diff options
-rw-r--r-- | tests/core/math/test_vector2.h | 366 | ||||
-rw-r--r-- | tests/core/math/test_vector2i.h | 144 | ||||
-rw-r--r-- | tests/core/math/test_vector3.h | 395 | ||||
-rw-r--r-- | tests/core/math/test_vector3i.h | 145 | ||||
-rw-r--r-- | tests/test_main.cpp | 4 |
5 files changed, 1054 insertions, 0 deletions
diff --git a/tests/core/math/test_vector2.h b/tests/core/math/test_vector2.h new file mode 100644 index 0000000000..7dd14736e8 --- /dev/null +++ b/tests/core/math/test_vector2.h @@ -0,0 +1,366 @@ +/*************************************************************************/ +/* test_vector2.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef TEST_VECTOR2_H +#define TEST_VECTOR2_H + +#include "core/math/vector2.h" +#include "tests/test_macros.h" + +namespace TestVector2 { + +TEST_CASE("[Vector2] Angle methods") { + const Vector2 vector_x = Vector2(1, 0); + const Vector2 vector_y = Vector2(0, 1); + CHECK_MESSAGE( + Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4), + "Vector2 angle_to should work as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(vector_y.angle_to(vector_x), (real_t)-Math_TAU / 4), + "Vector2 angle_to should work as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(vector_x.angle_to_point(vector_y), (real_t)Math_TAU * 3 / 8), + "Vector2 angle_to_point should work as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(vector_y.angle_to_point(vector_x), (real_t)-Math_TAU / 8), + "Vector2 angle_to_point should work as expected."); +} + +TEST_CASE("[Vector2] Axis methods") { + Vector2 vector = Vector2(1.2, 3.4); + CHECK_MESSAGE( + vector.max_axis_index() == Vector2::Axis::AXIS_Y, + "Vector2 max_axis_index should work as expected."); + CHECK_MESSAGE( + vector.min_axis_index() == Vector2::Axis::AXIS_X, + "Vector2 min_axis_index should work as expected."); + CHECK_MESSAGE( + vector[vector.min_axis_index()] == (real_t)1.2, + "Vector2 array operator should work as expected."); + vector[Vector2::Axis::AXIS_Y] = 3.7; + CHECK_MESSAGE( + vector[Vector2::Axis::AXIS_Y] == (real_t)3.7, + "Vector2 array operator setter should work as expected."); +} + +TEST_CASE("[Vector2] Interpolation methods") { + const Vector2 vector1 = Vector2(1, 2); + const Vector2 vector2 = Vector2(4, 5); + CHECK_MESSAGE( + vector1.lerp(vector2, 0.5) == Vector2(2.5, 3.5), + "Vector2 lerp should work as expected."); + CHECK_MESSAGE( + vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector2(2, 3)), + "Vector2 lerp should work as expected."); + CHECK_MESSAGE( + vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector2(0.538953602313995361, 0.84233558177947998)), + "Vector2 slerp should work as expected."); + CHECK_MESSAGE( + vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector2(0.508990883827209473, 0.860771894454956055)), + "Vector2 slerp should work as expected."); + CHECK_MESSAGE( + Vector2(5, 0).slerp(Vector2(0, 5), 0.5).is_equal_approx(Vector2(5, 5) * Math_SQRT12), + "Vector2 slerp with non-normalized values should work as expected."); + CHECK_MESSAGE( + Vector2().slerp(Vector2(), 0.5) == Vector2(), + "Vector2 slerp with both inputs as zero vectors should return a zero vector."); + CHECK_MESSAGE( + Vector2().slerp(Vector2(1, 1), 0.5) == Vector2(0.5, 0.5), + "Vector2 slerp with one input as zero should behave like a regular lerp."); + CHECK_MESSAGE( + Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5), + "Vector2 slerp with one input as zero should behave like a regular lerp."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)4.31959610746631919), + "Vector2 slerp with different length input should return a vector with an interpolated length."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)), + "Vector2 slerp with different length input should return a vector with an interpolated angle."); + CHECK_MESSAGE( + vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5), + "Vector2 cubic_interpolate should work as expected."); + CHECK_MESSAGE( + vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 1.0 / 3.0).is_equal_approx(Vector2(1.851851940155029297, 2.962963104248046875)), + "Vector2 cubic_interpolate should work as expected."); + CHECK_MESSAGE( + Vector2(1, 0).move_toward(Vector2(10, 0), 3) == Vector2(4, 0), + "Vector2 move_toward should work as expected."); +} + +TEST_CASE("[Vector2] Length methods") { + const Vector2 vector1 = Vector2(10, 10); + const Vector2 vector2 = Vector2(20, 30); + CHECK_MESSAGE( + vector1.length_squared() == 200, + "Vector2 length_squared should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT2), + "Vector2 length should work as expected."); + CHECK_MESSAGE( + vector2.length_squared() == 1300, + "Vector2 length_squared should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector2.length(), (real_t)36.05551275463989293119), + "Vector2 length should work as expected."); + CHECK_MESSAGE( + vector1.distance_squared_to(vector2) == 500, + "Vector2 distance_squared_to should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.distance_to(vector2), (real_t)22.36067977499789696409), + "Vector2 distance_to should work as expected."); +} + +TEST_CASE("[Vector2] Limiting methods") { + const Vector2 vector = Vector2(10, 10); + CHECK_MESSAGE( + vector.limit_length().