summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--tests/core/math/test_vector2.h366
-rw-r--r--tests/core/math/test_vector2i.h144
-rw-r--r--tests/core/math/test_vector3.h395
-rw-r--r--tests/core/math/test_vector3i.h145
-rw-r--r--tests/test_main.cpp4
5 files changed, 1054 insertions, 0 deletions
diff --git a/tests/core/math/test_vector2.h b/tests/core/math/test_vector2.h
new file mode 100644
index 0000000000..7dd14736e8
--- /dev/null
+++ b/tests/core/math/test_vector2.h
@@ -0,0 +1,366 @@
+/*************************************************************************/
+/* test_vector2.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_VECTOR2_H
+#define TEST_VECTOR2_H
+
+#include "core/math/vector2.h"
+#include "tests/test_macros.h"
+
+namespace TestVector2 {
+
+TEST_CASE("[Vector2] Angle methods") {
+ const Vector2 vector_x = Vector2(1, 0);
+ const Vector2 vector_y = Vector2(0, 1);
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4),
+ "Vector2 angle_to should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_y.angle_to(vector_x), (real_t)-Math_TAU / 4),
+ "Vector2 angle_to should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_x.angle_to_point(vector_y), (real_t)Math_TAU * 3 / 8),
+ "Vector2 angle_to_point should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_y.angle_to_point(vector_x), (real_t)-Math_TAU / 8),
+ "Vector2 angle_to_point should work as expected.");
+}
+
+TEST_CASE("[Vector2] Axis methods") {
+ Vector2 vector = Vector2(1.2, 3.4);
+ CHECK_MESSAGE(
+ vector.max_axis_index() == Vector2::Axis::AXIS_Y,
+ "Vector2 max_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.min_axis_index() == Vector2::Axis::AXIS_X,
+ "Vector2 min_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector[vector.min_axis_index()] == (real_t)1.2,
+ "Vector2 array operator should work as expected.");
+ vector[Vector2::Axis::AXIS_Y] = 3.7;
+ CHECK_MESSAGE(
+ vector[Vector2::Axis::AXIS_Y] == (real_t)3.7,
+ "Vector2 array operator setter should work as expected.");
+}
+
+TEST_CASE("[Vector2] Interpolation methods") {
+ const Vector2 vector1 = Vector2(1, 2);
+ const Vector2 vector2 = Vector2(4, 5);
+ CHECK_MESSAGE(
+ vector1.lerp(vector2, 0.5) == Vector2(2.5, 3.5),
+ "Vector2 lerp should work as expected.");
+ CHECK_MESSAGE(
+ vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector2(2, 3)),
+ "Vector2 lerp should work as expected.");
+ CHECK_MESSAGE(
+ vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector2(0.538953602313995361, 0.84233558177947998)),
+ "Vector2 slerp should work as expected.");
+ CHECK_MESSAGE(
+ vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector2(0.508990883827209473, 0.860771894454956055)),
+ "Vector2 slerp should work as expected.");
+ CHECK_MESSAGE(
+ Vector2(5, 0).slerp(Vector2(0, 5), 0.5).is_equal_approx(Vector2(5, 5) * Math_SQRT12),
+ "Vector2 slerp with non-normalized values should work as expected.");
+ CHECK_MESSAGE(
+ Vector2().slerp(Vector2(), 0.5) == Vector2(),
+ "Vector2 slerp with both inputs as zero vectors should return a zero vector.");
+ CHECK_MESSAGE(
+ Vector2().slerp(Vector2(1, 1), 0.5) == Vector2(0.5, 0.5),
+ "Vector2 slerp with one input as zero should behave like a regular lerp.");
+ CHECK_MESSAGE(
+ Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5),
+ "Vector2 slerp with one input as zero should behave like a regular lerp.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)4.31959610746631919),
+ "Vector2 slerp with different length input should return a vector with an interpolated length.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)),
+ "Vector2 slerp with different length input should return a vector with an interpolated angle.");
+ CHECK_MESSAGE(
+ vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5),
+ "Vector2 cubic_interpolate should work as expected.");
+ CHECK_MESSAGE(
+ vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 1.0 / 3.0).is_equal_approx(Vector2(1.851851940155029297, 2.962963104248046875)),
+ "Vector2 cubic_interpolate should work as expected.");
+ CHECK_MESSAGE(
+ Vector2(1, 0).move_toward(Vector2(10, 0), 3) == Vector2(4, 0),
+ "Vector2 move_toward should work as expected.");
+}
+
+TEST_CASE("[Vector2] Length methods") {
+ const Vector2 vector1 = Vector2(10, 10);
+ const Vector2 vector2 = Vector2(20, 30);
+ CHECK_MESSAGE(
+ vector1.length_squared() == 200,
+ "Vector2 length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT2),
+ "Vector2 length should work as expected.");
+ CHECK_MESSAGE(
+ vector2.length_squared() == 1300,
