summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--core/math/quat.cpp107
-rw-r--r--core/math/quat.h19
-rw-r--r--core/variant/variant_call.cpp4
-rw-r--r--modules/gltf/gltf_document.cpp7
4 files changed, 50 insertions, 87 deletions
diff --git a/core/math/quat.cpp b/core/math/quat.cpp
index 4cecc20fef..a9a21a1ba3 100644
--- a/core/math/quat.cpp
+++ b/core/math/quat.cpp
@@ -33,32 +33,6 @@
#include "core/math/basis.h"
#include "core/string/print_string.h"
-// set_euler_xyz expects a vector containing the Euler angles in the format
-// (ax,ay,az), where ax is the angle of rotation around x axis,
-// and similar for other axes.
-// This implementation uses XYZ convention (Z is the first rotation).
-void Quat::set_euler_xyz(const Vector3 &p_euler) {
- real_t half_a1 = p_euler.x * 0.5;
- real_t half_a2 = p_euler.y * 0.5;
- real_t half_a3 = p_euler.z * 0.5;
-
- // R = X(a1).Y(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
- // a3 is the angle of the first rotation, following the notation in this reference.
-
- real_t cos_a1 = Math::cos(half_a1);
- real_t sin_a1 = Math::sin(half_a1);
- real_t cos_a2 = Math::cos(half_a2);
- real_t sin_a2 = Math::sin(half_a2);
- real_t cos_a3 = Math::cos(half_a3);
- real_t sin_a3 = Math::sin(half_a3);
-
- set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1,
- -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3,
- sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2,
- -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
-}
-
// get_euler_xyz returns a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
@@ -68,32 +42,6 @@ Vector3 Quat::get_euler_xyz() const {
return m.get_euler_xyz();
}
-// set_euler_yxz expects a vector containing the Euler angles in the format
-// (ax,ay,az), where ax is the angle of rotation around x axis,
-// and similar for other axes.
-// This implementation uses YXZ convention (Z is the first rotation).
-void Quat::set_euler_yxz(const Vector3 &p_euler) {
- real_t half_a1 = p_euler.y * 0.5;
- real_t half_a2 = p_euler.x * 0.5;
- real_t half_a3 = p_euler.z * 0.5;
-
- // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
- // a3 is the angle of the first rotation, following the notation in this reference.
-
- real_t cos_a1 = Math::cos(half_a1);
- real_t sin_a1 = Math::sin(half_a1);
- real_t cos_a2 = Math::cos(half_a2);
- real_t sin_a2 = Math::sin(half_a2);
- real_t cos_a3 = Math::cos(half_a3);
- real_t sin_a3 = Math::sin(half_a3);
-
- set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
- sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
- -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3,
- sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
-}
-
// get_euler_yxz returns a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
@@ -107,10 +55,10 @@ Vector3 Quat::get_euler_yxz() const {
}
void Quat::operator*=(const Quat &p_q) {
- set(w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y,
- w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z,
- w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x,
- w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z);
+ x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
+ y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
+ z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
+ w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;
}
Quat Quat::operator*(const Quat &p_q) const {
@@ -233,18 +181,49 @@ Quat::operator String() const {
return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w);
}
-void Quat::set_axis_angle(const Vector3 &axis, const real_t &angle) {
+Quat::Quat(const Vector3 &p_axis, real_t p_angle) {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized.");
+ ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
#endif
- real_t d = axis.length();
+ real_t d = p_axis.length();
if (d == 0) {
- set(0, 0, 0, 0);
+ x = 0;
+ y = 0;
+ z = 0;
+ w = 0;
} else {
- real_t sin_angle = Math::sin(angle * 0.5);
- real_t cos_angle = Math::cos(angle * 0.5);
+ real_t sin_angle = Math::sin(p_angle * 0.5);
+ real_t cos_angle = Math::cos(p_angle * 0.5);
real_t s = sin_angle / d;
- set(axis.x * s, axis.y * s, axis.z * s,
- cos_angle);
+ x = p_axis.x * s;
+ y = p_axis.y * s;
+ z = p_axis.z * s;
+ w = cos_angle;
}
}
+
+// Euler constructor expects a vector containing the Euler angles in the format
+// (ax, ay, az), where ax is the angle of rotation around x axis,
+// and similar for other axes.
+// This implementation uses YXZ convention (Z is the first rotation).
+Quat::Quat(const Vector3 &p_euler) {
+ real_t half_a1 = p_euler.y * 0.5;
+ real_t half_a2 = p_euler.x * 0.5;
+ real_t half_a3 = p_euler.z * 0.5;
+
+ // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
+ // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
+ // a3 is the angle of the first rotation, following the notation in this reference.