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), + "Vector2 limit_length should work as expected."); + CHECK_MESSAGE( + vector.limit_length(5).is_equal_approx(5 * Vector2(Math_SQRT12, Math_SQRT12)), + "Vector2 limit_length should work as expected."); + + CHECK_MESSAGE( + Vector2(-5, 15).clamp(Vector2(), vector).is_equal_approx(Vector2(0, 10)), + "Vector2 clamp should work as expected."); + CHECK_MESSAGE( + vector.clamp(Vector2(0, 15), Vector2(5, 20)).is_equal_approx(Vector2(5, 15)), + "Vector2 clamp should work as expected."); +} + +TEST_CASE("[Vector2] Normalization methods") { + CHECK_MESSAGE( + Vector2(1, 0).is_normalized() == true, + "Vector2 is_normalized should return true for a normalized vector."); + CHECK_MESSAGE( + Vector2(1, 1).is_normalized() == false, + "Vector2 is_normalized should return false for a non-normalized vector."); + CHECK_MESSAGE( + Vector2(1, 0).normalized() == Vector2(1, 0), + "Vector2 normalized should return the same vector for a normalized vector."); + CHECK_MESSAGE( + Vector2(1, 1).normalized().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), + "Vector2 normalized should work as expected."); +} + +TEST_CASE("[Vector2] Operators") { + const Vector2 decimal1 = Vector2(2.3, 4.9); + const Vector2 decimal2 = Vector2(1.2, 3.4); + const Vector2 power1 = Vector2(0.75, 1.5); + const Vector2 power2 = Vector2(0.5, 0.125); + const Vector2 int1 = Vector2(4, 5); + const Vector2 int2 = Vector2(1, 2); + + CHECK_MESSAGE( + (decimal1 + decimal2).is_equal_approx(Vector2(3.5, 8.3)), + "Vector2 addition should behave as expected."); + CHECK_MESSAGE( + (power1 + power2) == Vector2(1.25, 1.625), + "Vector2 addition with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 + int2) == Vector2(5, 7), + "Vector2 addition with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 - decimal2).is_equal_approx(Vector2(1.1, 1.5)), + "Vector2 subtraction should behave as expected."); + CHECK_MESSAGE( + (power1 - power2) == Vector2(0.25, 1.375), + "Vector2 subtraction with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 - int2) == Vector2(3, 3), + "Vector2 subtraction with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 * decimal2).is_equal_approx(Vector2(2.76, 16.66)), + "Vector2 multiplication should behave as expected."); + CHECK_MESSAGE( + (power1 * power2) == Vector2(0.375, 0.1875), + "Vector2 multiplication with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 * int2) == Vector2(4, 10), + "Vector2 multiplication with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 / decimal2).is_equal_approx(Vector2(1.91666666666666666, 1.44117647058823529)), + "Vector2 division should behave as expected."); + CHECK_MESSAGE( + (power1 / power2) == Vector2(1.5, 12.0), + "Vector2 division with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 / int2) == Vector2(4, 2.5), + "Vector2 division with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 * 2).is_equal_approx(Vector2(4.6, 9.8)), + "Vector2 multiplication should behave as expected."); + CHECK_MESSAGE( + (power1 * 2) == Vector2(1.5, 3), + "Vector2 multiplication with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 * 2) == Vector2(8, 10), + "Vector2 multiplication with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 / 2).is_equal_approx(Vector2(1.15, 2.45)), + "Vector2 division should behave as expected."); + CHECK_MESSAGE( + (power1 / 2) == Vector2(0.375, 0.75), + "Vector2 division with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 / 2) == Vector2(2, 2.5), + "Vector2 division with integers should give exact results."); + + CHECK_MESSAGE( + ((Vector2i)decimal1) == Vector2i(2, 4), + "Vector2 cast to Vector2i should work as expected."); + CHECK_MESSAGE( + ((Vector2i)decimal2) == Vector2i(1, 3), + "Vector2 cast to Vector2i should work as expected."); + CHECK_MESSAGE( + Vector2(Vector2i(1, 2)) == Vector2(1, 2), + "Vector2 constructed from Vector2i should work as expected."); +} + +TEST_CASE("[Vector2] Other methods") { + const Vector2 