), "Request for nonexistent InputMap action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_MSG(!input_map.has(p_action), _suggest_actions(p_action));
if (_find_event(input_map[p_action], p_event, true)) {
return; // Already addded.
}
@@ -144,12 +173,12 @@ void InputMap::action_add_event(const StringName &p_action, const Ref<InputEvent
}
bool InputMap::action_has_event(const StringName &p_action, const Ref<InputEvent> &p_event) {
- ERR_FAIL_COND_V_MSG(!input_map.has(p_action), false, "Request for nonexistent InputMap action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_V_MSG(!input_map.has(p_action), false, _suggest_actions(p_action));
return (_find_event(input_map[p_action], p_event, true) != nullptr);
}
void InputMap::action_erase_event(const StringName &p_action, const Ref<InputEvent> &p_event) {
- ERR_FAIL_COND_MSG(!input_map.has(p_action), "Request for nonexistent InputMap action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_MSG(!input_map.has(p_action), _suggest_actions(p_action));
List<Ref<InputEvent>>::Element *E = _find_event(input_map[p_action], p_event, true);
if (E) {
@@ -161,7 +190,7 @@ void InputMap::action_erase_event(const StringName &p_action, const Ref<InputEve
}
void InputMap::action_erase_events(const StringName &p_action) {
- ERR_FAIL_COND_MSG(!input_map.has(p_action), "Request for nonexistent InputMap action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_MSG(!input_map.has(p_action), _suggest_actions(p_action));
input_map[p_action].inputs.clear();
}
@@ -193,7 +222,7 @@ bool InputMap::event_is_action(const Ref<InputEvent> &p_event, const StringName
bool InputMap::event_get_action_status(const Ref<InputEvent> &p_event, const StringName &p_action, bool p_exact_match, bool *p_pressed, float *p_strength, float *p_raw_strength) const {
OrderedHashMap<StringName, Action>::Element E = input_map.find(p_action);
- ERR_FAIL_COND_V_MSG(!E, false, "Request for nonexistent InputMap action '" + String(p_action) + "'.");
+ ERR_FAIL_COND_V_MSG(!E, false, _suggest_actions(p_action));
Ref<InputEventAction> input_event_action = p_event;
if (input_event_action.is_valid()) {
diff --git a/core/input/input_map.h b/core/input/input_map.h
index 99c71e1e53..0e0567464a 100644
--- a/core/input/input_map.h
+++ b/core/input/input_map.h
@@ -61,6 +61,7 @@ private:
Array _action_get_events(const StringName &p_action);
Array _get_actions();
+ String _suggest_actions(const StringName &p_action) const;
protected:
static void _bind_methods();
diff --git a/doc/classes/Image.xml b/doc/classes/Image.xml
index 9d87c9bf9a..91a07f66e0 100644
--- a/doc/classes/Image.xml
+++ b/doc/classes/Image.xml
@@ -186,7 +186,8 @@
<return type="int" enum="Error">
</return>
<description>
- Decompresses the image if it is compressed. Returns an error if decompress function is not available.
+ Decompresses the image if it is VRAM compressed in a supported format. Returns [constant OK] if the format is supported, otherwise [constant ERR_UNAVAILABLE].
+ [b]Note:[/b] The following formats can be decompressed: DXT, RGTC, BPTC, PVRTC1. The formats ETC1 and ETC2 are not supported.
</description>
</method>
<method name="detect_alpha" qualifiers="const">
diff --git a/editor/plugins/visual_shader_editor_plugin.cpp b/editor/plugins/visual_shader_editor_plugin.cpp
index 32690102a6..dea85e8799 100644
--- a/editor/plugins/visual_shader_editor_plugin.cpp
+++ b/editor/plugins/visual_shader_editor_plugin.cpp
@@ -1133,16 +1133,24 @@ void VisualShaderEditor::_update_options_menu() {
}
void VisualShaderEditor::_set_mode(int p_which) {
- if (p_which == VisualShader::MODE_PARTICLES) {
+ if (p_which == VisualShader::MODE_SKY) {
+ edit_type_standart->set_visible(false);
+ edit_type_particles->set_visible(false);
+ edit_type_sky->set_visible(true);
+ edit_type = edit_type_sky;
+ mode = MODE_FLAGS_SKY;
+ } else if (p_which == VisualShader::MODE_PARTICLES) {
edit_type_standart->set_visible(false);
edit_type_particles->set_visible(true);
+ edit_type_sky->set_visible(false);
edit_type = edit_type_particles;
- particles_mode = true;
+ mode = MODE_FLAGS_PARTICLES;
} else {
edit_type_particles->set_visible(false);
edit_type_standart->set_visible(true);
+ edit_type_sky->set_visible(false);
edit_type = edit_type_standart;
- particles_mode = false;
+ mode = MODE_FLAGS_SPATIAL_CANVASITEM;
}
visual_shader->set_shader_type(get_current_shader_type());
}
@@ -1303,8 +1311,10 @@ void VisualShaderEditor::_update_graph() {
VisualShader::Type VisualShaderEditor::get_current_shader_type() const {
VisualShader::Type type;
- if (particles_mode) {
+ if (mode & MODE_FLAGS_PARTICLES) {
type = VisualShader::Type(edit_type->get_selected() + 3);
+ } else if (mode & MODE_FLAGS_SKY) {
+ type = VisualShader::Type(edit_type->get_selected() + 6);
} else {
type = VisualShader::Type(edit_type->get_selected());
}
@@ -3025,7 +3035,14 @@ void VisualShaderEditor::_paste_nodes(bool p_use_custom_position, const Vector2
}
void VisualShaderEditor::_mode_selected(int p_id) {
- visual_shader->set_shader_type(particles_mode ? VisualShader::Type(p_id + 3) : VisualShader::Type(p_id));
+ int offset = 0;
+ if (mode & MODE_FLAGS_PARTICLES) {
+ offset = 3;
+ } else if (mode & MODE_FLAGS_SKY) {
+ offset = 6;
+ }
+
+ visual_shader->set_shader_type(VisualShader::Type(p_id + offset));
_update_options_menu();
_update_graph();
}
@@ -3531,10 +3548,17 @@ VisualShaderEditor::VisualShaderEditor() {
edit_type_particles->select(0);
edit_type_particles->connect("item_selected", callable_mp(this, &VisualShaderEditor::_mode_selected));
+ edit_type_sky = memnew(OptionButton);
+ edit_type_sky->add_item(TTR("Sky"));
+ edit_type_sky->select(0);
+ edit_type_sky->connect("item_selected", callable_mp(this, &VisualShaderEditor::_mode_selected));
+
edit_type = edit_type_standart;
graph->get_zoom_hbox()->add_child(edit_type_particles);
graph->get_zoom_hbox()->move_child(edit_type_particles, 0);
+ graph->get_zoom_hbox()->add_child(edit_type_sky);
+ graph->get_zoom_hbox()->move_child(edit_type_sky, 0);
graph->get_zoom_hbox()->add_child(edit_type_standart);
graph->get_zoom_hbox()->move_child(edit_type_standart, 0);
@@ -3782,6 +3806,7 @@ VisualShaderEditor::VisualShaderEditor() {
const String input_param_for_vertex_and_fragment_shader_modes = TTR("'%s' input parameter for vertex and fragment shader modes.");
const String input_param_for_fragment_and_light_shader_modes = TTR("'%s' input parameter for fragment and light shader modes.");
const String input_param_for_fragment_shader_mode = TTR("'%s' input parameter for fragment shader mode.");
+ const String input_param_for_sky_shader_mode = TTR("'%s' input parameter for sky shader mode.");
const String input_param_for_light_shader_mode = TTR("'%s' input parameter for light shader mode.");
const String input_param_for_vertex_shader_mode = TTR("'%s' input parameter for vertex shader mode.");
const String input_param_for_emit_shader_mode = TTR("'%s' input parameter for emit shader mode.");
@@ -3911,35 +3936,35 @@ VisualShaderEditor::VisualShaderEditor() {
// SKY INPUTS
- add_options.push_back(AddOption("AtCubeMapPass", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "at_cubemap_pass"), "at_cubemap_pass", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("AtHalfResPass", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "at_half_res_pass"), "at_half_res_pass", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("AtQuarterResPass", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "at_quarter_res_pass"), "at_quarter_res_pass", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("EyeDir", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "eyedir"), "eyedir", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("HalfResColor", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "half_res_color"), "half_res_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("HalfResAlpha", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "half_res_alpha"), "half_res_alpha", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light0Color", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light0_color"), "light0_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light0Direction", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light0_direction"), "light0_direction", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light0Enabled", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light0_enabled"), "light0_enabled", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light0Energy", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light0_energy"), "light0_energy", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light1Color", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light1_color"), "light1_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light1Direction", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light1_direction"), "light1_direction", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light1Enabled", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light1_enabled"), "light1_enabled", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light1Energy", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light1_energy"), "light1_energy", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light2Color", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light2_color"), "light2_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light2Direction", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light2_direction"), "light2_direction", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light2Enabled", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light2_enabled"), "light2_enabled", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light2Energy", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light2_energy"), "light2_energy", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light3Color", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light3_color"), "light3_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light3Direction", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light3_direction"), "light3_direction", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light3Enabled", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light3_enabled"), "light3_enabled", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Light3Energy", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "light3_energy"), "light3_energy", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Position", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "position"), "position", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("QuarterResColor", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "quarter_res_color"), "quarter_res_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("QuarterResAlpha", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "quarter_res_alpha"), "quarter_res_alpha", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Radiance", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "radiance"), "radiance", VisualShaderNode::PORT_TYPE_SAMPLER, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("ScreenUV", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "screen_uv"), "screen_uv", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("SkyCoords", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "sky_coords"), "sky_coords", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
- add_options.push_back(AddOption("Time", "Input", "Fragment", "VisualShaderNodeInput", vformat(input_param_for_fragment_shader_mode, "time"), "time", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_FRAGMENT, Shader::MODE_SKY));
+ add_options.push_back(AddOption("AtCubeMapPass", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "at_cubemap_pass"), "at_cubemap_pass", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("AtHalfResPass", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "at_half_res_pass"), "at_half_res_pass", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("AtQuarterResPass", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "at_quarter_res_pass"), "at_quarter_res_pass", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("EyeDir", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "eyedir"), "eyedir", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("HalfResColor", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "half_res_color"), "half_res_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("HalfResAlpha", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "half_res_alpha"), "half_res_alpha", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light0Color", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light0_color"), "light0_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light0Direction", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light0_direction"), "light0_direction", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light0Enabled", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light0_enabled"), "light0_enabled", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light0Energy", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light0_energy"), "light0_energy", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light1Color", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light1_color"), "light1_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light1Direction", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light1_direction"), "light1_direction", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light1Enabled", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light1_enabled"), "light1_enabled", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light1Energy", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light1_energy"), "light1_energy", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light2Color", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light2_color"), "light2_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light2Direction", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light2_direction"), "light2_direction", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light2Enabled", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light2_enabled"), "light2_enabled", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light2Energy", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light2_energy"), "light2_energy", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light3Color", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light3_color"), "light3_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light3Direction", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light3_direction"), "light3_direction", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light3Enabled", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light3_enabled"), "light3_enabled", VisualShaderNode::PORT_TYPE_BOOLEAN, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Light3Energy", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "light3_energy"), "light3_energy", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Position", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "position"), "position", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("QuarterResColor", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "quarter_res_color"), "quarter_res_color", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("QuarterResAlpha", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "quarter_res_alpha"), "quarter_res_alpha", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Radiance", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "radiance"), "radiance", VisualShaderNode::PORT_TYPE_SAMPLER, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("ScreenUV", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "screen_uv"), "screen_uv", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("SkyCoords", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "sky_coords"), "sky_coords", VisualShaderNode::PORT_TYPE_VECTOR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
+ add_options.push_back(AddOption("Time", "Input", "Sky", "VisualShaderNodeInput", vformat(input_param_for_sky_shader_mode, "time"), "time", VisualShaderNode::PORT_TYPE_SCALAR, TYPE_FLAGS_SKY, Shader::MODE_SKY));
// SCALAR
diff --git a/editor/plugins/visual_shader_editor_plugin.h b/editor/plugins/visual_shader_editor_plugin.h
index 517dc6056f..6d57d38cab 100644
--- a/editor/plugins/visual_shader_editor_plugin.h
+++ b/editor/plugins/visual_shader_editor_plugin.h
@@ -141,6 +141,7 @@ class VisualShaderEditor : public VBoxContainer {
OptionButton *edit_type = nullptr;
OptionButton *edit_type_standart;
OptionButton *edit_type_particles;
+ OptionButton *edit_type_sky;
PanelContainer *error_panel;
Label *error_label;
@@ -169,7 +170,14 @@ class VisualShaderEditor : public VBoxContainer {
bool preview_first = true;
bool preview_showed = false;
- bool particles_mode;
+
+ enum ShaderModeFlags {
+ MODE_FLAGS_SPATIAL_CANVASITEM = 1,
+ MODE_FLAGS_SKY = 2,
+ MODE_FLAGS_PARTICLES = 4
+ };
+
+ int mode = MODE_FLAGS_SPATIAL_CANVASITEM;
enum TypeFlags {
TYPE_FLAGS_VERTEX = 1,
@@ -183,6 +191,10 @@ class VisualShaderEditor : public VBoxContainer {
TYPE_FLAGS_END = 4
};
+ enum SkyTypeFlags {
+ TYPE_FLAGS_SKY = 1,
+ };
+
enum ToolsMenuOptions {
EXPAND_ALL,
COLLAPSE_ALL
diff --git a/editor/scene_tree_dock.cpp b/editor/scene_tree_dock.cpp
index 5e6ebc22a3..a6d1a118b8 100644
--- a/editor/scene_tree_dock.cpp
+++ b/editor/scene_tree_dock.cpp
@@ -140,7 +140,11 @@ void SceneTreeDock::instance_scenes(const Vector<String> &p_files, Node *p_paren
parent = scene_tree->get_selected();
}
- if (!parent || !edited_scene) {
+ if (!parent) {
+ parent = edited_scene;
+ }
+
+ if (!parent) {
if (p_files.size() == 1) {
accept->set_text(TTR("No parent to instance a child at."));
} else {
diff --git a/misc/dist/html/editor.html b/misc/dist/html/editor.html
index 4785f54973..347c22adf8 100644
--- a/misc/dist/html/editor.html
+++ b/misc/dist/html/editor.html
@@ -58,6 +58,29 @@
filter: brightness(82.5%);
}
+ .welcome-modal {
+ display: none;
+ position: fixed;
+ z-index: 1;
+ left: 0;
+ top: 0;
+ width: 100%;
+ height: 100%;
+ overflow: auto;
+ background-color: hsla(0, 0%, 0%, 0.5);
+ }
+
+ .welcome-modal-content {
+ background-color: #333b4f;
+ box-shadow: 0 0.25rem 0.25rem hsla(0, 0%, 0%, 0.5);
+ line-height: 1.5;
+ max-width: 38rem;
+ margin: 4rem auto 0 auto;
+ color: white;
+ border-radius: 0.5rem;
+ padding: 1rem 1rem 2rem 1rem;
+ }
+
#tabs-buttons {
/* Match the default background color of the editor window for a seamless appearance. */
background-color: #202531;
@@ -206,6 +229,36 @@
</style>
</head>
<body>
+ <div
+ id="welcome-modal"
+ class="welcome-modal"
+ role="dialog"
+ aria-labelledby="welcome-modal-title"
+ aria-describedby="welcome-modal-description"
+ onclick="if (event.target === this) closeWelcomeModal(false)"
+ >
+ <div class="welcome-modal-content">
+ <h2 id="welcome-modal-title">Important - Please read before continuing</h2>
+ <div id="welcome-modal-description">
+ <p>
+ The Godot Web Editor has some limitations compared to the native version.