+ "Vector2 length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector2.length(), (real_t)36.05551275463989293119),
+ "Vector2 length should work as expected.");
+ CHECK_MESSAGE(
+ vector1.distance_squared_to(vector2) == 500,
+ "Vector2 distance_squared_to should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.distance_to(vector2), (real_t)22.36067977499789696409),
+ "Vector2 distance_to should work as expected.");
+}
+
+TEST_CASE("[Vector2] Limiting methods") {
+ const Vector2 vector = Vector2(10, 10);
+ CHECK_MESSAGE(
+ vector.limit_length().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
+ "Vector2 limit_length should work as expected.");
+ CHECK_MESSAGE(
+ vector.limit_length(5).is_equal_approx(5 * Vector2(Math_SQRT12, Math_SQRT12)),
+ "Vector2 limit_length should work as expected.");
+
+ CHECK_MESSAGE(
+ Vector2(-5, 15).clamp(Vector2(), vector).is_equal_approx(Vector2(0, 10)),
+ "Vector2 clamp should work as expected.");
+ CHECK_MESSAGE(
+ vector.clamp(Vector2(0, 15), Vector2(5, 20)).is_equal_approx(Vector2(5, 15)),
+ "Vector2 clamp should work as expected.");
+}
+
+TEST_CASE("[Vector2] Normalization methods") {
+ CHECK_MESSAGE(
+ Vector2(1, 0).is_normalized() == true,
+ "Vector2 is_normalized should return true for a normalized vector.");
+ CHECK_MESSAGE(
+ Vector2(1, 1).is_normalized() == false,
+ "Vector2 is_normalized should return false for a non-normalized vector.");
+ CHECK_MESSAGE(
+ Vector2(1, 0).normalized() == Vector2(1, 0),
+ "Vector2 normalized should return the same vector for a normalized vector.");
+ CHECK_MESSAGE(
+ Vector2(1, 1).normalized().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
+ "Vector2 normalized should work as expected.");
+}
+
+TEST_CASE("[Vector2] Operators") {
+ const Vector2 decimal1 = Vector2(2.3, 4.9);
+ const Vector2 decimal2 = Vector2(1.2, 3.4);
+ const Vector2 power1 = Vector2(0.75, 1.5);
+ const Vector2 power2 = Vector2(0.5, 0.125);
+ const Vector2 int1 = Vector2(4, 5);
+ const Vector2 int2 = Vector2(1, 2);
+
+ CHECK_MESSAGE(
+ (decimal1 + decimal2).is_equal_approx(Vector2(3.5, 8.3)),
+ "Vector2 addition should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 + power2) == Vector2(1.25, 1.625),
+ "Vector2 addition with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 + int2) == Vector2(5, 7),
+ "Vector2 addition with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 - decimal2).is_equal_approx(Vector2(1.1, 1.5)),
+ "Vector2 subtraction should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 - power2) == Vector2(0.25, 1.375),
+ "Vector2 subtraction with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 - int2) == Vector2(3, 3),
+ "Vector2 subtraction with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 * decimal2).is_equal_approx(Vector2(2.76, 16.66)),
+ "Vector2 multiplication should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 * power2) == Vector2(0.375, 0.1875),
+ "Vector2 multiplication with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 * int2) == Vector2(4, 10),
+ "Vector2 multiplication with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 / decimal2).is_equal_approx(Vector2(1.91666666666666666, 1.44117647058823529)),
+ "Vector2 division should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 / power2) == Vector2(1.5, 12.0),
+ "Vector2 division with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 / int2) == Vector2(4, 2.5),
+ "Vector2 division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 * 2).is_equal_approx(Vector2(4.6, 9.8)),
+ "Vector2 multiplication should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 * 2) == Vector2(1.5, 3),
+ "Vector2 multiplication with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 * 2) == Vector2(8, 10),
+ "Vector2 multiplication with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 / 2).is_equal_approx(Vector2(1.15, 2.45)),
+ "Vector2 division should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 / 2) == Vector2(0.375, 0.75),
+ "Vector2 division with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 / 2) == Vector2(2, 2.5),
+ "Vector2 division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ ((Vector2i)decimal1) == Vector2i(2, 4),
+ "Vector2 cast to Vector2i should work as expected.");
+ CHECK_MESSAGE(
+ ((Vector2i)decimal2) == Vector2i(1, 3),
+ "Vector2 cast to Vector2i should work as expected.");
+ CHECK_MESSAGE(
+ Vector2(Vector2i(1, 2)) == Vector2(1, 2),
+ "Vector2 constructed from Vector2i should work as expected.");
+}
+
+TEST_CASE("[Vector2] Other methods") {