vector = Vector2(1.2, 3.4); + CHECK_MESSAGE( + Math::is_equal_approx(vector.aspect(), (real_t)1.2 / (real_t)3.4), + "Vector2 aspect should work as expected."); + CHECK_MESSAGE( + vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()), + "Vector2 direction_to should work as expected."); + CHECK_MESSAGE( + Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), + "Vector2 direction_to should work as expected."); + CHECK_MESSAGE( + vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)), + "Vector2 posmod should work as expected."); + CHECK_MESSAGE( + (-vector).posmod(2).is_equal_approx(Vector2(0.8, 0.6)), + "Vector2 posmod should work as expected."); + CHECK_MESSAGE( + vector.posmodv(Vector2(1, 2)).is_equal_approx(Vector2(0.2, 1.4)), + "Vector2 posmodv should work as expected."); + CHECK_MESSAGE( + (-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)), + "Vector2 posmodv should work as expected."); + CHECK_MESSAGE( + vector.rotated(Math_TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)), + "Vector2 rotated should work as expected."); + CHECK_MESSAGE( + vector.snapped(Vector2(1, 1)) == Vector2(1, 3), + "Vector2 snapped to integers should be the same as rounding."); + CHECK_MESSAGE( + Vector2(3.4, 5.6).snapped(Vector2(1, 1)) == Vector2(3, 6), + "Vector2 snapped to integers should be the same as rounding."); + CHECK_MESSAGE( + vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5), + "Vector2 snapped to 0.25 should give exact results."); +} + +TEST_CASE("[Vector2] Plane methods") { + const Vector2 vector = Vector2(1.2, 3.4); + const Vector2 vector_y = Vector2(0, 1); + CHECK_MESSAGE( + vector.bounce(vector_y) == Vector2(1.2, -3.4), + "Vector2 bounce on a plane with normal of the Y axis should."); + CHECK_MESSAGE( + vector.reflect(vector_y) == Vector2(-1.2, 3.4), + "Vector2 reflect on a plane with normal of the Y axis should."); + CHECK_MESSAGE( + vector.project(vector_y) == Vector2(0, 3.4), + "Vector2 projected on the X axis should only give the Y component."); + CHECK_MESSAGE( + vector.slide(vector_y) == Vector2(1.2, 0), + "Vector2 slide on a plane with normal of the Y axis should set the Y to zero."); +} + +TEST_CASE("[Vector2] Rounding methods") { + const Vector2 vector1 = Vector2(1.2, 5.6); + const Vector2 vector2 = Vector2(1.2, -5.6); + CHECK_MESSAGE( + vector1.abs() == vector1, + "Vector2 abs should work as expected."); + CHECK_MESSAGE( + vector2.abs() == vector1, + "Vector2 abs should work as expected."); + + CHECK_MESSAGE( + vector1.ceil() == Vector2(2, 6), + "Vector2 ceil should work as expected."); + CHECK_MESSAGE( + vector2.ceil() == Vector2(2, -5), + "Vector2 ceil should work as expected."); + + CHECK_MESSAGE( + vector1.floor() == Vector2(1, 5), + "Vector2 floor should work as expected."); + CHECK_MESSAGE( + vector2.floor() == Vector2(1, -6), + "Vector2 floor should work as expected."); + + CHECK_MESSAGE( + vector1.round() == Vector2(1, 6), + "Vector2 round should work as expected."); + CHECK_MESSAGE( + vector2.round() == Vector2(1, -6), + "Vector2 round should work as expected."); + + CHECK_MESSAGE( + vector1.sign() == Vector2(1, 1), + "Vector2 sign should work as expected."); + CHECK_MESSAGE( + vector2.sign() == Vector2(1, -1), + "Vector2 sign should work as expected."); +} + +TEST_CASE("[Vector2] Linear algebra methods") { + const Vector2 vector_x = Vector2(1, 0); + const Vector2 vector_y = Vector2(0, 1); + CHECK_MESSAGE( + vector_x.cross(vector_y) == 1, + "Vector2 cross product of X and Y should give 1."); + CHECK_MESSAGE( + vector_y.cross(vector_x) == -1, + "Vector2 cross product of Y and X should give negative 1."); + + CHECK_MESSAGE( + vector_x.dot(vector_y) == 0.0, + "Vector2 dot product of perpendicular vectors should be zero."); + CHECK_MESSAGE( + vector_x.dot(vector_x) == 1.0, + "Vector2 dot product of identical unit vectors should be one."); + CHECK_MESSAGE( + (vector_x * 10).dot(vector_x * 10) == 100.0, + "Vector2 dot product of same direction vectors should behave as expected."); +} +} // namespace TestVector2 + +#endif // TEST_VECTOR2_H diff --git a/tests/core/math/test_vector2i.h b/tests/core/math/test_vector2i.h new file mode 100644 index 0000000000..86e254654d --- /dev/null +++ b/tests/core/math/test_vector2i.h @@ -0,0 +1,144 @@ +/*************************************************************************/ +/* test_vector2i.