+ Its main focus is education and experimentation;
+ <strong>it is not recommended for production</strong>.
+ </p>
+ <p>
+ Refer to the
+ <a
+ href="https://docs.godotengine.org/en/latest/tutorials/editor/using_the_web_editor.html"
+ target="_blank"
+ rel="noopener"
+ >Web editor documentation</a> for usage instructions and limitations.
+ </p>
+ </div>
+ <button id="welcome-modal-dismiss" class="btn" type="button" onclick="closeWelcomeModal(true)" style="margin-top: 1rem">
+ OK, don't show again
+ </button>
+ </div>
+ </div>
<div id="tabs-buttons">
<button id="btn-tab-loader" class="btn tab-btn" onclick="showTab('loader')">Loader</button>
<button id="btn-tab-editor" class="btn tab-btn" disabled="disabled" onclick="showTab('editor')">Editor</button>
@@ -274,7 +327,19 @@
if ("serviceWorker" in navigator) {
navigator.serviceWorker.register("service.worker.js");
}
+
+ if (localStorage.getItem("welcomeModalDismissed") !== 'true') {
+ document.getElementById("welcome-modal").style.display = "block";
+ document.getElementById("welcome-modal-dismiss").focus();
+ }
});
+
+ function closeWelcomeModal(dontShowAgain) {
+ document.getElementById("welcome-modal").style.display = "none";
+ if (dontShowAgain) {
+ localStorage.setItem("welcomeModalDismissed", 'true');
+ }
+ }
</script>
<script src="godot.tools.js"></script>
<script>//<![CDATA[
diff --git a/modules/etcpak/image_etcpak.cpp b/modules/etcpak/image_compress_etcpak.cpp
index 251d2cd7b0..abc3c26188 100644
--- a/modules/etcpak/image_etcpak.cpp
+++ b/modules/etcpak/image_compress_etcpak.cpp
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* image_etcpak.cpp */
+/* image_compress_etcpak.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -28,21 +28,16 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
-#include "image_etcpak.h"
+#include "image_compress_etcpak.h"
-#include "core/os/copymem.h"
#include "core/os/os.h"
#include "core/string/print_string.h"
#include "thirdparty/etcpak/ProcessDxtc.hpp"
#include "thirdparty/etcpak/ProcessRGB.hpp"
-// thresholds for the early compression-mode decision scheme in QuickETC2
-// which can be changed by the option -e
-float ecmd_threshold[3] = { 0.03f, 0.09f, 0.38f };
-
-EtcpakType _determine_etc_type(Image::UsedChannels p_source) {
- switch (p_source) {
+EtcpakType _determine_etc_type(Image::UsedChannels p_channels) {
+ switch (p_channels) {
case Image::USED_CHANNELS_L:
return EtcpakType::ETCPAK_TYPE_ETC1;
case Image::USED_CHANNELS_LA:
@@ -60,8 +55,8 @@ EtcpakType _determine_etc_type(Image::UsedChannels p_source) {
}
}
-EtcpakType _determine_dxt_type(Image::UsedChannels p_source) {
- switch (p_source) {
+EtcpakType _determine_dxt_type(Image::UsedChannels p_channels) {
+ switch (p_channels) {
case Image::USED_CHANNELS_L:
return EtcpakType::ETCPAK_TYPE_DXT1;
case Image::USED_CHANNELS_LA:
@@ -78,93 +73,112 @@ EtcpakType _determine_dxt_type(Image::UsedChannels p_source) {
return EtcpakType::ETCPAK_TYPE_DXT5;
}
}
-void _compress_etc2(Image *p_img, float p_lossy_quality, Image::UsedChannels p_source) {
- EtcpakType type = _determine_etc_type(p_source);
- _compress_etcpak(type, p_img, p_lossy_quality, false, p_source);
+
+void _compress_etc1(Image *r_img, float p_lossy_quality) {
+ _compress_etcpak(EtcpakType::ETCPAK_TYPE_ETC1, r_img, p_lossy_quality);
}
-void _compress_bc(Image *p_img, float p_lossy_quality, Image::UsedChannels p_source) {
- EtcpakType type = _determine_dxt_type(p_source);
- _compress_etcpak(type, p_img, p_lossy_quality, false, p_source);
+
+void _compress_etc2(Image *r_img, float p_lossy_quality, Image::UsedChannels p_channels) {
+ EtcpakType type = _determine_etc_type(p_channels);
+ _compress_etcpak(type, r_img, p_lossy_quality);
}
-void _compress_etc1(Image *p_img, float p_lossy_quality) {
- _compress_etcpak(EtcpakType::ETCPAK_TYPE_ETC1, p_img, p_lossy_quality, true, Image::USED_CHANNELS_RGB);
+
+void _compress_bc(Image *r_img, float p_lossy_quality, Image::UsedChannels p_channels) {
+ EtcpakType type = _determine_dxt_type(p_channels);
+ _compress_etcpak(type, r_img, p_lossy_quality);
}
-void _compress_etcpak(EtcpakType p_compresstype, Image *p_img, float p_lossy_quality, bool force_etc1_format, Image::UsedChannels p_channels) {
- uint64_t t = OS::get_singleton()->get_ticks_msec();
- Image::Format img_format = p_img->get_format();
+void _compress_etcpak(EtcpakType p_compresstype, Image *r_img, float p_lossy_quality) {
+ uint64_t start_time = OS::get_singleton()->get_ticks_msec();
+ // TODO: See how to handle lossy quality.
+
+ Image::Format img_format = r_img->get_format();
if (img_format >= Image::FORMAT_DXT1) {
- return; //do not compress, already compressed
+ return; // Do not compress, already compressed.
}
-
if (img_format > Image::FORMAT_RGBA8) {
// TODO: we should be able to handle FORMAT_RGBA4444 and FORMAT_RGBA5551 eventually
return;
}
- Image::Format format = Image::FORMAT_RGBA8;
- if (p_img->get_format() != Image::FORMAT_RGBA8) {
- p_img->convert(Image::FORMAT_RGBA8);
+ // Use RGBA8 to convert.
+ if (img_format != Image::FORMAT_RGBA8) {
+ r_img->convert(Image::FORMAT_RGBA8);
}
- if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC1 || force_etc1_format) {
- format = Image::FORMAT_ETC;
+
+ // Determine output format based on Etcpak type.
+ Image::Format target_format = Image::FORMAT_RGBA8;
+ if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC1) {
+ target_format = Image::FORMAT_ETC;
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2) {
- format = Image::FORMAT_ETC2_RGB8;
+ target_format = Image::FORMAT_ETC2_RGB8;
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2_RA_AS_RG) {
- format = Image::FORMAT_ETC2_RA_AS_RG;
- p_img->convert_rg_to_ra_rgba8();
+ target_format = Image::FORMAT_ETC2_RA_AS_RG;
+ r_img->convert_rg_to_ra_rgba8();
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2_ALPHA) {
- format = Image::FORMAT_ETC2_RGBA8;
+ target_format = Image::FORMAT_ETC2_RGBA8;
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_DXT1) {
- format = Image::FORMAT_DXT1;
+ target_format = Image::FORMAT_DXT1;
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_DXT5_RA_AS_RG) {
- format = Image::FORMAT_DXT5_RA_AS_RG;
- p_img->convert_rg_to_ra_rgba8();
+ target_format = Image::FORMAT_DXT5_RA_AS_RG;
+ r_img->convert_rg_to_ra_rgba8();
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_DXT5) {
- format = Image::FORMAT_DXT5;
+ target_format = Image::FORMAT_DXT5;
} else {
- ERR_FAIL();
+ ERR_FAIL_MSG("Invalid or unsupported Etcpak compression format.");
}
- const bool mipmap = p_img->has_mipmaps();
- print_verbose("Encoding format: " + Image::get_format_name(format));
+ // Compress image data and (if required) mipmaps.
+
+ const bool mipmaps = r_img->has_mipmaps();
+ const int width = r_img->get_width();
+ const int height = r_img->get_height();
+ const uint8_t *src_read = r_img->get_data().ptr();
- Ref<Image> new_img;
- new_img.instance();
- new_img->create(p_img->get_width(), p_img->get_height(), mipmap, format);
- Vector<uint8_t> data = new_img->get_data();
- uint8_t *wr = data.ptrw();
+ print_verbose(vformat("ETCPAK: Encoding image size %dx%d to format %s.", width, height, Image::get_format_name(target_format)));
- Ref<Image> image = p_img->duplicate();
- int mmc = 1 + (mipmap ? Image::get_image_required_mipmaps(new_img->get_width(), new_img->get_height(), format) : 0);
- for (int i = 0; i < mmc; i++) {
- int ofs, size, mip_w, mip_h;
- new_img->get_mipmap_offset_size_and_dimensions(i, ofs, size, mip_w, mip_h);
+ int dest_size = Image::get_image_data_size(width, height, target_format, mipmaps);
+ Vector<uint8_t> dest_data;
+ dest_data.resize(dest_size);
+ uint8_t *dest_write = dest_data.ptrw();
+
+ int mip_count = mipmaps ? Image::get_image_required_mipmaps(width, height, target_format) : 0;
+
+ for (int i = 0; i < mip_count + 1; i++) {
+ // Get write mip metrics for target image.
+ int mip_w, mip_h;
+ int mip_ofs = Image::get_image_mipmap_offset_and_dimensions(width, height, target_format, i, mip_w, mip_h);
+ // Ensure that mip offset is a multiple of 8 (etcpak expects uint64_t pointer).
+ ERR_FAIL_COND(mip_ofs % 8 != 0);
+ uint64_t *dest_mip_write = (uint64_t *)&dest_write[mip_ofs];
+
+ // Block size. Align stride to multiple of 4 (RGBA8).
mip_w = (mip_w + 3) & ~3;
mip_h = (mip_h + 3) & ~3;
- Vector<uint8_t> dst_data;
- dst_data.resize(size);
- int mipmap_ofs = image->get_mipmap_offset(i);
-
- const uint32_t *image_read = (const uint32_t *)&image->get_data().ptr()[mipmap_ofs];
- uint64_t *dst_write = (uint64_t *)dst_data.ptrw();
- if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC1 || force_etc1_format) {
- CompressEtc1RgbDither(image_read, dst_write, mip_w * mip_h / 16, mip_w);
+ const uint32_t blocks = mip_w * mip_h / 16;
+
+ // Get mip data from source image for reading.
+ int src_mip_ofs = r_img->get_mipmap_offset(i);
+ const uint32_t *src_mip_read = (const uint32_t *)&src_read[src_mip_ofs];
+
+ if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC1) {
+ CompressEtc1RgbDither(src_mip_read, dest_mip_write, blocks, mip_w);
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2 || p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2_RA_AS_RG) {
- CompressEtc2Rgb(image_read, dst_write, mip_w * mip_h / 16, mip_w);
+ CompressEtc2Rgb(src_mip_read, dest_mip_write, blocks, mip_w);
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2_ALPHA) {
- CompressEtc2Rgba(image_read, dst_write, mip_w * mip_h / 16, mip_w);
- } else if (p_compresstype == EtcpakType::ETCPAK_TYPE_DXT5 || p_compresstype == EtcpakType::ETCPAK_TYPE_DXT5_RA_AS_RG) {
- CompressDxt5(image_read, dst_write, mip_w * mip_h / 16, mip_w);
+ CompressEtc2Rgba(src_mip_read, dest_mip_write, blocks, mip_w);
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_DXT1) {
- CompressDxt1Dither(image_read, dst_write, mip_w * mip_h / 16, mip_w);
+ CompressDxt1Dither(src_mip_read, dest_mip_write, blocks, mip_w);
+ } else if (p_compresstype == EtcpakType::ETCPAK_TYPE_DXT5 || p_compresstype == EtcpakType::ETCPAK_TYPE_DXT5_RA_AS_RG) {
+ CompressDxt5(src_mip_read, dest_mip_write, blocks, mip_w);
} else {
- ERR_FAIL();
+ ERR_FAIL_MSG("Invalid or unsupported Etcpak compression format.");
}
- copymem(&wr[ofs], dst_data.ptr(), size);
}
- p_img->create(new_img->get_width(), new_img->get_height(), mipmap, format, data);
- print_verbose(vformat("ETCPAK encode took %s ms.", rtos(OS::get_singleton()->get_ticks_msec() - t)));
+ // Replace original image with compressed one.