+ const Vector2 vector = Vector2(1.2, 3.4);
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector.aspect(), (real_t)1.2 / (real_t)3.4),
+ "Vector2 aspect should work as expected.");
+ CHECK_MESSAGE(
+ vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()),
+ "Vector2 direction_to should work as expected.");
+ CHECK_MESSAGE(
+ Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
+ "Vector2 direction_to should work as expected.");
+ CHECK_MESSAGE(
+ vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)),
+ "Vector2 posmod should work as expected.");
+ CHECK_MESSAGE(
+ (-vector).posmod(2).is_equal_approx(Vector2(0.8, 0.6)),
+ "Vector2 posmod should work as expected.");
+ CHECK_MESSAGE(
+ vector.posmodv(Vector2(1, 2)).is_equal_approx(Vector2(0.2, 1.4)),
+ "Vector2 posmodv should work as expected.");
+ CHECK_MESSAGE(
+ (-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)),
+ "Vector2 posmodv should work as expected.");
+ CHECK_MESSAGE(
+ vector.rotated(Math_TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)),
+ "Vector2 rotated should work as expected.");
+ CHECK_MESSAGE(
+ vector.snapped(Vector2(1, 1)) == Vector2(1, 3),
+ "Vector2 snapped to integers should be the same as rounding.");
+ CHECK_MESSAGE(
+ Vector2(3.4, 5.6).snapped(Vector2(1, 1)) == Vector2(3, 6),
+ "Vector2 snapped to integers should be the same as rounding.");
+ CHECK_MESSAGE(
+ vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5),
+ "Vector2 snapped to 0.25 should give exact results.");
+}
+
+TEST_CASE("[Vector2] Plane methods") {
+ const Vector2 vector = Vector2(1.2, 3.4);
+ const Vector2 vector_y = Vector2(0, 1);
+ CHECK_MESSAGE(
+ vector.bounce(vector_y) == Vector2(1.2, -3.4),
+ "Vector2 bounce on a plane with normal of the Y axis should.");
+ CHECK_MESSAGE(
+ vector.reflect(vector_y) == Vector2(-1.2, 3.4),
+ "Vector2 reflect on a plane with normal of the Y axis should.");
+ CHECK_MESSAGE(
+ vector.project(vector_y) == Vector2(0, 3.4),
+ "Vector2 projected on the X axis should only give the Y component.");
+ CHECK_MESSAGE(
+ vector.slide(vector_y) == Vector2(1.2, 0),
+ "Vector2 slide on a plane with normal of the Y axis should set the Y to zero.");
+}
+
+TEST_CASE("[Vector2] Rounding methods") {
+ const Vector2 vector1 = Vector2(1.2, 5.6);
+ const Vector2 vector2 = Vector2(1.2, -5.6);
+ CHECK_MESSAGE(
+ vector1.abs() == vector1,
+ "Vector2 abs should work as expected.");
+ CHECK_MESSAGE(
+ vector2.abs() == vector1,
+ "Vector2 abs should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.ceil() == Vector2(2, 6),
+ "Vector2 ceil should work as expected.");
+ CHECK_MESSAGE(
+ vector2.ceil() == Vector2(2, -5),
+ "Vector2 ceil should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.floor() == Vector2(1, 5),
+ "Vector2 floor should work as expected.");
+ CHECK_MESSAGE(
+ vector2.floor() == Vector2(1, -6),
+ "Vector2 floor should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.round() == Vector2(1, 6),
+ "Vector2 round should work as expected.");
+ CHECK_MESSAGE(
+ vector2.round() == Vector2(1, -6),
+ "Vector2 round should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.sign() == Vector2(1, 1),
+ "Vector2 sign should work as expected.");
+ CHECK_MESSAGE(
+ vector2.sign() == Vector2(1, -1),
+ "Vector2 sign should work as expected.");
+}
+
+TEST_CASE("[Vector2] Linear algebra methods") {
+ const Vector2 vector_x = Vector2(1, 0);
+ const Vector2 vector_y = Vector2(0, 1);
+ CHECK_MESSAGE(
+ vector_x.cross(vector_y) == 1,
+ "Vector2 cross product of X and Y should give 1.");
+ CHECK_MESSAGE(
+ vector_y.cross(vector_x) == -1,
+ "Vector2 cross product of Y and X should give negative 1.");
+
+ CHECK_MESSAGE(
+ vector_x.dot(vector_y) == 0.0,
+ "Vector2 dot product of perpendicular vectors should be zero.");
+ CHECK_MESSAGE(
+ vector_x.dot(vector_x) == 1.0,
+ "Vector2 dot product of identical unit vectors should be one.");
+ CHECK_MESSAGE(
+ (vector_x * 10).dot(vector_x * 10) == 100.0,
+ "Vector2 dot product of same direction vectors should behave as expected.");
+}
+} // namespace TestVector2
+
+#endif // TEST_VECTOR2_H
diff --git a/tests/core/math/test_vector2i.h b/tests/core/math/test_vector2i.h
new file mode 100644
index 0000000000..86e254654d
--- /dev/null
+++ b/tests/core/math/test_vector2i.h
@@ -0,0 +1,144 @@
+/*************************************************************************/
+/* test_vector2i.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_VECTOR2I_H
+#define TEST_VECTOR2I_H
+
+#include "core/math/vector2.h"
+#include "tests/test_macros.h"
+
+namespace TestVector2i {