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef TEST_VECTOR2I_H +#define TEST_VECTOR2I_H + +#include "core/math/vector2.h" +#include "tests/test_macros.h" + +namespace TestVector2i { + +TEST_CASE("[Vector2i] Axis methods") { + Vector2i vector = Vector2i(2, 3); + CHECK_MESSAGE( + vector.max_axis_index() == Vector2i::Axis::AXIS_Y, + "Vector2i max_axis_index should work as expected."); + CHECK_MESSAGE( + vector.min_axis_index() == Vector2i::Axis::AXIS_X, + "Vector2i min_axis_index should work as expected."); + CHECK_MESSAGE( + vector[vector.min_axis_index()] == 2, + "Vector2i array operator should work as expected."); + vector[Vector2i::Axis::AXIS_Y] = 5; + CHECK_MESSAGE( + vector[Vector2i::Axis::AXIS_Y] == 5, + "Vector2i array operator setter should work as expected."); +} + +TEST_CASE("[Vector2i] Clamp method") { + const Vector2i vector = Vector2i(10, 10); + CHECK_MESSAGE( + Vector2i(-5, 15).clamp(Vector2i(), vector) == Vector2i(0, 10), + "Vector2i clamp should work as expected."); + CHECK_MESSAGE( + vector.clamp(Vector2i(0, 15), Vector2i(5, 20)) == Vector2i(5, 15), + "Vector2i clamp should work as expected."); +} + +TEST_CASE("[Vector2i] Length methods") { + const Vector2i vector1 = Vector2i(10, 10); + const Vector2i vector2 = Vector2i(20, 30); + CHECK_MESSAGE( + vector1.length_squared() == 200, + "Vector2i length_squared should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.length(), 10 * Math_SQRT2), + "Vector2i length should work as expected."); + CHECK_MESSAGE( + vector2.length_squared() == 1300, + "Vector2i length_squared should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector2.length(), 36.05551275463989293119), + "Vector2i length should work as expected."); +} + +TEST_CASE("[Vector2i] Operators") { + const Vector2i vector1 = Vector2i(5, 9); + const Vector2i vector2 = Vector2i(2, 3); + + CHECK_MESSAGE( + (vector1 + vector2) == Vector2i(7, 12), + "Vector2i addition with integers should give exact results."); + CHECK_MESSAGE( + (vector1 - vector2) == Vector2i(3, 6), + "Vector2i subtraction with integers should give exact results."); + CHECK_MESSAGE( + (vector1 * vector2) == Vector2i(10, 27), + "Vector2i multiplication with integers should give exact results."); + CHECK_MESSAGE( + (vector1 / vector2) == Vector2i(2, 3), + "Vector2i division with integers should give exact results."); + + CHECK_MESSAGE( + (vector1 * 2) == Vector2i(10, 18), + "Vector2i multiplication with integers should give exact results."); + CHECK_MESSAGE( + (vector1 / 2) == Vector2i(2, 4), + "Vector2i division with integers should give exact results."); + + CHECK_MESSAGE( + ((Vector2)vector1) == Vector2(5, 9), + "Vector2i cast to Vector2 should work as expected."); + CHECK_MESSAGE( + ((Vector2)vector2) == Vector2(2, 3), + "Vector2i cast to Vector2 should work as expected."); + CHECK_MESSAGE( + Vector2i(Vector2(1.1, 2.9)) == Vector2i(1, 2), + "Vector2i constructed from Vector2 should work as expected."); +} + +TEST_CASE("[Vector2i] Other methods") { + const Vector2i vector = Vector2i(1, 3); + CHECK_MESSAGE( + Math::is_equal_approx(vector.aspect(), (real_t)1.0 / (real_t)3.0), + "Vector2i aspect should work as expected."); +} + +TEST_CASE("[Vector2i] Abs and sign methods") { + const Vector2i vector1 = Vector2i(1, 3); + const Vector2i vector2 = Vector2i(1, -3); + CHECK_MESSAGE( + vector1.abs() == vector1, + "Vector2i abs should work as expected."); + CHECK_MESSAGE( + vector2.abs() == vector1, + "Vector2i abs should work as expected."); + + CHECK_MESSAGE( + vector1.sign() == Vector2i(1, 1), + "Vector2i sign should work as expected."); + CHECK_MESSAGE( + vector2.sign() == Vector2i(1, -1), + "Vector2i sign should work as expected."); +} +} // namespace TestVector2i + +#endif // TEST_VECTOR2I_H diff --git a/tests/core/math/test_vector3.h b/tests/core/math/test_vector3.h new file mode 100644 index 0000000000..97da035046 --- /dev/null +++ b/tests/core/math/test_vector3.h @@ -0,0 +1,395 @@ +/*************************************************************************/ +/* test_vector3.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef TEST_VECTOR3_H +#define TEST_VECTOR3_H + +#include "core/math/vector3.h" +#include "tests/test_macros.h" + +#define Math_SQRT13 0.57735026918962576450914878050196 +#define Math_SQRT3 1.7320508075688772935274463415059 + +namespace TestVector3 { + +TEST_CASE("[Vector3] Angle methods") { + const Vector3 vector_x = Vector3(1, 0, 0); + const Vector3 vector_y = Vector3(0, 1, 0); + const Vector3 vector_yz = Vector3(0, 1, 1); + CHECK_MESSAGE( + Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4), + "Vector3 angle_to should work as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(vector_x.angle_to(vector_yz), (real_t)Math_TAU / 4), + "Vector3 angle_to should work as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(vector_yz.angle_to(vector_x), (real_t)Math_TAU / 