+ r_img->create(width, height, mipmaps, target_format, dest_data);
+
+ print_verbose(vformat("ETCPAK encode took %s ms.", rtos(OS::get_singleton()->get_ticks_msec() - start_time)));
}
diff --git a/modules/etcpak/image_etcpak.h b/modules/etcpak/image_compress_etcpak.h
index 0137bab7cc..ccf157fada 100644
--- a/modules/etcpak/image_etcpak.h
+++ b/modules/etcpak/image_compress_etcpak.h
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* image_etcpak.h */
+/* image_compress_etcpak.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -28,8 +28,8 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
-#ifndef IMAGE_ETCPAK_H
-#define IMAGE_ETCPAK_H
+#ifndef IMAGE_COMPRESS_ETCPAK_H
+#define IMAGE_COMPRESS_ETCPAK_H
#include "core/io/image.h"
@@ -43,9 +43,10 @@ enum class EtcpakType {
ETCPAK_TYPE_DXT5_RA_AS_RG,
};
-void _compress_etcpak(EtcpakType p_compresstype, Image *p_img, float p_lossy_quality, bool force_etc1_format, Image::UsedChannels p_channels);
-void _compress_etc1(Image *p_img, float p_lossy_quality);
-void _compress_etc2(Image *p_img, float p_lossy_quality, Image::UsedChannels p_source);
-void _compress_bc(Image *p_img, float p_lossy_quality, Image::UsedChannels p_source);
+void _compress_etc1(Image *r_img, float p_lossy_quality);
+void _compress_etc2(Image *r_img, float p_lossy_quality, Image::UsedChannels p_channels);
+void _compress_bc(Image *r_img, float p_lossy_quality, Image::UsedChannels p_channels);
-#endif // IMAGE_ETCPAK_H
+void _compress_etcpak(EtcpakType p_compresstype, Image *r_img, float p_lossy_quality);
+
+#endif // IMAGE_COMPRESS_ETCPAK_H
diff --git a/modules/etcpak/register_types.cpp b/modules/etcpak/register_types.cpp
index fcc0bc8b6f..d57d2f747a 100644
--- a/modules/etcpak/register_types.cpp
+++ b/modules/etcpak/register_types.cpp
@@ -30,7 +30,7 @@
#include "register_types.h"
-#include "image_etcpak.h"
+#include "image_compress_etcpak.h"
void register_etcpak_types() {
Image::_image_compress_etc1_func = _compress_etc1;
diff --git a/modules/etcpak/register_types.h b/modules/etcpak/register_types.h
index 9b300a3275..a9e10a4aae 100644
--- a/modules/etcpak/register_types.h
+++ b/modules/etcpak/register_types.h
@@ -28,5 +28,10 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
+#ifndef ETCPAK_REGISTER_TYPES_H
+#define ETCPAK_REGISTER_TYPES_H
+
void register_etcpak_types();
void unregister_etcpak_types();
+
+#endif // ETCPAK_REGISTER_TYPES_H
diff --git a/modules/squish/image_compress_squish.cpp b/modules/squish/image_decompress_squish.cpp
index fb0c7aba1d..1450b0fe88 100644
--- a/modules/squish/image_compress_squish.cpp
+++ b/modules/squish/image_decompress_squish.cpp
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* image_compress_squish.cpp */
+/* image_decompress_squish.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -28,7 +28,7 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
-#include "image_compress_squish.h"
+#include "image_decompress_squish.h"
#include <squish.h>
diff --git a/modules/squish/image_compress_squish.h b/modules/squish/image_decompress_squish.h
index ebc5a41887..fff5839ac4 100644
--- a/modules/squish/image_compress_squish.h
+++ b/modules/squish/image_decompress_squish.h
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* image_compress_squish.h */
+/* image_decompress_squish.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -28,11 +28,11 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
-#ifndef IMAGE_COMPRESS_SQUISH_H
-#define IMAGE_COMPRESS_SQUISH_H
+#ifndef IMAGE_DECOMPRESS_SQUISH_H
+#define IMAGE_DECOMPRESS_SQUISH_H
#include "core/io/image.h"
void image_decompress_squish(Image *p_image);
-#endif // IMAGE_COMPRESS_SQUISH_H
+#endif // IMAGE_DECOMPRESS_SQUISH_H
diff --git a/modules/squish/register_types.cpp b/modules/squish/register_types.cpp
index c51cdc9521..51aab040e7 100644
--- a/modules/squish/register_types.cpp
+++ b/modules/squish/register_types.cpp
@@ -29,7 +29,8 @@
/*************************************************************************/
#include "register_types.h"
-#include "image_compress_squish.h"
+
+#include "image_decompress_squish.h"
void register_squish_types() {
Image::_image_decompress_bc = image_decompress_squish;
diff --git a/scene/resources/particles_material.cpp b/scene/resources/particles_material.cpp
index 6a65173176..bb47eebe9b 100644
--- a/scene/resources/particles_material.cpp
+++ b/scene/resources/particles_material.cpp
@@ -289,7 +289,7 @@ void ParticlesMaterial::_update_shader() {
code += "}\n";
code += "\n";
- code += "void process() {\n";
+ code += "void start() {\n";
code += " uint base_number = NUMBER;\n";
code += " uint alt_seed = hash(base_number + uint(1) + RANDOM_SEED);\n";
code += " float angle_rand = rand_from_seed(alt_seed);\n";
@@ -305,97 +305,94 @@ void ParticlesMaterial::_update_shader() {
code += " ivec2 emission_tex_size = textureSize(emission_texture_points, 0);\n";
code += " ivec2 emission_tex_ofs = ivec2(point % emission_tex_size.x, point / emission_tex_size.x);\n";
}
- code += " float tv = 0.0;\n";
- code += " if (RESTART) {\n";
-
if (tex_parameters[PARAM_ANGLE].is_valid()) {
- code += " float tex_angle = textureLod(angle_texture, vec2(0.0, 0.0), 0.0).r;\n";
+ code += " float tex_angle = textureLod(angle_texture, vec2(0.0, 0.0), 0.0).r;\n";
} else {
- code += " float tex_angle = 0.0;\n";
+ code += " float tex_angle = 0.0;\n";
}
if (tex_parameters[PARAM_ANIM_OFFSET].is_valid()) {
- code += " float tex_anim_offset = textureLod(anim_offset_texture, vec2(0.0, 0.0), 0.0).r;\n";
+ code += " float tex_anim_offset = textureLod(anim_offset_texture, vec2(0.0, 0.0), 0.0).r;\n";
} else {
- code += " float tex_anim_offset = 0.0;\n";
+ code += " float tex_anim_offset = 0.0;\n";
}
- code += " float spread_rad = spread * degree_to_rad;\n";
+ code += " float spread_rad = spread * degree_to_rad;\n";
- code += " if (RESTART_VELOCITY) {\n";
+ code += " if (RESTART_VELOCITY) {\n";
if (tex_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
- code += " float tex_linear_velocity = textureLod(linear_velocity_texture, vec2(0.0, 0.0), 0.0).r;\n";
+ code += " float tex_linear_velocity = textureLod(linear_velocity_texture, vec2(0.0, 0.0), 0.0).r;\n";
} else {
- code += " float tex_linear_velocity = 0.0;\n";
+ code += " float tex_linear_velocity = 0.0;\n";
}
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
- code += " float angle1_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad;\n";
- code += " angle1_rad += direction.x != 0.0 ? atan(direction.y, direction.x) : sign(direction.y) * (pi / 2.0);\n";
- code += " vec3 rot = vec3(cos(angle1_rad), sin(angle1_rad), 0.0);\n";
- code += " VELOCITY = rot * initial_linear_velocity * mix(1.0, rand_from_seed(alt_seed), initial_linear_velocity_random);\n";
+ code += " float angle1_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad;\n";
+ code += " angle1_rad += direction.x != 0.0 ? atan(direction.y, direction.x) : sign(direction.y) * (pi / 2.0);\n";
+ code += " vec3 rot = vec3(cos(angle1_rad), sin(angle1_rad), 0.0);\n";
+ code += " VELOCITY = rot * initial_linear_velocity * mix(1.0, rand_from_seed(alt_seed), initial_linear_velocity_random);\n";
} else {
//initiate velocity spread in 3D
- code += " float angle1_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad;\n";
- code += " float angle2_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad * (1.0 - flatness);\n";
- code += " vec3 direction_xz = vec3(sin(angle1_rad), 0.0, cos(angle1_rad));\n";
- code += " vec3 direction_yz = vec3(0.0, sin(angle2_rad), cos(angle2_rad));\n";
- code += " direction_yz.z = direction_yz.z / max(0.0001,sqrt(abs(direction_yz.z))); // better uniform distribution\n";
- code += " vec3 spread_direction = vec3(direction_xz.x * direction_yz.z, direction_yz.y, direction_xz.z * direction_yz.z);\n";
- code += " vec3 direction_nrm = normalize(direction);\n";
- code += " // rotate spread to direction\n";
- code += " vec3 binormal = cross(vec3(0.0, 1.0, 0.0), direction_nrm);\n";
- code += " if (length(binormal) < 0.0001) {\n";
- code += " // direction is parallel to Y. Choose Z as the binormal.\n";
- code += " binormal = vec3(0.0, 0.0, 1.0);\n";
- code += " }\n";
- code += " binormal = normalize(binormal);\n";
- code += " vec3 normal = cross(binormal, direction_nrm);\n";
- code += " spread_direction = binormal * spread_direction.x + normal * spread_direction.y + direction_nrm * spread_direction.z;\n";
- code += " VELOCITY = spread_direction * initial_linear_velocity * mix(1.0, rand_from_seed(alt_seed), initial_linear_velocity_random);\n";
+ code += " float angle1_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad;\n";
+ code += " float angle2_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad * (1.0 - flatness);\n";
+ code += " vec3 direction_xz = vec3(sin(angle1_rad), 0.0, cos(angle1_rad));\n";
+ code += " vec3 direction_yz = vec3(0.0, sin(angle2_rad), cos(angle2_rad));\n";
+ code += " direction_yz.z = direction_yz.z / max(0.0001,sqrt(abs(direction_yz.z))); // better uniform distribution\n";
+ code += " vec3 spread_direction = vec3(direction_xz.x * direction_yz.z, direction_yz.y, direction_xz.z * direction_yz.z);\n";
+ code += " vec3 direction_nrm = normalize(direction);\n";
+ code += " // rotate spread to direction\n";
+ code += " vec3 binormal = cross(vec3(0.0, 1.0, 0.0), direction_nrm);\n";
+ code += " if (length(binormal) < 0.0001) {\n";
+ code += " // direction is parallel to Y. Choose Z as the binormal.\n";
+ code += " binormal = vec3(0.0, 0.0, 1.0);\n";
+ code += " }\n";
+ code += " binormal = normalize(binormal);\n";
+ code += " vec3 normal = cross(binormal, direction_nrm);\n";
+ code += " spread_direction = binormal * spread_direction.x + normal * spread_direction.y + direction_nrm * spread_direction.z;\n";
+ code += " VELOCITY = spread_direction * initial_linear_velocity * mix(1.0, rand_from_seed(alt_seed), initial_linear_velocity_random);\n";
}
- code += " }\n";
+ code += " }\n";
- code += " float base_angle = (initial_angle + tex_angle) * mix(1.0, angle_rand, initial_angle_random);\n";
- code += " CUSTOM.x = base_angle * degree_to_rad;\n"; // angle
- code += " CUSTOM.y = 0.0;\n"; // phase
- code += " CUSTOM.w = (1.0 - lifetime_randomness * rand_from_seed(alt_seed));\n";
- code += " CUSTOM.z = (anim_offset + tex_anim_offset) * mix(1.0, anim_offset_rand, anim_offset_random);\n"; // animation offset (0-1)
+ code += " float base_angle = (initial_angle + tex_angle) * mix(1.0, angle_rand, initial_angle_random);\n";
+ code += " CUSTOM.x = base_angle * degree_to_rad;\n"; // angle
+ code += " CUSTOM.y = 0.0;\n"; // phase
+ code += " CUSTOM.w = (1.0 - lifetime_randomness * rand_from_seed(alt_seed));\n";
+ code += " CUSTOM.z = (anim_offset + tex_anim_offset) * mix(1.0, anim_offset_rand, anim_offset_random);\n"; // animation offset (0-1)
- code += " if (RESTART_POSITION) {\n";
+ code += " if (RESTART_POSITION) {\n";
switch (emission_shape) {
case EMISSION_SHAPE_POINT: {
//do none, identity (will later be multiplied by emission transform)
- code += " TRANSFORM = mat4(vec4(1,0,0,0),vec4(0,1,0,0),vec4(0,0,1,0),vec4(0,0,0,1));\n";
+ code += " TRANSFORM = mat4(vec4(1,0,0,0),vec4(0,1,0,0),vec4(0,0,1,0),vec4(0,0,0,1));\n";
} break;
case EMISSION_SHAPE_SPHERE: {
- code += " float s = rand_from_seed(alt_seed) * 2.0 - 1.0;\n";
- code += " float t = rand_from_seed(alt_seed) * 2.0 * pi;\n";
- code += " float radius = emission_sphere_radius * sqrt(1.0 - s * s);\n";
- code += " TRANSFORM[3].xyz = vec3(radius * cos(t), radius * sin(t), emission_sphere_radius * s);\n";
+ code += " float s = rand_from_seed(alt_seed) * 2.0 - 1.0;\n";
+ code += " float t = rand_from_seed(alt_seed) * 2.0 * pi;\n";
+ code += " float radius = emission_sphere_radius * sqrt(1.0 - s * s);\n";
+ code += " TRANSFORM[3].xyz = vec3(radius * cos(t), radius * sin(t), emission_sphere_radius * s);\n";
} break;
case EMISSION_SHAPE_BOX: {
- code += " TRANSFORM[3].xyz = vec3(rand_from_seed(alt_seed) * 2.0 - 1.0, rand_from_seed(alt_seed) * 2.0 - 1.0, rand_from_seed(alt_seed) * 2.0 - 1.0) * emission_box_extents;\n";
+ code += " TRANSFORM[3].xyz = vec3(rand_from_seed(alt_seed) * 2.0 - 1.0, rand_from_seed(alt_seed) * 2.0 - 1.0, rand_from_seed(alt_seed) * 2.0 - 1.0) * emission_box_extents;\n";
} break;
case EMISSION_SHAPE_POINTS:
case EMISSION_SHAPE_DIRECTED_POINTS: {
- code += " TRANSFORM[3].xyz = texelFetch(emission_texture_points, emission_tex_ofs, 0).xyz;\n";
+ code += " TRANSFORM[3].xyz = texelFetch(emission_texture_points, emission_tex_ofs, 0).xyz;\n";
if (emission_shape == EMISSION_SHAPE_DIRECTED_POINTS) {
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
- code += " mat2 rotm;";
- code += " rotm[0] = texelFetch(emission_texture_normal, emission_tex_ofs, 0).xy;\n";
- code += " rotm[1] = rotm[0].yx * vec2(1.0, -1.0);\n";
- code += " if (RESTART_VELOCITY) VELOCITY.xy = rotm * VELOCITY.xy;\n";
+ code += " mat2 rotm;";
+ code += " rotm[0] = texelFetch(emission_texture_normal, emission_tex_ofs, 0).xy;\n";
+ code += " rotm[1] = rotm[0].yx * vec2(1.0, -1.0);\n";
+ code += " if (RESTART_VELOCITY) VELOCITY.xy = rotm * VELOCITY.xy;\n";
} else {
- code += " vec3 normal = texelFetch(emission_texture_normal, emission_tex_ofs, 0).xyz;\n";
- code += " vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);\n";
- code += " vec3 tangent = normalize(cross(v0, normal));\n";
- code += " vec3 bitangent = normalize(cross(tangent, normal));\n";
- code += " if (RESTART_VELOCITY) VELOCITY = mat3(tangent, bitangent, normal) * VELOCITY;\n";
+ code += " vec3 normal = texelFetch(emission_texture_normal, emission_tex_ofs, 0).xyz;\n";
+ code += " vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);\n";
+ code += " vec3 tangent = normalize(cross(v0, normal));\n";
+ code += " vec3 bitangent = normalize(cross(tangent, normal));\n";
+ code += " if (RESTART_VELOCITY) VELOCITY = mat3(tangent, bitangent, normal) * VELOCITY;\n";
}
}
} break;
@@ -404,134 +401,144 @@ void ParticlesMaterial::_update_shader() {
}
}
- code += " if (RESTART_VELOCITY) VELOCITY = (EMISSION_TRANSFORM * vec4(VELOCITY, 0.0)).xyz;\n";
- code += " TRANSFORM = EMISSION_TRANSFORM * TRANSFORM;\n";
+ code += " if (RESTART_VELOCITY) VELOCITY = (EMISSION_TRANSFORM * vec4(VELOCITY, 0.0)).xyz;\n";
+ code += " TRANSFORM = EMISSION_TRANSFORM * TRANSFORM;\n";
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
- code += " VELOCITY.z = 0.0;\n";
- code += " TRANSFORM[3].z = 0.0;\n";
+ code += " VELOCITY.z = 0.0;\n";
+ code += " TRANSFORM[3].z = 0.0;\n";
}
- code += " }\n";
+ code += " }\n";
+ code += "}\n\n";
- code += " } else {\n";
+ code += "void process() {\n";
+ code += " uint base_number = NUMBER;\n";
+ code += " uint alt_seed = hash(base_number + uint(1) + RANDOM_SEED);\n";
+ code += " float angle_rand = rand_from_seed(alt_seed);\n";