+
+TEST_CASE("[Vector2i] Axis methods") {
+ Vector2i vector = Vector2i(2, 3);
+ CHECK_MESSAGE(
+ vector.max_axis_index() == Vector2i::Axis::AXIS_Y,
+ "Vector2i max_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.min_axis_index() == Vector2i::Axis::AXIS_X,
+ "Vector2i min_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector[vector.min_axis_index()] == 2,
+ "Vector2i array operator should work as expected.");
+ vector[Vector2i::Axis::AXIS_Y] = 5;
+ CHECK_MESSAGE(
+ vector[Vector2i::Axis::AXIS_Y] == 5,
+ "Vector2i array operator setter should work as expected.");
+}
+
+TEST_CASE("[Vector2i] Clamp method") {
+ const Vector2i vector = Vector2i(10, 10);
+ CHECK_MESSAGE(
+ Vector2i(-5, 15).clamp(Vector2i(), vector) == Vector2i(0, 10),
+ "Vector2i clamp should work as expected.");
+ CHECK_MESSAGE(
+ vector.clamp(Vector2i(0, 15), Vector2i(5, 20)) == Vector2i(5, 15),
+ "Vector2i clamp should work as expected.");
+}
+
+TEST_CASE("[Vector2i] Length methods") {
+ const Vector2i vector1 = Vector2i(10, 10);
+ const Vector2i vector2 = Vector2i(20, 30);
+ CHECK_MESSAGE(
+ vector1.length_squared() == 200,
+ "Vector2i length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.length(), 10 * Math_SQRT2),
+ "Vector2i length should work as expected.");
+ CHECK_MESSAGE(
+ vector2.length_squared() == 1300,
+ "Vector2i length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector2.length(), 36.05551275463989293119),
+ "Vector2i length should work as expected.");
+}
+
+TEST_CASE("[Vector2i] Operators") {
+ const Vector2i vector1 = Vector2i(5, 9);
+ const Vector2i vector2 = Vector2i(2, 3);
+
+ CHECK_MESSAGE(
+ (vector1 + vector2) == Vector2i(7, 12),
+ "Vector2i addition with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 - vector2) == Vector2i(3, 6),
+ "Vector2i subtraction with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 * vector2) == Vector2i(10, 27),
+ "Vector2i multiplication with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 / vector2) == Vector2i(2, 3),
+ "Vector2i division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (vector1 * 2) == Vector2i(10, 18),
+ "Vector2i multiplication with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 / 2) == Vector2i(2, 4),
+ "Vector2i division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ ((Vector2)vector1) == Vector2(5, 9),
+ "Vector2i cast to Vector2 should work as expected.");
+ CHECK_MESSAGE(
+ ((Vector2)vector2) == Vector2(2, 3),
+ "Vector2i cast to Vector2 should work as expected.");
+ CHECK_MESSAGE(
+ Vector2i(Vector2(1.1, 2.9)) == Vector2i(1, 2),
+ "Vector2i constructed from Vector2 should work as expected.");
+}
+
+TEST_CASE("[Vector2i] Other methods") {
+ const Vector2i vector = Vector2i(1, 3);
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector.aspect(), (real_t)1.0 / (real_t)3.0),
+ "Vector2i aspect should work as expected.");
+}
+
+TEST_CASE("[Vector2i] Abs and sign methods") {
+ const Vector2i vector1 = Vector2i(1, 3);
+ const Vector2i vector2 = Vector2i(1, -3);
+ CHECK_MESSAGE(
+ vector1.abs() == vector1,
+ "Vector2i abs should work as expected.");
+ CHECK_MESSAGE(
+ vector2.abs() == vector1,
+ "Vector2i abs should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.sign() == Vector2i(1, 1),
+ "Vector2i sign should work as expected.");
+ CHECK_MESSAGE(
+ vector2.sign() == Vector2i(1, -1),
+ "Vector2i sign should work as expected.");
+}
+} // namespace TestVector2i
+
+#endif // TEST_VECTOR2I_H
diff --git a/tests/core/math/test_vector3.h b/tests/core/math/test_vector3.h
new file mode 100644
index 0000000000..97da035046
--- /dev/null
+++ b/tests/core/math/test_vector3.h
@@ -0,0 +1,395 @@
+/*************************************************************************/
+/* test_vector3.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_VECTOR3_H
+#define TEST_VECTOR3_H
+
+#include "core/math/vector3.h"
+#include "tests/test_macros.h"
+
+#define Math_SQRT13 0.57735026918962576450914878050196
+#define Math_SQRT3 1.7320508075688772935274463415059
+
+namespace TestVector3 {
+
+TEST_CASE("[Vector3] Angle methods") {
+ const Vector3 vector_x = Vector3(1, 0, 0);
+ const Vector3 vector_y = Vector3(0, 1, 0);
+ const Vector3 vector_yz = Vector3(0, 1, 1);
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4),
+ "Vector3 angle_to should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_x.angle_to(vector_yz), (real_t)Math_TAU / 4),
+ "Vector3 angle_to should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_yz.angle_to(vector_x), (real_t)Math_TAU / 4),