4), + "Vector3 angle_to should work as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(vector_y.angle_to(vector_yz), (real_t)Math_TAU / 8), + "Vector3 angle_to should work as expected."); + + CHECK_MESSAGE( + Math::is_equal_approx(vector_x.signed_angle_to(vector_y, vector_y), (real_t)Math_TAU / 4), + "Vector3 signed_angle_to edge case should be postiive."); + CHECK_MESSAGE( + Math::is_equal_approx(vector_x.signed_angle_to(vector_yz, vector_y), (real_t)Math_TAU / -4), + "Vector3 signed_angle_to should work as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(vector_yz.signed_angle_to(vector_x, vector_y), (real_t)Math_TAU / 4), + "Vector3 signed_angle_to should work as expected."); +} + +TEST_CASE("[Vector3] Axis methods") { + Vector3 vector = Vector3(1.2, 3.4, 5.6); + CHECK_MESSAGE( + vector.max_axis_index() == Vector3::Axis::AXIS_Z, + "Vector3 max_axis_index should work as expected."); + CHECK_MESSAGE( + vector.min_axis_index() == Vector3::Axis::AXIS_X, + "Vector3 min_axis_index should work as expected."); + CHECK_MESSAGE( + vector.get_axis(vector.max_axis_index()) == (real_t)5.6, + "Vector3 get_axis should work as expected."); + CHECK_MESSAGE( + vector[vector.min_axis_index()] == (real_t)1.2, + "Vector3 array operator should work as expected."); + + vector.set_axis(Vector3::Axis::AXIS_Y, 4.7); + CHECK_MESSAGE( + vector.get_axis(Vector3::Axis::AXIS_Y) == (real_t)4.7, + "Vector3 set_axis should work as expected."); + vector[Vector3::Axis::AXIS_Y] = 3.7; + CHECK_MESSAGE( + vector[Vector3::Axis::AXIS_Y] == (real_t)3.7, + "Vector3 array operator setter should work as expected."); +} + +TEST_CASE("[Vector3] Interpolation methods") { + const Vector3 vector1 = Vector3(1, 2, 3); + const Vector3 vector2 = Vector3(4, 5, 6); + CHECK_MESSAGE( + vector1.lerp(vector2, 0.5) == Vector3(2.5, 3.5, 4.5), + "Vector3 lerp should work as expected."); + CHECK_MESSAGE( + vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector3(2, 3, 4)), + "Vector3 lerp should work as expected."); + CHECK_MESSAGE( + vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector3(0.363866806030273438, 0.555698215961456299, 0.747529566287994385)), + "Vector3 slerp should work as expected."); + CHECK_MESSAGE( + vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector3(0.332119762897491455, 0.549413740634918213, 0.766707837581634521)), + "Vector3 slerp should work as expected."); + CHECK_MESSAGE( + Vector3(5, 0, 0).slerp(Vector3(0, 3, 4), 0.5).is_equal_approx(Vector3(3.535533905029296875, 2.121320486068725586, 2.828427314758300781)), + "Vector3 slerp with non-normalized values should work as expected."); + CHECK_MESSAGE( + Vector3().slerp(Vector3(), 0.5) == Vector3(), + "Vector3 slerp with both inputs as zero vectors should return a zero vector."); + CHECK_MESSAGE( + Vector3().slerp(Vector3(1, 1, 1), 0.5) == Vector3(0.5, 0.5, 0.5), + "Vector3 slerp with one input as zero should behave like a regular lerp."); + CHECK_MESSAGE( + Vector3(1, 1, 1).slerp(Vector3(), 0.5) == Vector3(0.5, 0.5, 0.5), + "Vector3 slerp with one input as zero should behave like a regular lerp."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)6.25831088708303172), + "Vector3 slerp with different length input should return a vector with an interpolated length."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)), + "Vector3 slerp with different length input should return a vector with an interpolated angle."); + CHECK_MESSAGE( + vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625), + "Vector3 cubic_interpolate should work as expected."); + CHECK_MESSAGE( + vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector3(1.851851940155029297, 2.962963104248046875, 4.074074268341064453)), + "Vector3 cubic_interpolate should work as expected."); + CHECK_MESSAGE( + Vector3(1, 0, 0).move_toward(Vector3(10, 0, 0), 3) == Vector3(4, 0, 0), + "Vector3 move_toward should work as expected."); +} + +TEST_CASE("[Vector3] Length methods") { + const Vector3 vector1 = Vector3(10, 10, 10); + const Vector3 vector2 = Vector3(20, 30, 40); + CHECK_MESSAGE( + vector1.length_squared() == 300, + "Vector3 length_squared should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT3), + "Vector3 length should work as expected."); + CHECK_MESSAGE( + vector2.length_squared() == 2900, + "Vector3 length_squared should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector2.length(), (real_t)53.8516480713450403125), + "Vector3 length should work as expected."); + CHECK_MESSAGE( + vector1.distance_squared_to(vector2) == 1400, + "Vector3 distance_squared_to should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.distance_to(vector2), (real_t)37.41657386773941385584), + "Vector3 distance_to should work as expected."); +} + +TEST_CASE("[Vector3] Limiting methods") { + const Vector3 vector = Vector3(10, 10, 10); + CHECK_MESSAGE( + vector.limit_length().