+ code += " float scale_rand = rand_from_seed(alt_seed);\n";
+ code += " float hue_rot_rand = rand_from_seed(alt_seed);\n";
+ code += " float anim_offset_rand = rand_from_seed(alt_seed);\n";
+ code += " float pi = 3.14159;\n";
+ code += " float degree_to_rad = pi / 180.0;\n";
+ code += "\n";
- code += " CUSTOM.y += DELTA / LIFETIME;\n";
- code += " tv = CUSTOM.y / CUSTOM.w;\n";
+ code += " CUSTOM.y += DELTA / LIFETIME;\n";
+ code += " float tv = CUSTOM.y / CUSTOM.w;\n";
if (tex_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
- code += " float tex_linear_velocity = textureLod(linear_velocity_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_linear_velocity = textureLod(linear_velocity_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_linear_velocity = 0.0;\n";
+ code += " float tex_linear_velocity = 0.0;\n";
}
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
if (tex_parameters[PARAM_ORBIT_VELOCITY].is_valid()) {
- code += " float tex_orbit_velocity = textureLod(orbit_velocity_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_orbit_velocity = textureLod(orbit_velocity_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_orbit_velocity = 0.0;\n";
+ code += " float tex_orbit_velocity = 0.0;\n";
}
}
if (tex_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) {
- code += " float tex_angular_velocity = textureLod(angular_velocity_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_angular_velocity = textureLod(angular_velocity_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_angular_velocity = 0.0;\n";
+ code += " float tex_angular_velocity = 0.0;\n";
}
if (tex_parameters[PARAM_LINEAR_ACCEL].is_valid()) {
- code += " float tex_linear_accel = textureLod(linear_accel_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_linear_accel = textureLod(linear_accel_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_linear_accel = 0.0;\n";
+ code += " float tex_linear_accel = 0.0;\n";
}
if (tex_parameters[PARAM_RADIAL_ACCEL].is_valid()) {
- code += " float tex_radial_accel = textureLod(radial_accel_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_radial_accel = textureLod(radial_accel_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_radial_accel = 0.0;\n";
+ code += " float tex_radial_accel = 0.0;\n";
}
if (tex_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) {
- code += " float tex_tangent_accel = textureLod(tangent_accel_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_tangent_accel = textureLod(tangent_accel_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_tangent_accel = 0.0;\n";
+ code += " float tex_tangent_accel = 0.0;\n";
}
if (tex_parameters[PARAM_DAMPING].is_valid()) {
- code += " float tex_damping = textureLod(damping_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_damping = textureLod(damping_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_damping = 0.0;\n";
+ code += " float tex_damping = 0.0;\n";
}
if (tex_parameters[PARAM_ANGLE].is_valid()) {
- code += " float tex_angle = textureLod(angle_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_angle = textureLod(angle_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_angle = 0.0;\n";
+ code += " float tex_angle = 0.0;\n";
}
if (tex_parameters[PARAM_ANIM_SPEED].is_valid()) {
- code += " float tex_anim_speed = textureLod(anim_speed_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_anim_speed = textureLod(anim_speed_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_anim_speed = 0.0;\n";
+ code += " float tex_anim_speed = 0.0;\n";
}
if (tex_parameters[PARAM_ANIM_OFFSET].is_valid()) {
- code += " float tex_anim_offset = textureLod(anim_offset_texture, vec2(tv, 0.0), 0.0).r;\n";
+ code += " float tex_anim_offset = textureLod(anim_offset_texture, vec2(tv, 0.0), 0.0).r;\n";
} else {
- code += " float tex_anim_offset = 0.0;\n";
+ code += " float tex_anim_offset = 0.0;\n";
}
- code += " vec3 force = gravity;\n";
- code += " vec3 pos = TRANSFORM[3].xyz;\n";
+ code += " vec3 force = gravity;\n";
+ code += " vec3 pos = TRANSFORM[3].xyz;\n";
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
- code += " pos.z = 0.0;\n";
- }
- code += " // apply linear acceleration\n";
- code += " force += length(VELOCITY) > 0.0 ? normalize(VELOCITY) * (linear_accel + tex_linear_accel) * mix(1.0, rand_from_seed(alt_seed), linear_accel_random) : vec3(0.0);\n";
- code += " // apply radial acceleration\n";
- code += " vec3 org = EMISSION_TRANSFORM[3].xyz;\n";
- code += " vec3 diff = pos - org;\n";
- code += " force += length(diff) > 0.0 ? normalize(diff) * (radial_accel + tex_radial_accel) * mix(1.0, rand_from_seed(alt_seed), radial_accel_random) : vec3(0.0);\n";
- code += " // apply tangential acceleration;\n";
+ code += " pos.z = 0.0;\n";
+ }
+ code += " // apply linear acceleration\n";
+ code += " force += length(VELOCITY) > 0.0 ? normalize(VELOCITY) * (linear_accel + tex_linear_accel) * mix(1.0, rand_from_seed(alt_seed), linear_accel_random) : vec3(0.0);\n";
+ code += " // apply radial acceleration\n";
+ code += " vec3 org = EMISSION_TRANSFORM[3].xyz;\n";
+ code += " vec3 diff = pos - org;\n";
+ code += " force += length(diff) > 0.0 ? normalize(diff) * (radial_accel + tex_radial_accel) * mix(1.0, rand_from_seed(alt_seed), radial_accel_random) : vec3(0.0);\n";
+ code += " // apply tangential acceleration;\n";
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
- code += " force += length(diff.yx) > 0.0 ? vec3(normalize(diff.yx * vec2(-1.0, 1.0)), 0.0) * ((tangent_accel + tex_tangent_accel) * mix(1.0, rand_from_seed(alt_seed), tangent_accel_random)) : vec3(0.0);\n";
+ code += " force += length(diff.yx) > 0.0 ? vec3(normalize(diff.yx * vec2(-1.0, 1.0)), 0.0) * ((tangent_accel + tex_tangent_accel) * mix(1.0, rand_from_seed(alt_seed), tangent_accel_random)) : vec3(0.0);\n";
} else {
- code += " vec3 crossDiff = cross(normalize(diff), normalize(gravity));\n";
- code += " force += length(crossDiff) > 0.0 ? normalize(crossDiff) * ((tangent_accel + tex_tangent_accel) * mix(1.0, rand_from_seed(alt_seed), tangent_accel_random)) : vec3(0.0);\n";
+ code += " vec3 crossDiff = cross(normalize(diff), normalize(gravity));\n";
+ code += " force += length(crossDiff) > 0.0 ? normalize(crossDiff) * ((tangent_accel + tex_tangent_accel) * mix(1.0, rand_from_seed(alt_seed), tangent_accel_random)) : vec3(0.0);\n";
}
if (attractor_interaction_enabled) {
- code += " force += ATTRACTOR_FORCE;\n\n";
+ code += " force += ATTRACTOR_FORCE;\n\n";
}
- code += " // apply attractor forces\n";
- code += " VELOCITY += force * DELTA;\n";
- code += " // orbit velocity\n";
+ code += " // apply attractor forces\n";
+ code += " VELOCITY += force * DELTA;\n";
+ code += " // orbit velocity\n";
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
- code += " float orbit_amount = (orbit_velocity + tex_orbit_velocity) * mix(1.0, rand_from_seed(alt_seed), orbit_velocity_random);\n";
- code += " if (orbit_amount != 0.0) {\n";
- code += " float ang = orbit_amount * DELTA * pi * 2.0;\n";
- code += " mat2 rot = mat2(vec2(cos(ang), -sin(ang)), vec2(sin(ang), cos(ang)));\n";
- code += " TRANSFORM[3].xy -= diff.xy;\n";
- code += " TRANSFORM[3].xy += rot * diff.xy;\n";
- code += " }\n";
+ code += " float orbit_amount = (orbit_velocity + tex_orbit_velocity) * mix(1.0, rand_from_seed(alt_seed), orbit_velocity_random);\n";
+ code += " if (orbit_amount != 0.0) {\n";
+ code += " float ang = orbit_amount * DELTA * pi * 2.0;\n";
+ code += " mat2 rot = mat2(vec2(cos(ang), -sin(ang)), vec2(sin(ang), cos(ang)));\n";
+ code += " TRANSFORM[3].xy -= diff.xy;\n";
+ code += " TRANSFORM[3].xy += rot * diff.xy;\n";
+ code += " }\n";
}
if (tex_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
- code += " VELOCITY = normalize(VELOCITY) * tex_linear_velocity;\n";
- }
- code += " if (damping + tex_damping > 0.0) {\n";
- code += " float v = length(VELOCITY);\n";
- code += " float damp = (damping + tex_damping) * mix(1.0, rand_from_seed(alt_seed), damping_random);\n";
- code += " v -= damp * DELTA;\n";
- code += " if (v < 0.0) {\n";
- code += " VELOCITY = vec3(0.0);\n";
- code += " } else {\n";
- code += " VELOCITY = normalize(VELOCITY) * v;\n";
- code += " }\n";
+ code += " VELOCITY = normalize(VELOCITY) * tex_linear_velocity;\n";
+ }
+ code += " if (damping + tex_damping > 0.0) {\n";
+ code += " float v = length(VELOCITY);\n";
+ code += " float damp = (damping + tex_damping) * mix(1.0, rand_from_seed(alt_seed), damping_random);\n";
+ code += " v -= damp * DELTA;\n";
+ code += " if (v < 0.0) {\n";
+ code += " VELOCITY = vec3(0.0);\n";
+ code += " } else {\n";
+ code += " VELOCITY = normalize(VELOCITY) * v;\n";
code += " }\n";
- code += " float base_angle = (initial_angle + tex_angle) * mix(1.0, angle_rand, initial_angle_random);\n";
- code += " base_angle += CUSTOM.y * LIFETIME * (angular_velocity + tex_angular_velocity) * mix(1.0, rand_from_seed(alt_seed) * 2.0 - 1.0, angular_velocity_random);\n";
- code += " CUSTOM.x = base_angle * degree_to_rad;\n"; // angle
- code += " CUSTOM.z = (anim_offset + tex_anim_offset) * mix(1.0, anim_offset_rand, anim_offset_random) + CUSTOM.y * (anim_speed + tex_anim_speed) * mix(1.0, rand_from_seed(alt_seed), anim_speed_random);\n"; // angle
code += " }\n";
+ code += " float base_angle = (initial_angle + tex_angle) * mix(1.0, angle_rand, initial_angle_random);\n";
+ code += " base_angle += CUSTOM.y * LIFETIME * (angular_velocity + tex_angular_velocity) * mix(1.0, rand_from_seed(alt_seed) * 2.0 - 1.0, angular_velocity_random);\n";
+ code += " CUSTOM.x = base_angle * degree_to_rad;\n"; // angle
+ code += " CUSTOM.z = (anim_offset + tex_anim_offset) * mix(1.0, anim_offset_rand, anim_offset_random) + CUSTOM.y * (anim_speed + tex_anim_speed) * mix(1.0, rand_from_seed(alt_seed), anim_speed_random);\n"; // angle
+
// apply color
// apply hue rotation
if (tex_parameters[PARAM_SCALE].is_valid()) {
@@ -659,7 +666,7 @@ void ParticlesMaterial::_update_shader() {
code += " }";
}
- code += " if (CUSTOM.y > CUSTOM.w) {";
+ code += " if (CUSTOM.y > CUSTOM.w) {\n";
code += " ACTIVE = false;\n";
code += " }\n";
code += "}\n";
diff --git a/scene/resources/visual_shader.cpp b/scene/resources/visual_shader.cpp
index e1e24ddab2..fc81be90c8 100644
--- a/scene/resources/visual_shader.cpp
+++ b/scene/resources/visual_shader.cpp
@@ -961,7 +961,8 @@ static const char *type_string[VisualShader::TYPE_MAX] = {
"light",
"emit",
"process",
- "end"
+ "end",
+ "sky",
};
bool VisualShader::_set(const StringName &p_name, const Variant &p_value) {
@@ -1476,7 +1477,7 @@ void VisualShader::_update_shader() const {
global_code += "render_mode " + render_mode + ";\n\n";
}
- static const char *func_name[TYPE_MAX] = { "vertex", "fragment", "light", "emit", "process", "end" };
+ static const char *func_name[TYPE_MAX] = { "vertex", "fragment", "light", "emit", "process", "end", "sky" };
String global_expressions;
Set<String> used_uniform_names;
@@ -1698,7 +1699,6 @@ const VisualShaderNodeInput::Port VisualShaderNodeInput::ports[] = {
{ Shader::MODE_SPATIAL, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_VECTOR, "color", "COLOR.rgb" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_SCALAR, "alpha", "COLOR.a" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_SCALAR, "point_size", "POINT_SIZE" },
-
{ Shader::MODE_SPATIAL, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_TRANSFORM, "world", "WORLD_MATRIX" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_TRANSFORM, "modelview", "MODELVIEW_MATRIX" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_TRANSFORM, "camera", "CAMERA_MATRIX" },
@@ -1721,10 +1721,8 @@ const VisualShaderNodeInput::Port VisualShaderNodeInput::ports[] = {
{ Shader::MODE_SPATIAL, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "color", "COLOR.rgb" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "alpha", "COLOR.a" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "point_coord", "vec3(POINT_COORD, 0.0)" },
-
{ Shader::MODE_SPATIAL, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "screen_uv", "vec3(SCREEN_UV, 0.0)" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "side", "float(FRONT_FACING ? 1.0 : 0.0)" },
-
{ Shader::MODE_SPATIAL, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_TRANSFORM, "world", "WORLD_MATRIX" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_TRANSFORM, "inv_camera", "INV_CAMERA_MATRIX" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_TRANSFORM, "camera", "CAMERA_MATRIX" },
@@ -1750,7 +1748,6 @@ const VisualShaderNodeInput::Port VisualShaderNodeInput::ports[] = {
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_VECTOR, "specular", "SPECULAR_LIGHT" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_SCALAR, "roughness", "ROUGHNESS" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_SCALAR, "metallic", "METALLIC" },
-
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_TRANSFORM, "world", "WORLD_MATRIX" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_TRANSFORM, "inv_camera", "INV_CAMERA_MATRIX" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_TRANSFORM, "camera", "CAMERA_MATRIX" },
@@ -1759,6 +1756,7 @@ const VisualShaderNodeInput::Port VisualShaderNodeInput::ports[] = {
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_SCALAR, "time", "TIME" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_VECTOR, "viewport_size", "vec3(VIEWPORT_SIZE, 0.0)" },
{ Shader::MODE_SPATIAL, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_BOOLEAN, "output_is_srgb", "OUTPUT_IS_SRGB" },
+
// Canvas Item, Vertex
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_VECTOR, "vertex", "vec3(VERTEX, 0.0)" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_VECTOR, "uv", "vec3(UV, 0.0)" },
@@ -1766,12 +1764,12 @@ const VisualShaderNodeInput::Port VisualShaderNodeInput::ports[] = {
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_SCALAR, "alpha", "COLOR.a" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_SCALAR, "point_size", "POINT_SIZE" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_VECTOR, "texture_pixel_size", "vec3(TEXTURE_PIXEL_SIZE, 1.0)" },
-
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_TRANSFORM, "world", "WORLD_MATRIX" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_TRANSFORM, "canvas", "CANVAS_MATRIX" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_TRANSFORM, "screen", "SCREEN_MATRIX" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_SCALAR, "time", "TIME" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_VERTEX, VisualShaderNode::PORT_TYPE_BOOLEAN, "at_light_pass", "AT_LIGHT_PASS" },
+
// Canvas Item, Fragment
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "fragcoord", "FRAGCOORD.xyz" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "uv", "vec3(UV, 0.0)" },
@@ -1789,6 +1787,7 @@ const VisualShaderNodeInput::Port VisualShaderNodeInput::ports[] = {