+ "Vector3 angle_to should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_y.angle_to(vector_yz), (real_t)Math_TAU / 8),
+ "Vector3 angle_to should work as expected.");
+
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_x.signed_angle_to(vector_y, vector_y), (real_t)Math_TAU / 4),
+ "Vector3 signed_angle_to edge case should be postiive.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_x.signed_angle_to(vector_yz, vector_y), (real_t)Math_TAU / -4),
+ "Vector3 signed_angle_to should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector_yz.signed_angle_to(vector_x, vector_y), (real_t)Math_TAU / 4),
+ "Vector3 signed_angle_to should work as expected.");
+}
+
+TEST_CASE("[Vector3] Axis methods") {
+ Vector3 vector = Vector3(1.2, 3.4, 5.6);
+ CHECK_MESSAGE(
+ vector.max_axis_index() == Vector3::Axis::AXIS_Z,
+ "Vector3 max_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.min_axis_index() == Vector3::Axis::AXIS_X,
+ "Vector3 min_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.get_axis(vector.max_axis_index()) == (real_t)5.6,
+ "Vector3 get_axis should work as expected.");
+ CHECK_MESSAGE(
+ vector[vector.min_axis_index()] == (real_t)1.2,
+ "Vector3 array operator should work as expected.");
+
+ vector.set_axis(Vector3::Axis::AXIS_Y, 4.7);
+ CHECK_MESSAGE(
+ vector.get_axis(Vector3::Axis::AXIS_Y) == (real_t)4.7,
+ "Vector3 set_axis should work as expected.");
+ vector[Vector3::Axis::AXIS_Y] = 3.7;
+ CHECK_MESSAGE(
+ vector[Vector3::Axis::AXIS_Y] == (real_t)3.7,
+ "Vector3 array operator setter should work as expected.");
+}
+
+TEST_CASE("[Vector3] Interpolation methods") {
+ const Vector3 vector1 = Vector3(1, 2, 3);
+ const Vector3 vector2 = Vector3(4, 5, 6);
+ CHECK_MESSAGE(
+ vector1.lerp(vector2, 0.5) == Vector3(2.5, 3.5, 4.5),
+ "Vector3 lerp should work as expected.");
+ CHECK_MESSAGE(
+ vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector3(2, 3, 4)),
+ "Vector3 lerp should work as expected.");
+ CHECK_MESSAGE(
+ vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector3(0.363866806030273438, 0.555698215961456299, 0.747529566287994385)),
+ "Vector3 slerp should work as expected.");
+ CHECK_MESSAGE(
+ vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector3(0.332119762897491455, 0.549413740634918213, 0.766707837581634521)),
+ "Vector3 slerp should work as expected.");
+ CHECK_MESSAGE(
+ Vector3(5, 0, 0).slerp(Vector3(0, 3, 4), 0.5).is_equal_approx(Vector3(3.535533905029296875, 2.121320486068725586, 2.828427314758300781)),
+ "Vector3 slerp with non-normalized values should work as expected.");
+ CHECK_MESSAGE(
+ Vector3().slerp(Vector3(), 0.5) == Vector3(),
+ "Vector3 slerp with both inputs as zero vectors should return a zero vector.");
+ CHECK_MESSAGE(
+ Vector3().slerp(Vector3(1, 1, 1), 0.5) == Vector3(0.5, 0.5, 0.5),
+ "Vector3 slerp with one input as zero should behave like a regular lerp.");
+ CHECK_MESSAGE(
+ Vector3(1, 1, 1).slerp(Vector3(), 0.5) == Vector3(0.5, 0.5, 0.5),
+ "Vector3 slerp with one input as zero should behave like a regular lerp.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)6.25831088708303172),
+ "Vector3 slerp with different length input should return a vector with an interpolated length.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)),
+ "Vector3 slerp with different length input should return a vector with an interpolated angle.");
+ CHECK_MESSAGE(
+ vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625),
+ "Vector3 cubic_interpolate should work as expected.");
+ CHECK_MESSAGE(
+ vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector3(1.851851940155029297, 2.962963104248046875, 4.074074268341064453)),
+ "Vector3 cubic_interpolate should work as expected.");
+ CHECK_MESSAGE(
+ Vector3(1, 0, 0).move_toward(Vector3(10, 0, 0), 3) == Vector3(4, 0, 0),
+ "Vector3 move_toward should work as expected.");
+}
+
+TEST_CASE("[Vector3] Length methods") {
+ const Vector3 vector1 = Vector3(10, 10, 10);
+ const Vector3 vector2 = Vector3(20, 30, 40);
+ CHECK_MESSAGE(
+ vector1.length_squared() == 300,
+ "Vector3 length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT3),
+ "Vector3 length should work as expected.");
+ CHECK_MESSAGE(
+ vector2.length_squared() == 2900,
+ "Vector3 length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector2.length(), (real_t)53.8516480713450403125),
+ "Vector3 length should work as expected.");
+ CHECK_MESSAGE(
+ vector1.distance_squared_to(vector2) == 1400,
+ "Vector3 distance_squared_to should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.distance_to(vector2), (real_t)37.41657386773941385584),