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), + "Vector3 limit_length should work as expected."); + CHECK_MESSAGE( + vector.limit_length(5).is_equal_approx(5 * Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), + "Vector3 limit_length should work as expected."); + + CHECK_MESSAGE( + Vector3(-5, 5, 15).clamp(Vector3(), vector) == Vector3(0, 5, 10), + "Vector3 clamp should work as expected."); + CHECK_MESSAGE( + vector.clamp(Vector3(0, 10, 15), Vector3(5, 10, 20)) == Vector3(5, 10, 15), + "Vector3 clamp should work as expected."); +} + +TEST_CASE("[Vector3] Normalization methods") { + CHECK_MESSAGE( + Vector3(1, 0, 0).is_normalized() == true, + "Vector3 is_normalized should return true for a normalized vector."); + CHECK_MESSAGE( + Vector3(1, 1, 1).is_normalized() == false, + "Vector3 is_normalized should return false for a non-normalized vector."); + CHECK_MESSAGE( + Vector3(1, 0, 0).normalized() == Vector3(1, 0, 0), + "Vector3 normalized should return the same vector for a normalized vector."); + CHECK_MESSAGE( + Vector3(1, 1, 0).normalized().is_equal_approx(Vector3(Math_SQRT12, Math_SQRT12, 0)), + "Vector3 normalized should work as expected."); + CHECK_MESSAGE( + Vector3(1, 1, 1).normalized().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), + "Vector3 normalized should work as expected."); +} + +TEST_CASE("[Vector3] Operators") { + const Vector3 decimal1 = Vector3(2.3, 4.9, 7.8); + const Vector3 decimal2 = Vector3(1.2, 3.4, 5.6); + const Vector3 power1 = Vector3(0.75, 1.5, 0.625); + const Vector3 power2 = Vector3(0.5, 0.125, 0.25); + const Vector3 int1 = Vector3(4, 5, 9); + const Vector3 int2 = Vector3(1, 2, 3); + + CHECK_MESSAGE( + (decimal1 + decimal2).is_equal_approx(Vector3(3.5, 8.3, 13.4)), + "Vector3 addition should behave as expected."); + CHECK_MESSAGE( + (power1 + power2) == Vector3(1.25, 1.625, 0.875), + "Vector3 addition with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 + int2) == Vector3(5, 7, 12), + "Vector3 addition with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 - decimal2).is_equal_approx(Vector3(1.1, 1.5, 2.2)), + "Vector3 subtraction should behave as expected."); + CHECK_MESSAGE( + (power1 - power2) == Vector3(0.25, 1.375, 0.375), + "Vector3 subtraction with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 - int2) == Vector3(3, 3, 6), + "Vector3 subtraction with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 * decimal2).is_equal_approx(Vector3(2.76, 16.66, 43.68)), + "Vector3 multiplication should behave as expected."); + CHECK_MESSAGE( + (power1 * power2) == Vector3(0.375, 0.1875, 0.15625), + "Vector3 multiplication with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 * int2) == Vector3(4, 10, 27), + "Vector3 multiplication with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 / decimal2).is_equal_approx(Vector3(1.91666666666666666, 1.44117647058823529, 1.39285714285714286)), + "Vector3 division should behave as expected."); + CHECK_MESSAGE( + (power1 / power2) == Vector3(1.5, 12.0, 2.5), + "Vector3 division with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 / int2) == Vector3(4, 2.5, 3), + "Vector3 division with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 * 2).is_equal_approx(Vector3(4.6, 9.8, 15.6)), + "Vector3 multiplication should behave as expected."); + CHECK_MESSAGE( + (power1 * 2) == Vector3(1.5, 3, 1.25), + "Vector3 multiplication with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 * 2) == Vector3(8, 10, 18), + "Vector3 multiplication with integers should give exact results."); + + CHECK_MESSAGE( + (decimal1 / 2).is_equal_approx(Vector3(1.15, 2.45, 3.9)), + "Vector3 division should behave as expected."); + CHECK_MESSAGE( + (power1 / 2) == Vector3(0.375, 0.75, 0.3125), + "Vector3 division with powers of two should give exact results."); + CHECK_MESSAGE( + (int1 / 2) == Vector3(2, 2.5, 4.5), + "Vector3 division with integers should give exact results."); + + CHECK_MESSAGE( + ((Vector3i)decimal1) == Vector3i(2, 4, 7), + "Vector3 cast to Vector3i should work as expected."); + CHECK_MESSAGE( + ((Vector3i)decimal2) == Vector3i(1, 3, 5), + "Vector3 cast to Vector3i should work as expected."); + CHECK_MESSAGE( + Vector3(Vector3i(1, 2, 3)) == Vector3(1, 2, 3), + "Vector3 constructed from Vector3i should work as expected."); +} + +TEST_CASE("[Vector3] Other methods") { + const Vector3 