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "specular_shininess", "SPECULAR_SHININESS.rgb" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "specular_shininess_alpha", "SPECULAR_SHININESS.a" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SAMPLER, "specular_shininess_texture", "SPECULAR_SHININESS_TEXTURE" },
+
// Canvas Item, Light
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_VECTOR, "fragcoord", "FRAGCOORD.xyz" },
{ Shader::MODE_CANVAS_ITEM, VisualShader::TYPE_LIGHT, VisualShaderNode::PORT_TYPE_VECTOR, "uv", "vec3(UV, 0.0)" },
@@ -1856,36 +1855,36 @@ const VisualShaderNodeInput::Port VisualShaderNodeInput::ports[] = {
{ Shader::MODE_PARTICLES, VisualShader::TYPE_END, VisualShaderNode::PORT_TYPE_TRANSFORM, "emission_transform", "EMISSION_TRANSFORM" },
{ Shader::MODE_PARTICLES, VisualShader::TYPE_END, VisualShaderNode::PORT_TYPE_SCALAR, "time", "TIME" },
- // Sky, Fragment
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_BOOLEAN, "at_cubemap_pass", "AT_CUBEMAP_PASS" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_BOOLEAN, "at_half_res_pass", "AT_HALF_RES_PASS" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_BOOLEAN, "at_quarter_res_pass", "AT_QUARTER_RES_PASS" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "eyedir", "EYEDIR" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "half_res_color", "HALF_RES_COLOR.rgb" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "half_res_alpha", "HALF_RES_COLOR.a" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "light0_color", "LIGHT0_COLOR" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "light0_direction", "LIGHT0_DIRECTION" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_BOOLEAN, "light0_enabled", "LIGHT0_ENABLED" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "light0_energy", "LIGHT0_ENERGY" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "light1_color", "LIGHT1_COLOR" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "light1_direction", "LIGHT1_DIRECTION" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_BOOLEAN, "light1_enabled", "LIGHT1_ENABLED" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "light1_energy", "LIGHT1_ENERGY" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "light2_color", "LIGHT2_COLOR" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "light2_direction", "LIGHT2_DIRECTION" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_BOOLEAN, "light2_enabled", "LIGHT2_ENABLED" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "light2_energy", "LIGHT2_ENERGY" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "light3_color", "LIGHT3_COLOR" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "light3_direction", "LIGHT3_DIRECTION" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_BOOLEAN, "light3_enabled", "LIGHT3_ENABLED" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "light3_energy", "LIGHT3_ENERGY" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "position", "POSITION" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "quarter_res_color", "QUARTER_RES_COLOR.rgb" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "quarter_res_alpha", "QUARTER_RES_COLOR.a" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SAMPLER, "radiance", "RADIANCE" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "screen_uv", "vec3(SCREEN_UV, 0.0)" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "sky_coords", "vec3(SKY_COORDS, 0.0)" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "time", "TIME" },
+ // Sky, Sky
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_BOOLEAN, "at_cubemap_pass", "AT_CUBEMAP_PASS" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_BOOLEAN, "at_half_res_pass", "AT_HALF_RES_PASS" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_BOOLEAN, "at_quarter_res_pass", "AT_QUARTER_RES_PASS" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "eyedir", "EYEDIR" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "half_res_color", "HALF_RES_COLOR.rgb" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SCALAR, "half_res_alpha", "HALF_RES_COLOR.a" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "light0_color", "LIGHT0_COLOR" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "light0_direction", "LIGHT0_DIRECTION" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_BOOLEAN, "light0_enabled", "LIGHT0_ENABLED" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SCALAR, "light0_energy", "LIGHT0_ENERGY" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "light1_color", "LIGHT1_COLOR" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "light1_direction", "LIGHT1_DIRECTION" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_BOOLEAN, "light1_enabled", "LIGHT1_ENABLED" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SCALAR, "light1_energy", "LIGHT1_ENERGY" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "light2_color", "LIGHT2_COLOR" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "light2_direction", "LIGHT2_DIRECTION" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_BOOLEAN, "light2_enabled", "LIGHT2_ENABLED" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SCALAR, "light2_energy", "LIGHT2_ENERGY" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "light3_color", "LIGHT3_COLOR" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "light3_direction", "LIGHT3_DIRECTION" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_BOOLEAN, "light3_enabled", "LIGHT3_ENABLED" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SCALAR, "light3_energy", "LIGHT3_ENERGY" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "position", "POSITION" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "quarter_res_color", "QUARTER_RES_COLOR.rgb" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SCALAR, "quarter_res_alpha", "QUARTER_RES_COLOR.a" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SAMPLER, "radiance", "RADIANCE" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "screen_uv", "vec3(SCREEN_UV, 0.0)" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "sky_coords", "vec3(SKY_COORDS, 0.0)" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SCALAR, "time", "TIME" },
{ Shader::MODE_MAX, VisualShader::TYPE_MAX, VisualShaderNode::PORT_TYPE_TRANSFORM, nullptr, nullptr },
};
@@ -2449,9 +2448,9 @@ const VisualShaderNodeOutput::Port VisualShaderNodeOutput::ports[] = {
{ Shader::MODE_PARTICLES, VisualShader::TYPE_END, VisualShaderNode::PORT_TYPE_SCALAR, "custom_alpha", "CUSTOM.a" },
{ Shader::MODE_PARTICLES, VisualShader::TYPE_END, VisualShaderNode::PORT_TYPE_TRANSFORM, "transform", "TRANSFORM" },
{ Shader::MODE_PARTICLES, VisualShader::TYPE_END, VisualShaderNode::PORT_TYPE_BOOLEAN, "active", "ACTIVE" },
- // Sky, Fragment
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_VECTOR, "color", "COLOR" },
- { Shader::MODE_SKY, VisualShader::TYPE_FRAGMENT, VisualShaderNode::PORT_TYPE_SCALAR, "alpha", "ALPHA" },
+ // Sky, Sky
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_VECTOR, "color", "COLOR" },
+ { Shader::MODE_SKY, VisualShader::TYPE_SKY, VisualShaderNode::PORT_TYPE_SCALAR, "alpha", "ALPHA" },
{ Shader::MODE_MAX, VisualShader::TYPE_MAX, VisualShaderNode::PORT_TYPE_TRANSFORM, nullptr, nullptr },
};
diff --git a/scene/resources/visual_shader.h b/scene/resources/visual_shader.h
index 54a5c19049..e2e1b473ed 100644
--- a/scene/resources/visual_shader.h
+++ b/scene/resources/visual_shader.h
@@ -54,6 +54,7 @@ public:
TYPE_EMIT,
TYPE_PROCESS,
TYPE_END,
+ TYPE_SKY,
TYPE_MAX
};
diff --git a/servers/rendering/renderer_rd/renderer_storage_rd.cpp b/servers/rendering/renderer_rd/renderer_storage_rd.cpp
index 92df9cc702..189c5782f4 100644
--- a/servers/rendering/renderer_rd/renderer_storage_rd.cpp
+++ b/servers/rendering/renderer_rd/renderer_storage_rd.cpp
@@ -4781,6 +4781,7 @@ void RendererStorageRD::ParticlesShaderData::set_code(const String &p_code) {
ShaderCompilerRD::GeneratedCode gen_code;
ShaderCompilerRD::IdentifierActions actions;
+ actions.entry_point_stages["start"] = ShaderCompilerRD::STAGE_COMPUTE;
actions.entry_point_stages["process"] = ShaderCompilerRD::STAGE_COMPUTE;
/*
diff --git a/servers/rendering/renderer_rd/shader_rd.cpp b/servers/rendering/renderer_rd/shader_rd.cpp
index c48a2ef48c..f7242a2b17 100644
--- a/servers/rendering/renderer_rd/shader_rd.cpp
+++ b/servers/rendering/renderer_rd/shader_rd.cpp
@@ -233,6 +233,7 @@ void ShaderRD::_compile_variant(uint32_t p_variant, Version *p_version) {
_build_variant_code(builder, p_variant, p_version, stage_templates[STAGE_TYPE_COMPUTE]);
current_source = builder.as_string();
+
RD::ShaderStageData stage;
stage.spir_v = RD::get_singleton()->shader_compile_from_source(RD::SHADER_STAGE_COMPUTE, current_source, RD::SHADER_LANGUAGE_GLSL, &error);
if (stage.spir_v.size() == 0) {
diff --git a/servers/rendering/renderer_rd/shaders/particles.glsl b/servers/rendering/renderer_rd/shaders/particles.glsl
index c438352c05..3712220dc4 100644
--- a/servers/rendering/renderer_rd/shaders/particles.glsl
+++ b/servers/rendering/renderer_rd/shaders/particles.glsl
@@ -252,6 +252,115 @@ void main() {
/* Process physics if active */
+ if (params.sub_emitter_mode) {
+ if (!PARTICLE.is_active) {
+ int src_index = atomicAdd(src_particles.particle_count, -1) - 1;
+
+ if (src_index >= 0) {
+ PARTICLE.is_active = true;
+ restart = true;
+
+ if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_POSITION)) {
+ PARTICLE.xform[3] = src_particles.data[src_index].xform[3];
+ } else {
+ PARTICLE.xform[3] = vec4(0, 0, 0, 1);
+ restart_position = true;
+ }
+ if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_ROTATION_SCALE)) {
+ PARTICLE.xform[0] = src_particles.data[src_index].xform[0];
+ PARTICLE.xform[1] = src_particles.data[src_index].xform[1];
+ PARTICLE.xform[2] = src_particles.data[src_index].xform[2];
+ } else {
+ PARTICLE.xform[0] = vec4(1, 0, 0, 0);
+ PARTICLE.xform[1] = vec4(0, 1, 0, 0);
+ PARTICLE.xform[2] = vec4(0, 0, 1, 0);
+ restart_rotation_scale = true;
+ }
+ if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_VELOCITY)) {
+ PARTICLE.velocity = src_particles.data[src_index].velocity;
+ } else {
+ PARTICLE.velocity = vec3(0);
+ restart_velocity = true;
+ }
+ if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_COLOR)) {
+ PARTICLE.color = src_particles.data[src_index].color;
+ } else {
+ PARTICLE.color = vec4(1);
+ restart_color = true;
+ }
+
+ if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_CUSTOM)) {
+ PARTICLE.custom = src_particles.data[src_index].custom;
+ } else {
+ PARTICLE.custom = vec4(0);
+ restart_custom = true;
+ }
+ }
+ }
+
+ } else if (FRAME.emitting) {
+ float restart_phase = float(index) / float(params.total_particles);
+
+ if (FRAME.randomness > 0.0) {
+ uint seed = FRAME.cycle;
+ if (restart_phase >= FRAME.system_phase) {
+ seed -= uint(1);
+ }
+ seed *= uint(params.total_particles);
+ seed += uint(index);
+ float random = float(hash(seed) % uint(65536)) / 65536.0;
+ restart_phase += FRAME.randomness * random * 1.0 / float(params.total_particles);
+ }
+
+ restart_phase *= (1.0 - FRAME.explosiveness);
+
+ if (FRAME.system_phase > FRAME.prev_system_phase) {
+ // restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
+
+ if (restart_phase >= FRAME.prev_system_phase && restart_phase < FRAME.system_phase) {
+ restart = true;
+ if (params.use_fractional_delta) {
+ local_delta = (FRAME.system_phase - restart_phase) * params.lifetime;
+ }
+ }
+
+ } else if (FRAME.delta > 0.0) {
+ if (restart_phase >= FRAME.prev_system_phase) {
+ restart = true;
+ if (params.use_fractional_delta) {
+ local_delta = (1.0 - restart_phase + FRAME.system_phase) * params.lifetime;
+ }
+
+ } else if (restart_phase < FRAME.system_phase) {
+ restart = true;
+ if (params.use_fractional_delta) {
+ local_delta = (FRAME.system_phase - restart_phase) * params.lifetime;
+ }
+ }
+ }
+
+ uint current_cycle = FRAME.cycle;
+
+ if (FRAME.system_phase < restart_phase) {
+ current_cycle -= uint(1);
+ }
+
+ uint particle_number = current_cycle * uint(params.total_particles) + particle;
+
+ if (restart) {
+ PARTICLE.is_active = FRAME.emitting;
+ restart_position = true;
+ restart_rotation_scale = true;
+ restart_velocity = true;
+ restart_color = true;
+ restart_custom = true;
+ }
+ }
+
+ if (restart && PARTICLE.is_active) {
+#CODE : START
+ }
+
if (PARTICLE.is_active) {
for (uint i = 0; i < FRAME.attractor_count; i++) {
vec3 dir;
@@ -430,111 +539,6 @@ void main() {
}
}
- if (params.sub_emitter_mode) {
- if (!PARTICLE.is_active) {
- int src_index = atomicAdd(src_particles.particle_count, -1) - 1;
-
- if (src_index >= 0) {
- PARTICLE.is_active = true;
- restart = true;
-
- if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_POSITION)) {
- PARTICLE.xform[3] = src_particles.data[src_index].xform[3];
- } else {
- PARTICLE.xform[3] = vec4(0, 0, 0, 1);
- restart_position = true;
- }
- if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_ROTATION_SCALE)) {
- PARTICLE.xform[0] = src_particles.data[src_index].xform[0];
- PARTICLE.xform[1] = src_particles.data[src_index].xform[1];
- PARTICLE.xform[2] = src_particles.data[src_index].xform[2];
- } else {
- PARTICLE.xform[0] = vec4(1, 0, 0, 0);
- PARTICLE.xform[1] = vec4(0, 1, 0, 0);
- PARTICLE.xform[2] = vec4(0, 0, 1, 0);
- restart_rotation_scale = true;
- }
- if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_VELOCITY)) {
- PARTICLE.velocity = src_particles.data[src_index].velocity;
- } else {
- PARTICLE.velocity = vec3(0);
- restart_velocity = true;
- }
- if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_COLOR)) {
- PARTICLE.color = src_particles.data[src_index].color;
- } else {
- PARTICLE.color = vec4(1);
- restart_color = true;
- }
-
- if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_CUSTOM)) {
- PARTICLE.custom = src_particles.data[src_index].custom;
- } else {
- PARTICLE.custom = vec4(0);
- restart_custom = true;
- }
- }
- }
-
- } else if (FRAME.emitting) {
- float restart_phase = float(index) / float(params.total_particles);
-
- if (FRAME.randomness > 0.0) {
- uint seed = FRAME.cycle;
- if (restart_phase >= FRAME.system_phase) {
- seed -= uint(1);
- }
- seed *= uint(params.total_particles);
- seed += uint(index);
- float random = float(hash(seed) % uint(65536)) / 65536.0;
- restart_phase += FRAME.randomness * random * 1.0 / float(params.total_particles);
- }
-
- restart_phase *= (1.0 - FRAME.explosiveness);
-
- if (FRAME.system_phase > FRAME.prev_system_phase) {
- // restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
-
- if (restart_phase >= FRAME.prev_system_phase && restart_phase < FRAME.system_phase) {
- restart = true;
- if (params.use_fractional_delta) {
- local_delta = (FRAME.system_phase - restart_phase) * params.lifetime;
- }
- }
-
- } else if (FRAME.delta > 0.0) {