+ "Vector3 distance_to should work as expected.");
+}
+
+TEST_CASE("[Vector3] Limiting methods") {
+ const Vector3 vector = Vector3(10, 10, 10);
+ CHECK_MESSAGE(
+ vector.limit_length().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
+ "Vector3 limit_length should work as expected.");
+ CHECK_MESSAGE(
+ vector.limit_length(5).is_equal_approx(5 * Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
+ "Vector3 limit_length should work as expected.");
+
+ CHECK_MESSAGE(
+ Vector3(-5, 5, 15).clamp(Vector3(), vector) == Vector3(0, 5, 10),
+ "Vector3 clamp should work as expected.");
+ CHECK_MESSAGE(
+ vector.clamp(Vector3(0, 10, 15), Vector3(5, 10, 20)) == Vector3(5, 10, 15),
+ "Vector3 clamp should work as expected.");
+}
+
+TEST_CASE("[Vector3] Normalization methods") {
+ CHECK_MESSAGE(
+ Vector3(1, 0, 0).is_normalized() == true,
+ "Vector3 is_normalized should return true for a normalized vector.");
+ CHECK_MESSAGE(
+ Vector3(1, 1, 1).is_normalized() == false,
+ "Vector3 is_normalized should return false for a non-normalized vector.");
+ CHECK_MESSAGE(
+ Vector3(1, 0, 0).normalized() == Vector3(1, 0, 0),
+ "Vector3 normalized should return the same vector for a normalized vector.");
+ CHECK_MESSAGE(
+ Vector3(1, 1, 0).normalized().is_equal_approx(Vector3(Math_SQRT12, Math_SQRT12, 0)),
+ "Vector3 normalized should work as expected.");
+ CHECK_MESSAGE(
+ Vector3(1, 1, 1).normalized().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
+ "Vector3 normalized should work as expected.");
+}
+
+TEST_CASE("[Vector3] Operators") {
+ const Vector3 decimal1 = Vector3(2.3, 4.9, 7.8);
+ const Vector3 decimal2 = Vector3(1.2, 3.4, 5.6);
+ const Vector3 power1 = Vector3(0.75, 1.5, 0.625);
+ const Vector3 power2 = Vector3(0.5, 0.125, 0.25);
+ const Vector3 int1 = Vector3(4, 5, 9);
+ const Vector3 int2 = Vector3(1, 2, 3);
+
+ CHECK_MESSAGE(
+ (decimal1 + decimal2).is_equal_approx(Vector3(3.5, 8.3, 13.4)),
+ "Vector3 addition should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 + power2) == Vector3(1.25, 1.625, 0.875),
+ "Vector3 addition with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 + int2) == Vector3(5, 7, 12),
+ "Vector3 addition with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 - decimal2).is_equal_approx(Vector3(1.1, 1.5, 2.2)),
+ "Vector3 subtraction should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 - power2) == Vector3(0.25, 1.375, 0.375),
+ "Vector3 subtraction with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 - int2) == Vector3(3, 3, 6),
+ "Vector3 subtraction with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 * decimal2).is_equal_approx(Vector3(2.76, 16.66, 43.68)),
+ "Vector3 multiplication should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 * power2) == Vector3(0.375, 0.1875, 0.15625),
+ "Vector3 multiplication with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 * int2) == Vector3(4, 10, 27),
+ "Vector3 multiplication with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 / decimal2).is_equal_approx(Vector3(1.91666666666666666, 1.44117647058823529, 1.39285714285714286)),
+ "Vector3 division should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 / power2) == Vector3(1.5, 12.0, 2.5),
+ "Vector3 division with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 / int2) == Vector3(4, 2.5, 3),
+ "Vector3 division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 * 2).is_equal_approx(Vector3(4.6, 9.8, 15.6)),
+ "Vector3 multiplication should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 * 2) == Vector3(1.5, 3, 1.25),
+ "Vector3 multiplication with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 * 2) == Vector3(8, 10, 18),
+ "Vector3 multiplication with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 / 2).is_equal_approx(Vector3(1.15, 2.45, 3.9)),
+ "Vector3 division should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 / 2) == Vector3(0.375, 0.75, 0.3125),
+ "Vector3 division with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 / 2) == Vector3(2, 2.5, 4.5),
+ "Vector3 division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ ((Vector3i)decimal1) == Vector3i(2, 4, 7),
+ "Vector3 cast to Vector3i should work as expected.");
+ CHECK_MESSAGE(
+ ((Vector3i)decimal2) == Vector3i(1, 3, 5),
+ "Vector3 cast to Vector3i should work as expected.");
+ CHECK_MESSAGE(
+ Vector3(Vector3i(1, 2, 3)) == Vector3(1, 2, 3),
+ "Vector3 constructed from Vector3i should work as expected.");
+}
+
+TEST_CASE("[Vector3] Other methods") {