vector = Vector3(1.2, 3.4, 5.6); + CHECK_MESSAGE( + vector.direction_to(Vector3()).is_equal_approx(-vector.normalized()), + "Vector3 direction_to should work as expected."); + CHECK_MESSAGE( + Vector3(1, 1, 1).direction_to(Vector3(2, 2, 2)).is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), + "Vector3 direction_to should work as expected."); + CHECK_MESSAGE( + vector.inverse().is_equal_approx(Vector3(1 / 1.2, 1 / 3.4, 1 / 5.6)), + "Vector3 inverse should work as expected."); + CHECK_MESSAGE( + vector.posmod(2).is_equal_approx(Vector3(1.2, 1.4, 1.6)), + "Vector3 posmod should work as expected."); + CHECK_MESSAGE( + (-vector).posmod(2).is_equal_approx(Vector3(0.8, 0.6, 0.4)), + "Vector3 posmod should work as expected."); + CHECK_MESSAGE( + vector.posmodv(Vector3(1, 2, 3)).is_equal_approx(Vector3(0.2, 1.4, 2.6)), + "Vector3 posmodv should work as expected."); + CHECK_MESSAGE( + (-vector).posmodv(Vector3(2, 3, 4)).is_equal_approx(Vector3(0.8, 2.6, 2.4)), + "Vector3 posmodv should work as expected."); + CHECK_MESSAGE( + vector.rotated(Vector3(0, 1, 0), Math_TAU / 4).is_equal_approx(Vector3(5.6, 3.4, -1.2)), + "Vector3 rotated should work as expected."); + CHECK_MESSAGE( + vector.snapped(Vector3(1, 1, 1)) == Vector3(1, 3, 6), + "Vector3 snapped to integers should be the same as rounding."); + CHECK_MESSAGE( + vector.snapped(Vector3(0.25, 0.25, 0.25)) == Vector3(1.25, 3.5, 5.5), + "Vector3 snapped to 0.25 should give exact results."); +} + +TEST_CASE("[Vector3] Plane methods") { + const Vector3 vector = Vector3(1.2, 3.4, 5.6); + const Vector3 vector_y = Vector3(0, 1, 0); + CHECK_MESSAGE( + vector.bounce(vector_y) == Vector3(1.2, -3.4, 5.6), + "Vector3 bounce on a plane with normal of the Y axis should."); + CHECK_MESSAGE( + vector.reflect(vector_y) == Vector3(-1.2, 3.4, -5.6), + "Vector3 reflect on a plane with normal of the Y axis should."); + CHECK_MESSAGE( + vector.project(vector_y) == Vector3(0, 3.4, 0), + "Vector3 projected on the X axis should only give the Y component."); + CHECK_MESSAGE( + vector.slide(vector_y) == Vector3(1.2, 0, 5.6), + "Vector3 slide on a plane with normal of the Y axis should set the Y to zero."); +} + +TEST_CASE("[Vector3] Rounding methods") { + const Vector3 vector1 = Vector3(1.2, 3.4, 5.6); + const Vector3 vector2 = Vector3(1.2, -3.4, -5.6); + CHECK_MESSAGE( + vector1.abs() == vector1, + "Vector3 abs should work as expected."); + CHECK_MESSAGE( + vector2.abs() == vector1, + "Vector3 abs should work as expected."); + + CHECK_MESSAGE( + vector1.ceil() == Vector3(2, 4, 6), + "Vector3 ceil should work as expected."); + CHECK_MESSAGE( + vector2.ceil() == Vector3(2, -3, -5), + "Vector3 ceil should work as expected."); + + CHECK_MESSAGE( + vector1.floor() == Vector3(1, 3, 5), + "Vector3 floor should work as expected."); + CHECK_MESSAGE( + vector2.floor() == Vector3(1, -4, -6), + "Vector3 floor should work as expected."); + + CHECK_MESSAGE( + vector1.round() == Vector3(1, 3, 6), + "Vector3 round should work as expected."); + CHECK_MESSAGE( + vector2.round() == Vector3(1, -3, -6), + "Vector3 round should work as expected."); + + CHECK_MESSAGE( + vector1.sign() == Vector3(1, 1, 1), + "Vector3 sign should work as expected."); + CHECK_MESSAGE( + vector2.sign() == Vector3(1, -1, -1), + "Vector3 sign should work as expected."); +} + +TEST_CASE("[Vector3] Linear algebra methods") { + const Vector3 vector_x = Vector3(1, 0, 0); + const Vector3 vector_y = Vector3(0, 1, 0); + const Vector3 vector_z = Vector3(0, 0, 1); + CHECK_MESSAGE( + vector_x.cross(vector_y) == vector_z, + "Vector3 cross product of X and Y should give Z."); + CHECK_MESSAGE( + vector_y.cross(vector_x) == -vector_z, + "Vector3 cross product of Y and X should give negative Z."); + CHECK_MESSAGE( + vector_y.cross(vector_z) == vector_x, + "Vector3 cross product of Y and Z should give X."); + CHECK_MESSAGE( + vector_z.cross(vector_x) == vector_y, + "Vector3 cross product of Z and X should give Y."); + + CHECK_MESSAGE( + vector_x.dot(vector_y) == 0.0, + "Vector3 dot product of perpendicular vectors should be zero."); + CHECK_MESSAGE( + vector_x.dot(vector_x) == 1.0, + "Vector3 dot product of identical unit vectors should be one."); + CHECK_MESSAGE( + (vector_x * 10).dot(vector_x * 10) == 100.0, + "Vector3 dot product of same direction vectors should behave as expected."); +} +} // namespace TestVector3 + +#endif // TEST_VECTOR3_H diff --git a/tests/core/math/test_vector3i.h b/tests/core/math/test_vector3i.h new file mode 100644 index 0000000000..b1c6944eba --- /dev/null +++ b/tests/core/math/test_vector3i.h @@ -0,0 +1,145 @@ +/*************************************************************************/ +/* test_vector3i.