- if (restart_phase >= FRAME.prev_system_phase) {
- restart = true;
- if (params.use_fractional_delta) {
- local_delta = (1.0 - restart_phase + FRAME.system_phase) * params.lifetime;
- }
-
- } else if (restart_phase < FRAME.system_phase) {
- restart = true;
- if (params.use_fractional_delta) {
- local_delta = (FRAME.system_phase - restart_phase) * params.lifetime;
- }
- }
- }
-
- uint current_cycle = FRAME.cycle;
-
- if (FRAME.system_phase < restart_phase) {
- current_cycle -= uint(1);
- }
-
- uint particle_number = current_cycle * uint(params.total_particles) + particle;
-
- if (restart) {
- PARTICLE.is_active = FRAME.emitting;
- restart_position = true;
- restart_rotation_scale = true;
- restart_velocity = true;
- restart_color = true;
- restart_custom = true;
- }
- }
-
if (PARTICLE.is_active) {
#CODE : PROCESS
}
diff --git a/servers/rendering/shader_types.cpp b/servers/rendering/shader_types.cpp
index f5f7e2e53d..460fd5fc97 100644
--- a/servers/rendering/shader_types.cpp
+++ b/servers/rendering/shader_types.cpp
@@ -316,6 +316,27 @@ ShaderTypes::ShaderTypes() {
/************ PARTICLES **************************/
shader_modes[RS::SHADER_PARTICLES].functions["global"].built_ins["TIME"] = constt(ShaderLanguage::TYPE_FLOAT);
+
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["COLOR"] = ShaderLanguage::TYPE_VEC4;
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["VELOCITY"] = ShaderLanguage::TYPE_VEC3;
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["MASS"] = ShaderLanguage::TYPE_FLOAT;
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["ACTIVE"] = ShaderLanguage::TYPE_BOOL;
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["RESTART"] = constt(ShaderLanguage::TYPE_BOOL);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["CUSTOM"] = ShaderLanguage::TYPE_VEC4;
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["TRANSFORM"] = ShaderLanguage::TYPE_MAT4;
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["LIFETIME"] = constt(ShaderLanguage::TYPE_FLOAT);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["DELTA"] = constt(ShaderLanguage::TYPE_FLOAT);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["NUMBER"] = constt(ShaderLanguage::TYPE_UINT);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["INDEX"] = constt(ShaderLanguage::TYPE_INT);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["EMISSION_TRANSFORM"] = constt(ShaderLanguage::TYPE_MAT4);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["RANDOM_SEED"] = constt(ShaderLanguage::TYPE_UINT);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["RESTART_POSITION"] = constt(ShaderLanguage::TYPE_BOOL);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["RESTART_ROT_SCALE"] = constt(ShaderLanguage::TYPE_BOOL);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["RESTART_VELOCITY"] = constt(ShaderLanguage::TYPE_BOOL);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["RESTART_COLOR"] = constt(ShaderLanguage::TYPE_BOOL);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].built_ins["RESTART_CUSTOM"] = constt(ShaderLanguage::TYPE_BOOL);
+ shader_modes[RS::SHADER_PARTICLES].functions["start"].main_function = true;
+
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["COLOR"] = ShaderLanguage::TYPE_VEC4;
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["VELOCITY"] = ShaderLanguage::TYPE_VEC3;
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["MASS"] = ShaderLanguage::TYPE_FLOAT;
@@ -334,11 +355,6 @@ ShaderTypes::ShaderTypes() {
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["FLAG_EMIT_VELOCITY"] = constt(ShaderLanguage::TYPE_UINT);
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["FLAG_EMIT_COLOR"] = constt(ShaderLanguage::TYPE_UINT);
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["FLAG_EMIT_CUSTOM"] = constt(ShaderLanguage::TYPE_UINT);
- shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["RESTART_POSITION"] = constt(ShaderLanguage::TYPE_BOOL);
- shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["RESTART_ROT_SCALE"] = constt(ShaderLanguage::TYPE_BOOL);
- shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["RESTART_VELOCITY"] = constt(ShaderLanguage::TYPE_BOOL);
- shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["RESTART_COLOR"] = constt(ShaderLanguage::TYPE_BOOL);
- shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["RESTART_CUSTOM"] = constt(ShaderLanguage::TYPE_BOOL);
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["COLLIDED"] = constt(ShaderLanguage::TYPE_BOOL);
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["COLLISION_NORMAL"] = constt(ShaderLanguage::TYPE_VEC3);
shader_modes[RS::SHADER_PARTICLES].functions["process"].built_ins["COLLISION_DEPTH"] = constt(ShaderLanguage::TYPE_FLOAT);
diff --git a/thirdparty/README.md b/thirdparty/README.md
index dbdc568d64..33ce2423d9 100644
--- a/thirdparty/README.md
+++ b/thirdparty/README.md
@@ -101,6 +101,7 @@ Files extracted from upstream source:
```
- `AUTHORS.txt` and `LICENSE.txt`
+
## fonts
- `NotoSans*.ttf`, `NotoNaskhArabicUI_Regular.ttf`:
@@ -343,7 +344,7 @@ File extracted from upstream release tarball:
## meshoptimizer
- Upstream: https://github.com/zeux/meshoptimizer
-- Version: git (e3f53f66e7a35b9b8764bee478589d79e34fa698, 2021)
+- Version: 0.16 (95893c0566646434dd675b708d293fcb2d526d08, 2021)
- License: MIT
Files extracted from upstream repository:
diff --git a/thirdparty/meshoptimizer/LICENSE.md b/thirdparty/meshoptimizer/LICENSE.md
index 4fcd766d22..3c52415f62 100644
--- a/thirdparty/meshoptimizer/LICENSE.md
+++ b/thirdparty/meshoptimizer/LICENSE.md
@@ -1,6 +1,6 @@
MIT License
-Copyright (c) 2016-2020 Arseny Kapoulkine
+Copyright (c) 2016-2021 Arseny Kapoulkine
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
diff --git a/thirdparty/meshoptimizer/clusterizer.cpp b/thirdparty/meshoptimizer/clusterizer.cpp
index f7d88c5136..f8aad7b49c 100644
--- a/thirdparty/meshoptimizer/clusterizer.cpp
+++ b/thirdparty/meshoptimizer/clusterizer.cpp
@@ -2,6 +2,7 @@
#include "meshoptimizer.h"
#include <assert.h>
+#include <float.h>
#include <math.h>
#include <string.h>
@@ -12,6 +13,68 @@
namespace meshopt
{
+// This must be <= 255 since index 0xff is used internally to indice a vertex that doesn't belong to a meshlet
+const size_t kMeshletMaxVertices = 255;
+
+// A reasonable limit is around 2*max_vertices or less
+const size_t kMeshletMaxTriangles = 512;
+
+struct TriangleAdjacency2
+{
+ unsigned int* counts;
+ unsigned int* offsets;
+ unsigned int* data;
+};
+
+static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
+{
+ size_t face_count = index_count / 3;
+
+ // allocate arrays
+ adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
+ adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
+ adjacency.data = allocator.allocate<unsigned int>(index_count);
+
+ // fill triangle counts
+ memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
+
+ for (size_t i = 0; i < index_count; ++i)
+ {
+ assert(indices[i] < vertex_count);
+
+ adjacency.counts[indices[i]]++;
+ }
+
+ // fill offset table
+ unsigned int offset = 0;
+
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ adjacency.offsets[i] = offset;
+ offset += adjacency.counts[i];
+ }
+
+ assert(offset == index_count);
+
+ // fill triangle data
+ for (size_t i = 0; i < face_count; ++i)
+ {
+ unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
+
+ adjacency.data[adjacency.offsets[a]++] = unsigned(i);
+ adjacency.data[adjacency.offsets[b]++] = unsigned(i);
+ adjacency.data[adjacency.offsets[c]++] = unsigned(i);
+ }
+
+ // fix offsets that have been disturbed by the previous pass
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ assert(adjacency.offsets[i] >= adjacency.counts[i]);
+
+ adjacency.offsets[i] -= adjacency.counts[i];
+ }
+}
+
static void computeBoundingSphere(float result[4], const float points[][3], size_t count)
{
assert(count > 0);
@@ -82,13 +145,310 @@ static void computeBoundingSphere(float result[4], const float points[][3], size
result[3] = radius;
}
+struct Cone
+{
+ float px, py, pz;
+ float nx, ny, nz;
+};
+
+static float getMeshletScore(float distance2, float spread, float cone_weight, float expected_radius)
+{
+ float cone = 1.f - spread * cone_weight;
+ float cone_clamped = cone < 1e-3f ? 1e-3f : cone;
+
+ return (1 + sqrtf(distance2) / expected_radius * (1 - cone_weight)) * cone_clamped;
+}
+
+static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count)
+{
+ Cone result = acc;
+
+ float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count);
+
+ result.px *= center_scale;
+ result.py *= center_scale;
+ result.pz *= center_scale;
+
+ float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz;
+ float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length);
+
+ result.nx *= axis_scale;
+ result.ny *= axis_scale;
+ result.nz *= axis_scale;
+
+ return result;
+}
+
+static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+ (void)vertex_count;
+
+ size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
+ size_t face_count = index_count / 3;
+
+ float mesh_area = 0;
+
+ for (size_t i = 0; i < face_count; ++i)
+ {
+ unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
+ assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+ const float* p0 = vertex_positions + vertex_stride_float * a;
+ const float* p1 = vertex_positions + vertex_stride_float * b;
+ const float* p2 = vertex_positions + vertex_stride_float * c;
+
+ float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
+ float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
+
+ float normalx = p10[1] * p20[2] - p10[2] * p20[1];
+ float normaly = p10[2] * p20[0] - p10[0] * p20[2];
+ float normalz = p10[0] * p20[1] - p10[1] * p20[0];
+
+ float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
+ float invarea = (area == 0.f) ? 0.f : 1.f / area;
+
+ triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f;
+ triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f;
+ triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f;
+
+ triangles[i].nx = normalx * invarea;
+ triangles[i].ny = normaly * invarea;
+ triangles[i].nz = normalz * invarea;
+
+ mesh_area += area;
+ }
+
+ return mesh_area;
+}
+
+static void finishMeshlet(meshopt_Meshlet& meshlet, unsigned char* meshlet_triangles)
+{
+ size_t offset = meshlet.triangle_offset + meshlet.triangle_count * 3;
+
+ // fill 4b padding with 0
+ while (offset & 3)
+ meshlet_triangles[offset++] = 0;
+}
+
+static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, unsigned char* used, meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t meshlet_offset, size_t max_vertices, size_t max_triangles)
+{
+ unsigned char& av = used[a];
+ unsigned char& bv = used[b];
+ unsigned char& cv = used[c];
+
+ bool result = false;
+
+ unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
+
+ if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
+ {
+ meshlets[meshlet_offset] = meshlet;
+
+ for (size_t j = 0; j < meshlet.vertex_count; ++j)
+ used[meshlet_vertices[meshlet.vertex_offset + j]] = 0xff;
+
+ finishMeshlet(meshlet, meshlet_triangles);
+
+ meshlet.vertex_offset += meshlet.vertex_count;
+ meshlet.triangle_offset += (meshlet.triangle_count * 3 + 3) & ~3; // 4b padding
+ meshlet.vertex_count = 0;
+ meshlet.triangle_count = 0;
+
+ result = true;
+ }
+
+ if (av == 0xff)
+ {
+ av = (unsigned char)meshlet.vertex_count;
+ meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = a;
+ }
+
+ if (bv == 0xff)
+ {
+ bv = (unsigned char)meshlet.vertex_count;
+ meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = b;
+ }
+
+ if (cv == 0xff)
+ {
+ cv = (unsigned char)meshlet.vertex_count;
+ meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = c;
+ }
+
+ meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 0] = av;
+ meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 1] = bv;
+ meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 2] = cv;
+ meshlet.triangle_count++;
+
+ return result;
+}
+
+struct KDNode
+{
+ union
+ {
+ float split;
+ unsigned int index;
+ };
+
+ // leaves: axis = 3, children = number of extra points after this one (0 if 'index' is the only point)
+ // branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children
+ unsigned int axis : 2;
+ unsigned int children : 30;
+};
+
+static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, unsigned int axis, float pivot)
+{
+ size_t m = 0;
+
+ // invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot
+ for (size_t i = 0; i < count; ++i)
+ {
+ float v = points[indices[i] * stride + axis];
+
+ // swap(m, i) unconditionally
+ unsigned int t = indices[m];
+ indices[m] = indices[i];
+ indices[i] = t;
+
+ // when v >= pivot, we swap i with m without advancing it, preserving invariants
+ m += v < pivot;
+ }
+
+ return m;
+}
+
+static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count)
+{
+ assert(offset + count <= node_count);
+ (void)node_count;
+
+ KDNode& result = nodes[offset];
+
+ result.index = indices[0];
+ result.axis = 3;
+ result.children = unsigned(count - 1);
+
+ // all remaining points are stored in nodes immediately following the leaf
+ for (size_t i = 1; i < count; ++i)
+ {
+ KDNode& tail = nodes[offset + i];
+
+ tail.index = indices[i];
+ tail.axis = 3;
+ tail.children = ~0u >> 2; // bogus value to prevent misuse
+ }
+
+ return offset + count;
+}
+
+static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size)
+{
+ assert(count > 0);
+ assert(offset < node_count);
+
+ if (count <= leaf_size)
+ return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
+
+ float mean[3] = {};
+ float vars[3] = {};
+ float runc = 1, runs = 1;
+
+ // gather statistics on the points in the subtree using Welford's algorithm
+ for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc)
+ {
+ const float* point = points + indices[i] * stride;
+
+ for (int k = 0; k < 3; ++k)
+ {
+ float delta = point[k] - mean[k];
+ mean[k] += delta * runs;
+ vars[k] += delta * (point[k] - mean[k]);
+ }
+ }
+
+ // split axis is one where the variance is largest
+ unsigned int axis = vars[0] >= vars[1] && vars[0] >= vars[2] ? 0 : vars[1] >= vars[2] ? 1
+ : 2;
+
+ float split = mean[axis];
+ size_t middle = kdtreePartition(indices, count, points, stride, axis, split);
+
+ // when the partition is degenerate simply consolidate the points into a single node
+ if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2)
+ return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
+
+ KDNode& result = nodes[offset];
+
+ result.split = split;
+ result.axis = axis;
+
+ // left subtree is right after our node
+ size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size);
+
+ // distance to the right subtree is represented explicitly
+ result.children = unsigned(next_offset - offset - 1);
+