+ const Vector3 vector = Vector3(1.2, 3.4, 5.6);
+ CHECK_MESSAGE(
+ vector.direction_to(Vector3()).is_equal_approx(-vector.normalized()),
+ "Vector3 direction_to should work as expected.");
+ CHECK_MESSAGE(
+ Vector3(1, 1, 1).direction_to(Vector3(2, 2, 2)).is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
+ "Vector3 direction_to should work as expected.");
+ CHECK_MESSAGE(
+ vector.inverse().is_equal_approx(Vector3(1 / 1.2, 1 / 3.4, 1 / 5.6)),
+ "Vector3 inverse should work as expected.");
+ CHECK_MESSAGE(
+ vector.posmod(2).is_equal_approx(Vector3(1.2, 1.4, 1.6)),
+ "Vector3 posmod should work as expected.");
+ CHECK_MESSAGE(
+ (-vector).posmod(2).is_equal_approx(Vector3(0.8, 0.6, 0.4)),
+ "Vector3 posmod should work as expected.");
+ CHECK_MESSAGE(
+ vector.posmodv(Vector3(1, 2, 3)).is_equal_approx(Vector3(0.2, 1.4, 2.6)),
+ "Vector3 posmodv should work as expected.");
+ CHECK_MESSAGE(
+ (-vector).posmodv(Vector3(2, 3, 4)).is_equal_approx(Vector3(0.8, 2.6, 2.4)),
+ "Vector3 posmodv should work as expected.");
+ CHECK_MESSAGE(
+ vector.rotated(Vector3(0, 1, 0), Math_TAU / 4).is_equal_approx(Vector3(5.6, 3.4, -1.2)),
+ "Vector3 rotated should work as expected.");
+ CHECK_MESSAGE(
+ vector.snapped(Vector3(1, 1, 1)) == Vector3(1, 3, 6),
+ "Vector3 snapped to integers should be the same as rounding.");
+ CHECK_MESSAGE(
+ vector.snapped(Vector3(0.25, 0.25, 0.25)) == Vector3(1.25, 3.5, 5.5),
+ "Vector3 snapped to 0.25 should give exact results.");
+}
+
+TEST_CASE("[Vector3] Plane methods") {
+ const Vector3 vector = Vector3(1.2, 3.4, 5.6);
+ const Vector3 vector_y = Vector3(0, 1, 0);
+ CHECK_MESSAGE(
+ vector.bounce(vector_y) == Vector3(1.2, -3.4, 5.6),
+ "Vector3 bounce on a plane with normal of the Y axis should.");
+ CHECK_MESSAGE(
+ vector.reflect(vector_y) == Vector3(-1.2, 3.4, -5.6),
+ "Vector3 reflect on a plane with normal of the Y axis should.");
+ CHECK_MESSAGE(
+ vector.project(vector_y) == Vector3(0, 3.4, 0),
+ "Vector3 projected on the X axis should only give the Y component.");
+ CHECK_MESSAGE(
+ vector.slide(vector_y) == Vector3(1.2, 0, 5.6),
+ "Vector3 slide on a plane with normal of the Y axis should set the Y to zero.");
+}
+
+TEST_CASE("[Vector3] Rounding methods") {
+ const Vector3 vector1 = Vector3(1.2, 3.4, 5.6);
+ const Vector3 vector2 = Vector3(1.2, -3.4, -5.6);
+ CHECK_MESSAGE(
+ vector1.abs() == vector1,
+ "Vector3 abs should work as expected.");
+ CHECK_MESSAGE(
+ vector2.abs() == vector1,
+ "Vector3 abs should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.ceil() == Vector3(2, 4, 6),
+ "Vector3 ceil should work as expected.");
+ CHECK_MESSAGE(
+ vector2.ceil() == Vector3(2, -3, -5),
+ "Vector3 ceil should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.floor() == Vector3(1, 3, 5),
+ "Vector3 floor should work as expected.");
+ CHECK_MESSAGE(
+ vector2.floor() == Vector3(1, -4, -6),
+ "Vector3 floor should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.round() == Vector3(1, 3, 6),
+ "Vector3 round should work as expected.");
+ CHECK_MESSAGE(
+ vector2.round() == Vector3(1, -3, -6),
+ "Vector3 round should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.sign() == Vector3(1, 1, 1),
+ "Vector3 sign should work as expected.");
+ CHECK_MESSAGE(
+ vector2.sign() == Vector3(1, -1, -1),
+ "Vector3 sign should work as expected.");
+}
+
+TEST_CASE("[Vector3] Linear algebra methods") {
+ const Vector3 vector_x = Vector3(1, 0, 0);
+ const Vector3 vector_y = Vector3(0, 1, 0);
+ const Vector3 vector_z = Vector3(0, 0, 1);
+ CHECK_MESSAGE(
+ vector_x.cross(vector_y) == vector_z,
+ "Vector3 cross product of X and Y should give Z.");
+ CHECK_MESSAGE(
+ vector_y.cross(vector_x) == -vector_z,
+ "Vector3 cross product of Y and X should give negative Z.");
+ CHECK_MESSAGE(
+ vector_y.cross(vector_z) == vector_x,
+ "Vector3 cross product of Y and Z should give X.");
+ CHECK_MESSAGE(
+ vector_z.cross(vector_x) == vector_y,
+ "Vector3 cross product of Z and X should give Y.");
+
+ CHECK_MESSAGE(
+ vector_x.dot(vector_y) == 0.0,
+ "Vector3 dot product of perpendicular vectors should be zero.");
+ CHECK_MESSAGE(
+ vector_x.dot(vector_x) == 1.0,
+ "Vector3 dot product of identical unit vectors should be one.");
+ CHECK_MESSAGE(
+ (vector_x * 10).dot(vector_x * 10) == 100.0,
+ "Vector3 dot product of same direction vectors should behave as expected.");
+}
+} // namespace TestVector3
+
+#endif // TEST_VECTOR3_H
diff --git a/tests/core/math/test_vector3i.h b/tests/core/math/test_vector3i.h
new file mode 100644
index 0000000000..b1c6944eba