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef TEST_VECTOR3I_H +#define TEST_VECTOR3I_H + +#include "core/math/vector3i.h" +#include "tests/test_macros.h" + +namespace TestVector3i { + +TEST_CASE("[Vector3i] Axis methods") { + Vector3i vector = Vector3i(1, 2, 3); + CHECK_MESSAGE( + vector.max_axis_index() == Vector3i::Axis::AXIS_Z, + "Vector3i max_axis_index should work as expected."); + CHECK_MESSAGE( + vector.min_axis_index() == Vector3i::Axis::AXIS_X, + "Vector3i min_axis_index should work as expected."); + CHECK_MESSAGE( + vector.get_axis(vector.max_axis_index()) == 3, + "Vector3i get_axis should work as expected."); + CHECK_MESSAGE( + vector[vector.min_axis_index()] == 1, + "Vector3i array operator should work as expected."); + + vector.set_axis(Vector3i::Axis::AXIS_Y, 4); + CHECK_MESSAGE( + vector.get_axis(Vector3i::Axis::AXIS_Y) == 4, + "Vector3i set_axis should work as expected."); + vector[Vector3i::Axis::AXIS_Y] = 5; + CHECK_MESSAGE( + vector[Vector3i::Axis::AXIS_Y] == 5, + "Vector3i array operator setter should work as expected."); +} + +TEST_CASE("[Vector3i] Clamp method") { + const Vector3i vector = Vector3i(10, 10, 10); + CHECK_MESSAGE( + Vector3i(-5, 5, 15).clamp(Vector3i(), vector) == Vector3i(0, 5, 10), + "Vector3i clamp should work as expected."); + CHECK_MESSAGE( + vector.clamp(Vector3i(0, 10, 15), Vector3i(5, 10, 20)) == Vector3i(5, 10, 15), + "Vector3i clamp should work as expected."); +} + +TEST_CASE("[Vector3i] Length methods") { + const Vector3i vector1 = Vector3i(10, 10, 10); + const Vector3i vector2 = Vector3i(20, 30, 40); + CHECK_MESSAGE( + vector1.length_squared() == 300, + "Vector3i length_squared should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector1.length(), 10 * Math_SQRT3), + "Vector3i length should work as expected."); + CHECK_MESSAGE( + vector2.length_squared() == 2900, + "Vector3i length_squared should work as expected and return exact result."); + CHECK_MESSAGE( + Math::is_equal_approx(vector2.length(), 53.8516480713450403125), + "Vector3i length should work as expected."); +} + +TEST_CASE("[Vector3i] Operators") { + const Vector3i vector1 = Vector3i(4, 5, 9); + const Vector3i vector2 = Vector3i(1, 2, 3); + + CHECK_MESSAGE( + (vector1 + vector2) == Vector3i(5, 7, 12), + "Vector3i addition with integers should give exact results."); + CHECK_MESSAGE( + (vector1 - vector2) == Vector3i(3, 3, 6), + "Vector3i subtraction with integers should give exact results."); + CHECK_MESSAGE( + (vector1 * vector2) == Vector3i(4, 10, 27), + "Vector3i multiplication with integers should give exact results."); + CHECK_MESSAGE( + (vector1 / vector2) == Vector3i(4, 2, 3), + "Vector3i division with integers should give exact results."); + + CHECK_MESSAGE( + (vector1 * 2) == Vector3i(8, 10, 18), + "Vector3i multiplication with integers should give exact results."); + CHECK_MESSAGE( + (vector1 / 2) == Vector3i(2, 2, 4), + "Vector3i division with integers should give exact results."); + + CHECK_MESSAGE( + ((Vector3)vector1) == Vector3(4, 5, 9), + "Vector3i cast to Vector3 should work as expected."); + CHECK_MESSAGE( + ((Vector3)vector2) == Vector3(1, 2, 3), + "Vector3i cast to Vector3 should work as expected."); + CHECK_MESSAGE( + Vector3i(Vector3(1.1, 2.9, 3.9)) == Vector3i(1, 2, 3), + "Vector3i constructed from Vector3 should work as expected."); +} + +TEST_CASE("[Vector3i] Abs and sign methods") { + const Vector3i vector1 = Vector3i(1, 3, 5); + const Vector3i vector2 = Vector3i(1, -3, -5); + CHECK_MESSAGE( + vector1.abs() == vector1, + "Vector3i abs should work as expected."); + CHECK_MESSAGE( + vector2.abs() == vector1, + "Vector3i abs should work as expected."); + + CHECK_MESSAGE( + vector1.sign() == Vector3i(1, 1, 1), + "Vector3i sign should work as expected."); + CHECK_MESSAGE( + vector2.sign() == Vector3i(1, -1, -1), + "Vector3i sign should work as expected."); +} +} // namespace TestVector3i + +#endif // TEST_VECTOR3I_H diff --git a/tests/test_main.cpp b/tests/test_main.cpp index 2b2c89fbf1..3826c03cad 100644 --- a/tests/test_main.cpp +++ b/tests/test_main.cpp @@ -48,6 +48,10 @@ #include "tests/core/math/test_math.h" #include "tests/core/math/test_random_number_generator.h" #include "tests/core/math/test_rect2.h" +#include "tests/core/math/test_vector2.h" +#include "tests/core/math/test_vector2i.h" +#include "tests/core/math/test_vector3.h" +#include "tests/core/math/test_vector3i.h" #include "tests/core/object/test_class_db.h" #include "tests/core/object/test_method_bind.h" #include "tests/core/object/test_object.h" |