+
+ real_t cos_a1 = Math::cos(half_a1);
+ real_t sin_a1 = Math::sin(half_a1);
+ real_t cos_a2 = Math::cos(half_a2);
+ real_t sin_a2 = Math::sin(half_a2);
+ real_t cos_a3 = Math::cos(half_a3);
+ real_t sin_a3 = Math::sin(half_a3);
+
+ x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
+ y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
+ z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
+ w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
+}
diff --git a/core/math/quat.h b/core/math/quat.h
index 423a7f8dfe..9db914fe52 100644
--- a/core/math/quat.h
+++ b/core/math/quat.h
@@ -65,19 +65,14 @@ public:
Quat inverse() const;
_FORCE_INLINE_ real_t dot(const Quat &p_q) const;
- void set_euler_xyz(const Vector3 &p_euler);
Vector3 get_euler_xyz() const;
- void set_euler_yxz(const Vector3 &p_euler);
Vector3 get_euler_yxz() const;
-
- void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); };
Vector3 get_euler() const { return get_euler_yxz(); };
Quat slerp(const Quat &p_to, const real_t &p_weight) const;
Quat slerpni(const Quat &p_to, const real_t &p_weight) const;
Quat cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const;
- void set_axis_angle(const Vector3 &axis, const real_t &angle);
_FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = 2 * Math::acos(w);
real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
@@ -124,23 +119,19 @@ public:
operator String() const;
- inline void set(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
- x = p_x;
- y = p_y;
- z = p_z;
- w = p_w;
- }
-
_FORCE_INLINE_ Quat() {}
+
_FORCE_INLINE_ Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
x(p_x),
y(p_y),
z(p_z),
w(p_w) {
}
- Quat(const Vector3 &axis, const real_t &angle) { set_axis_angle(axis, angle); }
- Quat(const Vector3 &euler) { set_euler(euler); }
+ Quat(const Vector3 &p_axis, real_t p_angle);
+
+ Quat(const Vector3 &p_euler);
+
Quat(const Quat &p_q) :
x(p_q.x),
y(p_q.y),
diff --git a/core/variant/variant_call.cpp b/core/variant/variant_call.cpp
index 85e3b29279..6ff7602b4e 100644
--- a/core/variant/variant_call.cpp
+++ b/core/variant/variant_call.cpp
@@ -1126,10 +1126,6 @@ static void _register_variant_builtin_methods() {
bind_method(Quat, cubic_slerp, sarray("b", "pre_a", "post_b", "weight"), varray());
bind_method(Quat, get_euler, sarray(), varray());
- // FIXME: Quat is atomic, this should be done via construcror
- //ADDFUNC1(QUAT, NIL, Quat, set_euler, VECTOR3, "euler", varray());
- //ADDFUNC2(QUAT, NIL, Quat, set_axis_angle, VECTOR3, "axis", FLOAT, "angle", varray());
-
/* Color */
bind_method(Color, to_argb32, sarray(), varray());
diff --git a/modules/gltf/gltf_document.cpp b/modules/gltf/gltf_document.cpp
index d07d4d603c..1c97bbfb86 100644
--- a/modules/gltf/gltf_document.cpp
+++ b/modules/gltf/gltf_document.cpp
@@ -5287,8 +5287,7 @@ void GLTFDocument::_convert_mult_mesh_instance_to_gltf(Node *p_scene_parent, con
transform.origin =
Vector3(xform_2d.get_origin().x, 0, xform_2d.get_origin().y);
real_t rotation = xform_2d.get_rotation();
- Quat quat;
- quat.set_axis_angle(Vector3(0, 1, 0), rotation);
+ Quat quat(Vector3(0, 1, 0), rotation);
Size2 scale = xform_2d.get_scale();
transform.basis.set_quat_scale(quat,
Vector3(scale.x, 0, scale.y));
@@ -6040,14 +6039,12 @@ GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref<GLTFState> state
p_track.rotation_track.interpolation = gltf_interpolation;
for (int32_t key_i = 0; key_i < key_count; key_i++) {
- Quat rotation;
Vector3 rotation_degrees = p_animation->track_get_key_value(p_track_i, key_i);
Vector3 rotation_radian;
rotation_radian.x = Math::deg2rad(rotation_degrees.x);
rotation_radian.y = Math::deg2rad(rotation_degrees.y);
rotation_radian.z = Math::deg2rad(rotation_degrees.z);
- rotation.set_euler(rotation_radian);
- p_track.rotation_track.values.write[key_i] = rotation;
+ p_track.rotation_track.values.write[key_i] = Quat(rotation_radian);
}
} else if (path.find(":scale") != -1) {
p_track.scale_track.times = times;