--- /dev/null
+++ b/tests/core/math/test_vector3i.h
@@ -0,0 +1,145 @@
+/*************************************************************************/
+/* test_vector3i.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_VECTOR3I_H
+#define TEST_VECTOR3I_H
+
+#include "core/math/vector3i.h"
+#include "tests/test_macros.h"
+
+namespace TestVector3i {
+
+TEST_CASE("[Vector3i] Axis methods") {
+ Vector3i vector = Vector3i(1, 2, 3);
+ CHECK_MESSAGE(
+ vector.max_axis_index() == Vector3i::Axis::AXIS_Z,
+ "Vector3i max_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.min_axis_index() == Vector3i::Axis::AXIS_X,
+ "Vector3i min_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.get_axis(vector.max_axis_index()) == 3,
+ "Vector3i get_axis should work as expected.");
+ CHECK_MESSAGE(
+ vector[vector.min_axis_index()] == 1,
+ "Vector3i array operator should work as expected.");
+
+ vector.set_axis(Vector3i::Axis::AXIS_Y, 4);
+ CHECK_MESSAGE(
+ vector.get_axis(Vector3i::Axis::AXIS_Y) == 4,
+ "Vector3i set_axis should work as expected.");
+ vector[Vector3i::Axis::AXIS_Y] = 5;
+ CHECK_MESSAGE(
+ vector[Vector3i::Axis::AXIS_Y] == 5,
+ "Vector3i array operator setter should work as expected.");
+}
+
+TEST_CASE("[Vector3i] Clamp method") {
+ const Vector3i vector = Vector3i(10, 10, 10);
+ CHECK_MESSAGE(
+ Vector3i(-5, 5, 15).clamp(Vector3i(), vector) == Vector3i(0, 5, 10),
+ "Vector3i clamp should work as expected.");
+ CHECK_MESSAGE(
+ vector.clamp(Vector3i(0, 10, 15), Vector3i(5, 10, 20)) == Vector3i(5, 10, 15),
+ "Vector3i clamp should work as expected.");
+}
+
+TEST_CASE("[Vector3i] Length methods") {
+ const Vector3i vector1 = Vector3i(10, 10, 10);
+ const Vector3i vector2 = Vector3i(20, 30, 40);
+ CHECK_MESSAGE(
+ vector1.length_squared() == 300,
+ "Vector3i length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.length(), 10 * Math_SQRT3),
+ "Vector3i length should work as expected.");
+ CHECK_MESSAGE(
+ vector2.length_squared() == 2900,
+ "Vector3i length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector2.length(), 53.8516480713450403125),
+ "Vector3i length should work as expected.");
+}
+
+TEST_CASE("[Vector3i] Operators") {
+ const Vector3i vector1 = Vector3i(4, 5, 9);
+ const Vector3i vector2 = Vector3i(1, 2, 3);
+
+ CHECK_MESSAGE(
+ (vector1 + vector2) == Vector3i(5, 7, 12),
+ "Vector3i addition with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 - vector2) == Vector3i(3, 3, 6),
+ "Vector3i subtraction with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 * vector2) == Vector3i(4, 10, 27),
+ "Vector3i multiplication with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 / vector2) == Vector3i(4, 2, 3),
+ "Vector3i division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (vector1 * 2) == Vector3i(8, 10, 18),
+ "Vector3i multiplication with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 / 2) == Vector3i(2, 2, 4),
+ "Vector3i division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ ((Vector3)vector1) == Vector3(4, 5, 9),
+ "Vector3i cast to Vector3 should work as expected.");
+ CHECK_MESSAGE(
+ ((Vector3)vector2) == Vector3(1, 2, 3),
+ "Vector3i cast to Vector3 should work as expected.");
+ CHECK_MESSAGE(
+ Vector3i(Vector3(1.1, 2.9, 3.9)) == Vector3i(1, 2, 3),
+ "Vector3i constructed from Vector3 should work as expected.");
+}
+
+TEST_CASE("[Vector3i] Abs and sign methods") {
+ const Vector3i vector1 = Vector3i(1, 3, 5);
+ const Vector3i vector2 = Vector3i(1, -3, -5);
+ CHECK_MESSAGE(
+ vector1.abs() == vector1,
+ "Vector3i abs should work as expected.");
+ CHECK_MESSAGE(
+ vector2.abs() == vector1,
+ "Vector3i abs should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.sign() == Vector3i(1, 1, 1),
+ "Vector3i sign should work as expected.");
+ CHECK_MESSAGE(
+ vector2.sign() == Vector3i(1, -1, -1),
+ "Vector3i sign should work as expected.");
+}
+} // namespace TestVector3i
+
+#endif // TEST_VECTOR3I_H
diff --git a/tests/test_main.cpp b/tests/test_main.cpp
index 2b2c89fbf1..3826c03cad 100644
--- a/tests/test_main.cpp
+++ b/tests/test_main.cpp
@@ -48,6 +48,10 @@
#include "tests/core/math/test_math.h"
#include "tests/core/math/test_random_number_generator.h"
#include "tests/core/math/test_rect2.h"
+#include "tests/core/math/test_vector2.h"
+#include "tests/core/math/test_vector2i.h"
+#include "tests/core/math/test_vector3.h"
+#include "tests/core/math/test_vector3i.h"
#include "tests/core/object/test_class_db.h"
#include "tests/core/object/test_method_bind.h"
#include "tests/core/object/test_object.h"