+ return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size);
+}
+
+static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, unsigned int& result, float& limit)
+{
+ const KDNode& node = nodes[root];
+
+ if (node.axis == 3)
+ {
+ // leaf
+ for (unsigned int i = 0; i <= node.children; ++i)
+ {
+ unsigned int index = nodes[root + i].index;
+
+ if (emitted_flags[index])
+ continue;
+
+ const float* point = points + index * stride;
+
+ float distance2 =
+ (point[0] - position[0]) * (point[0] - position[0]) +
+ (point[1] - position[1]) * (point[1] - position[1]) +
+ (point[2] - position[2]) * (point[2] - position[2]);
+ float distance = sqrtf(distance2);
+
+ if (distance < limit)
+ {
+ result = index;
+ limit = distance;
+ }
+ }
+ }
+ else
+ {
+ // branch; we order recursion to process the node that search position is in first
+ float delta = position[node.axis] - node.split;
+ unsigned int first = (delta <= 0) ? 0 : node.children;
+ unsigned int second = first ^ node.children;
+
+ kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, result, limit);
+
+ // only process the other node if it can have a match based on closest distance so far
+ if (fabsf(delta) <= limit)
+ kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, result, limit);
+ }
+}
+
} // namespace meshopt
size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
{
+ using namespace meshopt;
+
assert(index_count % 3 == 0);
- assert(max_vertices >= 3);
- assert(max_triangles >= 1);
+ assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
+ assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
+ assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
+
+ (void)kMeshletMaxVertices;
+ (void)kMeshletMaxTriangles;
// meshlet construction is limited by max vertices and max triangles per meshlet
// the worst case is that the input is an unindexed stream since this equally stresses both limits
@@ -100,77 +460,226 @@ size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_
return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
}
-size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
+size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
{
+ using namespace meshopt;
+
assert(index_count % 3 == 0);
- assert(max_vertices >= 3);
- assert(max_triangles >= 1);
+ assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
+ assert(vertex_positions_stride % sizeof(float) == 0);
+
+ assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
+ assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
+ assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
meshopt_Allocator allocator;
- meshopt_Meshlet meshlet;
- memset(&meshlet, 0, sizeof(meshlet));
+ TriangleAdjacency2 adjacency = {};
+ buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
+
+ unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
+ memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));
+
+ size_t face_count = index_count / 3;
+
+ unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
+ memset(emitted_flags, 0, face_count);
+
+ // for each triangle, precompute centroid & normal to use for scoring
+ Cone* triangles = allocator.allocate<Cone>(face_count);
+ float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);
+
+ // assuming each meshlet is a square patch, expected radius is sqrt(expected area)
+ float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f;
+ float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f;
+
+ // build a kd-tree for nearest neighbor lookup
+ unsigned int* kdindices = allocator.allocate<unsigned int>(face_count);
+ for (size_t i = 0; i < face_count; ++i)
+ kdindices[i] = unsigned(i);
- assert(max_vertices <= sizeof(meshlet.vertices) / sizeof(meshlet.vertices[0]));
- assert(max_triangles <= sizeof(meshlet.indices) / 3);
+ KDNode* nodes = allocator.allocate<KDNode>(face_count * 2);
+ kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8);
// index of the vertex in the meshlet, 0xff if the vertex isn't used
unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
memset(used, -1, vertex_count);
- size_t offset = 0;
+ meshopt_Meshlet meshlet = {};
+ size_t meshlet_offset = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
+ Cone meshlet_cone_acc = {};
- unsigned char& av = used[a];
- unsigned char& bv = used[b];
- unsigned char& cv = used[c];
+ for (;;)
+ {
+ unsigned int best_triangle = ~0u;
+ unsigned int best_extra = 5;
+ float best_score = FLT_MAX;
- unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
+ Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);
- if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
+ for (size_t i = 0; i < meshlet.vertex_count; ++i)
{
- destination[offset++] = meshlet;
+ unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];
+
+ unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
+ size_t neighbours_size = adjacency.counts[index];
+
+ for (size_t j = 0; j < neighbours_size; ++j)
+ {
+ unsigned int triangle = neighbours[j];
+ assert(!emitted_flags[triangle]);
+
+ unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
+ assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+ unsigned int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
+
+ // triangles that don't add new vertices to meshlets are max. priority
+ if (extra != 0)
+ {
+ // artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
+ if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
+ extra = 0;
+
+ extra++;
+ }
+
+ // since topology-based priority is always more important than the score, we can skip scoring in some cases
+ if (extra > best_extra)
+ continue;
+
+ const Cone& tri_cone = triangles[triangle];
+
+ float distance2 =
+ (tri_cone.px - meshlet_cone.px) * (tri_cone.px - meshlet_cone.px) +
+ (tri_cone.py - meshlet_cone.py) * (tri_cone.py - meshlet_cone.py) +
+ (tri_cone.pz - meshlet_cone.pz) * (tri_cone.pz - meshlet_cone.pz);
- for (size_t j = 0; j < meshlet.vertex_count; ++j)
- used[meshlet.vertices[j]] = 0xff;
+ float spread = tri_cone.nx * meshlet_cone.nx + tri_cone.ny * meshlet_cone.ny + tri_cone.nz * meshlet_cone.nz;
- memset(&meshlet, 0, sizeof(meshlet));
+ float score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius);
+
+ // note that topology-based priority is always more important than the score
+ // this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
+ if (extra < best_extra || score < best_score)
+ {
+ best_triangle = triangle;
+ best_extra = extra;
+ best_score = score;
+ }
+ }
}
- if (av == 0xff)
+ if (best_triangle == ~0u)
{
- av = meshlet.vertex_count;
- meshlet.vertices[meshlet.vertex_count++] = a;
+ float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz};
+ unsigned int index = ~0u;
+ float limit = FLT_MAX;
+
+ kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, index, limit);
+
+ best_triangle = index;
}
- if (bv == 0xff)
+ if (best_triangle == ~0u)
+ break;
+
+ unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2];
+ assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+ // add meshlet to the output; when the current meshlet is full we reset the accumulated bounds
+ if (appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles))
{
- bv = meshlet.vertex_count;
- meshlet.vertices[meshlet.vertex_count++] = b;
+ meshlet_offset++;
+ memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc));
}
- if (cv == 0xff)
+ live_triangles[a]--;
+ live_triangles[b]--;
+ live_triangles[c]--;
+
+ // remove emitted triangle from adjacency data
+ // this makes sure that we spend less time traversing these lists on subsequent iterations
+ for (size_t k = 0; k < 3; ++k)
{
- cv = meshlet.vertex_count;
- meshlet.vertices[meshlet.vertex_count++] = c;
+ unsigned int index = indices[best_triangle * 3 + k];
+
+ unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
+ size_t neighbours_size = adjacency.counts[index];
+
+ for (size_t i = 0; i < neighbours_size; ++i)
+ {
+ unsigned int tri = neighbours[i];
+
+ if (tri == best_triangle)
+ {
+ neighbours[i] = neighbours[neighbours_size - 1];
+ adjacency.counts[index]--;
+ break;
+ }
+ }
}
- meshlet.indices[meshlet.triangle_count][0] = av;
- meshlet.indices[meshlet.triangle_count][1] = bv;
- meshlet.indices[meshlet.triangle_count][2] = cv;
- meshlet.triangle_count++;
+ // update aggregated meshlet cone data for scoring subsequent triangles
+ meshlet_cone_acc.px += triangles[best_triangle].px;
+ meshlet_cone_acc.py += triangles[best_triangle].py;
+ meshlet_cone_acc.pz += triangles[best_triangle].pz;
+ meshlet_cone_acc.nx += triangles[best_triangle].nx;
+ meshlet_cone_acc.ny += triangles[best_triangle].ny;
+ meshlet_cone_acc.nz += triangles[best_triangle].nz;
+
+ emitted_flags[best_triangle] = 1;
+ }
+
+ if (meshlet.triangle_count)
+ {
+ finishMeshlet(meshlet, meshlet_triangles);
+
+ meshlets[meshlet_offset++] = meshlet;
+ }
+
+ assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
+ return meshlet_offset;
+}
+
+size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
+{
+ using namespace meshopt;
+
+ assert(index_count % 3 == 0);
+
+ assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
+ assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
+ assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
+
+ meshopt_Allocator allocator;
+
+ // index of the vertex in the meshlet, 0xff if the vertex isn't used
+ unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
+ memset(used, -1, vertex_count);
+
+ meshopt_Meshlet meshlet = {};
+ size_t meshlet_offset = 0;
+
+ for (size_t i = 0; i < index_count; i += 3)
+ {
+ unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
+ assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+ // appends triangle to the meshlet and writes previous meshlet to the output if full
+ meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles);
}
if (meshlet.triangle_count)
- destination[offset++] = meshlet;
+ {
+ finishMeshlet(meshlet, meshlet_triangles);
- assert(offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
+ meshlets[meshlet_offset++] = meshlet;
+ }
- return offset;
+ assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
+ return meshlet_offset;
}
meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
@@ -178,18 +687,17 @@ meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t
using namespace meshopt;
assert(index_count % 3 == 0);
+ assert(index_count / 3 <= kMeshletMaxTriangles);
assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
- assert(index_count / 3 <= 256);
-
(void)vertex_count;
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
// compute triangle normals and gather triangle corners
- float normals[256][3];
- float corners[256][3][3];
+ float normals[kMeshletMaxTriangles][3];
+ float corners[kMeshletMaxTriangles][3][3];
size_t triangles = 0;
for (size_t i = 0; i < index_count; i += 3)
@@ -327,25 +835,23 @@ meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t
return bounds;
}
-meshopt_Bounds meshopt_computeMeshletBounds(const meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
+ using namespace meshopt;
+
+ assert(triangle_count <= kMeshletMaxTriangles);
assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
- unsigned int indices[sizeof(meshlet->indices) / sizeof(meshlet->indices[0][0])];
+ unsigned int indices[kMeshletMaxTriangles * 3];
- for (size_t i = 0; i < meshlet->triangle_count; ++i)
+ for (size_t i = 0; i < triangle_count * 3; ++i)
{
- unsigned int a = meshlet->vertices[meshlet->indices[i][0]];
- unsigned int b = meshlet->vertices[meshlet->indices[i][1]];
- unsigned int c = meshlet->vertices[meshlet->indices[i][2]];
-
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
+ unsigned int index = meshlet_vertices[meshlet_triangles[i]];
+ assert(index < vertex_count);
- indices[i * 3 + 0] = a;
- indices[i * 3 + 1] = b;
- indices[i * 3 + 2] = c;
+ indices[i] = index;
}
- return meshopt_computeClusterBounds(indices, meshlet->triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
+ return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
}
diff --git a/thirdparty/meshoptimizer/indexgenerator.cpp b/thirdparty/meshoptimizer/indexgenerator.cpp
index aa4a30efa4..f60db0dc4f 100644
--- a/thirdparty/meshoptimizer/indexgenerator.cpp
+++ b/thirdparty/meshoptimizer/indexgenerator.cpp
@@ -4,6 +4,8 @@
#include <assert.h>
#include <string.h>
+// This work is based on:
+// John McDonald, Mark Kilgard. Crack-Free Point-Normal Triangles using Adjacent Edge Normals. 2010
namespace meshopt
{
@@ -83,10 +85,49 @@ struct VertexStreamHasher
}
};
+struct EdgeHasher
+{
+ const unsigned int* remap;
+
+ size_t hash(unsigned long long edge) const
+ {
+ unsigned int e0 = unsigned(edge >> 32);
+ unsigned int e1 = unsigned(edge);
+
+ unsigned int h1 = remap[e0];
+ unsigned int h2 = remap[e1];
+
+ const unsigned int m = 0x5bd1e995;
+
+ // MurmurHash64B finalizer
+ h1 ^= h2 >> 18;
+ h1 *= m;
+ h2 ^= h1 >> 22;
+ h2 *= m;
+ h1 ^= h2 >> 17;
+ h1 *= m;
+ h2 ^= h1 >> 19;
+ h2 *= m;
+
+ return h2;
+ }
+
+ bool equal(unsigned long long lhs, unsigned long long rhs) const
+ {
+ unsigned int l0 = unsigned(lhs >> 32);
+ unsigned int l1 = unsigned(lhs);
+
+ unsigned int r0 = unsigned(rhs >> 32);
+ unsigned int r1 = unsigned(rhs);
+
+ return remap[l0] == remap[r0] && remap[l1] == remap[r1];
+ }
+};
+
static size_t hashBuckets(size_t count)
{
size_t buckets = 1;
- while (buckets < count)
+ while (buckets < count + count / 4)
buckets *= 2;
return buckets;
@@ -119,6 +160,26 @@ static T* hashLookup(T* table, size_t buckets, const Hash& hash, const T& key, c
return 0;
}
+static void buildPositionRemap(unsigned int* remap, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
+{
+ VertexHasher vertex_hasher = {reinterpret_cast<const unsigned char*>(vertex_positions), 3 * sizeof(float), vertex_positions_stride};
+
+ size_t vertex_table_size = hashBuckets(vertex_count);
+ unsigned int* vertex_table = allocator.allocate<unsigned int>(vertex_table_size);
+ memset(vertex_table, -1, vertex_table_size * sizeof(unsigned int));
+
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ unsigned int index = unsigned(i);
+ unsigned int* entry = hashLookup(vertex_table, vertex_table_size, vertex_hasher, index, ~0u);
+
+ if (*entry == ~0u)
+ *entry = index;
+
+ remap[index] = *entry;
+ }
+}
+
} // namespace meshopt
size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
@@ -345,3 +406,146 @@ void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const uns
destination[i] = remap[index];
}
}
+
+void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+ using namespace meshopt;
+
+ assert(index_count % 3 == 0);
+ assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
+ assert(vertex_positions_stride % sizeof(float) == 0);
+
+ meshopt_Allocator allocator;
+
+ static const int next[4] = {1, 2, 0, 1};
+
+ // build position remap: for each vertex, which other (canonical) vertex does it map to?
+ unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
+ buildPositionRemap(remap, vertex_positions, vertex_count, vertex_positions_stride, allocator);
+
+ // build edge set; this stores all triangle edges but we can look these up by any other wedge
+ EdgeHasher edge_hasher = {remap};
+
+ size_t edge_table_size = hashBuckets(index_count);
+ unsigned long long* edge_table = allocator.allocate<unsigned long long>(edge_table_size);
+ unsigned int* edge_vertex_table = allocator.allocate<unsigned int>(edge_table_size);
+
+ memset(edge_table, -1, edge_table_size * sizeof(unsigned long long));
+ memset(edge_vertex_table, -1, edge_table_size * sizeof(unsigned int));
+
+ for (size_t i = 0; i < index_count; i += 3)
+ {
+ for (int e = 0; e < 3; ++e)
+ {
+ unsigned int i0 = indices[i + e];
+ unsigned int i1 = indices[i + next[e]];
+ unsigned int i2 = indices[i + next[e + 1]];
+ assert(i0 < vertex_count && i1 < vertex_count && i2 < vertex_count);
+
+ unsigned long long edge = ((unsigned long long)i0 << 32) | i1;
+ unsigned long long* entry = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
+
+ if (*entry == ~0ull)
+ {
+ *entry = edge;
+
+ // store vertex opposite to the edge
+ edge_vertex_table[entry - edge_table] = i2;
+ }
+ }
+ }
+
+ // build resulting index buffer: 6 indices for each input triangle
+ for (size_t i = 0; i < index_count; i += 3)
+ {
+ unsigned int patch[6];
+
+ for (int e = 0; e < 3; ++e)
+ {
+ unsigned int i0 = indices[i + e];
+ unsigned int i1 = indices[i + next[e]];
+ assert(i0 < vertex_count && i1 < vertex_count);
+
+ // note: this refers to the opposite edge!
+ unsigned long long edge = ((unsigned long long)i1 << 32) | i0;
+ unsigned long long* oppe = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
+
+ patch[e * 2 + 0] = i0;
+ patch[e * 2 + 1] = (*oppe == ~0ull) ? i0 : edge_vertex_table[oppe - edge_table];
+ }
+
+ memcpy(destination + i * 2, patch, sizeof(patch));
+ }
+}
+
+void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+ using namespace meshopt;
+
+ assert(index_count % 3 == 0);
+ assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
+ assert(vertex_positions_stride % sizeof(float) == 0);
+
+ meshopt_Allocator allocator;
+
+ static const int next[3] = {1, 2, 0};
+
+ // build position remap: for each vertex, which other (canonical) vertex does it map to?
+ unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
+ buildPositionRemap(remap, vertex_positions, vertex_count, vertex_positions_stride, allocator);
+
+ // build edge set; this stores all triangle edges but we can look these up by any other wedge
+ EdgeHasher edge_hasher = {remap};
+
+ size_t edge_table_size = hashBuckets(index_count);
+ unsigned long long* edge_table = allocator.allocate<unsigned long long>(edge_table_size);
+ memset(edge_table, -1, edge_table_size * sizeof(unsigned long long));
+
+ for (size_t i = 0; i < index_count; i += 3)
+ {
+ for (int e = 0; e < 3; ++e)
+ {
+ unsigned int i0 = indices[i + e];
+ unsigned int i1 = indices[i + next[e]];
+ assert(i0 < vertex_count && i1 < vertex_count);
+
+ unsigned long long edge = ((unsigned long long)i0 << 32) | i1;
+ unsigned long long* entry = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
+
+ if (*entry == ~0ull)
+ *entry = edge;
+ }
+ }
+
+ // build resulting index buffer: 12 indices for each input triangle
+ for (size_t i = 0; i < index_count; i += 3)
+ {
+ unsigned int patch[12];
+
+ for (int e = 0; e < 3; ++e)
+ {
+ unsigned int i0 = indices[i + e];
+ unsigned int i1 = indices[i + next[e]];
+ assert(i0 < vertex_count && i1 < vertex_count);
+
+ // note: this refers to the opposite edge!
+ unsigned long long edge = ((unsigned long long)i1 << 32) | i0;
+ unsigned long long oppe = *hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
+
+ // use the same edge if opposite edge doesn't exist (border)
+ oppe = (oppe == ~0ull) ? edge : oppe;
+
+ // triangle index (0, 1, 2)
+ patch[e] = i0;
+
+ // opposite edge (3, 4; 5, 6; 7, 8)
+ patch[3 + e * 2 + 0] = unsigned(oppe);
+ patch[3 + e * 2 + 1] = unsigned(oppe >> 32);
+
+ // dominant vertex (9, 10, 11)
+ patch[9 + e] = remap[i0];
+ }
+
+ memcpy(destination + i * 4, patch, sizeof(patch));
+ }
+}
diff --git a/thirdparty/meshoptimizer/meshoptimizer.h b/thirdparty/meshoptimizer/meshoptimizer.h
index 1714000384..fe8d349731 100644
--- a/thirdparty/meshoptimizer/meshoptimizer.h
+++ b/thirdparty/meshoptimizer/meshoptimizer.h
@@ -1,7 +1,7 @@
/**
- * meshoptimizer - version 0.15
+ * meshoptimizer - version 0.16
*
- * Copyright (C) 2016-2020, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
+ * Copyright (C) 2016-2021, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Report bugs and download new versions at https://github.com/zeux/meshoptimizer
*
* This library is distributed under the MIT License. See notice at the end of this file.
@@ -12,7 +12,7 @@
#include <stddef.h>
/* Version macro; major * 1000 + minor * 10 + patch */
-#define MESHOPTIMIZER_VERSION 150 /* 0.15 */
+#define MESHOPTIMIZER_VERSION 160 /* 0.16 */
/* If no API is defined, assume default */
#ifndef MESHOPTIMIZER_API
@@ -98,6 +98,35 @@ MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destinati
MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
/**
+ * Generate index buffer that can be used as a geometry shader input with triangle adjacency topology
+ * Each triangle is converted into a 6-vertex patch with the following layout:
+ * - 0, 2, 4: original triangle vertices
+ * - 1, 3, 5: vertices adjacent to edges 02, 24 and 40
+ * The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY.
+ * This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering.
+ *
+ * destination must contain enough space for the resulting index buffer (index_count*2 elements)
+ * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
+ */
+MESHOPTIMIZER_EXPERIMENTAL void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+
+/**
+ * Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement
+ * Each triangle is converted into a 12-vertex patch with the following layout:
+ * - 0, 1, 2: original triangle vertices
+ * - 3, 4: opposing edge for edge 0, 1
+ * - 5, 6: opposing edge for edge 1, 2
+ * - 7, 8: opposing edge for edge 2, 0
+ * - 9, 10, 11: dominant vertices for corners 0, 1, 2
+ * The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping.
+ * See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details.
+ *
+ * destination must contain enough space for the resulting index buffer (index_count*4 elements)
+ * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
+ */
+MESHOPTIMIZER_EXPERIMENTAL void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+
+/**
* Vertex transform cache optimizer
* Reorders indices to reduce the number of GPU vertex shader invocations
* If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually.
@@ -373,22 +402,31 @@ MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetc
struct meshopt_Meshlet
{
- unsigned int vertices[64];
- unsigned char indices[126][3];
- unsigned char triangle_count;
- unsigned char vertex_count;
+ /* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */
+ unsigned int vertex_offset;
+ unsigned int triangle_offset;
+
+ /* number of vertices and triangles used in the meshlet; data is stored in consecutive range defined by offset and count */
+ unsigned int vertex_count;
+ unsigned int triangle_count;
};
/**
* Experimental: Meshlet builder
* Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer
* The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers.
- * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
+ * When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters.
+ * When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
*
- * destination must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
- * max_vertices and max_triangles can't exceed limits statically declared in meshopt_Meshlet (max_vertices <= 64, max_triangles <= 126)
+ * meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
+ * meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices
+ * meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3
+ * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
+ * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512)
+ * cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency
*/
-MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
+MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
+MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles);
struct meshopt_Bounds
@@ -426,10 +464,10 @@ struct meshopt_Bounds
* to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable.
*
* vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- * index_count should be less than or equal to 256*3 (the function assumes clusters of limited size)
+ * index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size)
*/
MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
-MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const struct meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
/**
* Experimental: Spatial sorter
@@ -513,6 +551,10 @@ inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices,
template <typename T>
inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
template <typename T>
+inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+template <typename T>
+inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count);
template <typename T>
inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count);
@@ -547,7 +589,9 @@ inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size
template <typename T>
inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
template <typename T>
-inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
+inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
+template <typename T>
+inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
template <typename T>
inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
template <typename T>
@@ -762,6 +806,24 @@ inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indi
}
template <typename T>
+inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+ meshopt_IndexAdapter<T> in(0, indices, index_count);
+ meshopt_IndexAdapter<T> out(destination, 0, index_count * 2);
+
+ meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
+}
+
+template <typename T>
+inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+ meshopt_IndexAdapter<T> in(0, indices, index_count);
+ meshopt_IndexAdapter<T> out(destination, 0, index_count * 4);
+
+ meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
+}
+
+template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
@@ -908,11 +970,19 @@ inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices
}
template <typename T>
-inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
+inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
+{
+ meshopt_IndexAdapter<T> in(0, indices, index_count);
+
+ return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight);
+}
+
+template <typename T>
+inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
- return meshopt_buildMeshlets(destination, in.data, index_count, vertex_count, max_vertices, max_triangles);
+ return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles);
}
template <typename T>
@@ -934,7 +1004,7 @@ inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_
#endif
/**
- * Copyright (c) 2016-2020 Arseny Kapoulkine
+ * Copyright (c) 2016-2021 Arseny Kapoulkine
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
diff --git a/thirdparty/meshoptimizer/simplifier.cpp b/thirdparty/meshoptimizer/simplifier.cpp
index 942db14461..b2cb589462 100644
--- a/thirdparty/meshoptimizer/simplifier.cpp
+++ b/thirdparty/meshoptimizer/simplifier.cpp
@@ -131,7 +131,7 @@ struct PositionHasher
static size_t hashBuckets2(size_t count)
{
size_t buckets = 1;
- while (buckets < count)
+ while (buckets < count + count / 4)
buckets *= 2;
return buckets;
diff --git a/thirdparty/meshoptimizer/vertexcodec.cpp b/thirdparty/meshoptimizer/vertexcodec.cpp
index 2cbfaac367..5f3ec204ab 100644
--- a/thirdparty/meshoptimizer/vertexcodec.cpp
+++ b/thirdparty/meshoptimizer/vertexcodec.cpp
@@ -710,18 +710,12 @@ static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
SIMD_TARGET
static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1)
{
- v128_t mask_0 = wasm_v32x4_shuffle(mask, mask, 0, 2, 1, 3);
-
- uint64_t mask_1a = wasm_i64x2_extract_lane(mask_0, 0) & 0x0804020108040201ull;
- uint64_t mask_1b = wasm_i64x2_extract_lane(mask_0, 1) & 0x8040201080402010ull;
+ // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
+ const uint64_t magic = 0x000103070f1f3f80ull;
// TODO: This can use v8x16_bitmask in the future
- uint64_t mask_2 = mask_1a | mask_1b;
- uint64_t mask_4 = mask_2 | (mask_2 >> 16);
- uint64_t mask_8 = mask_4 | (mask_4 >> 8);
-
- mask0 = uint8_t(mask_8);
- mask1 = uint8_t(mask_8 >> 32);
+ mask0 = uint8_t((wasm_i64x2_extract_lane(mask, 0) * magic) >> 56);
+ mask1 = uint8_t((wasm_i64x2_extract_lane(mask, 1) * magic) >> 56);
}
SIMD_TARGET