summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--tests/core/math/test_quaternion.h389
-rw-r--r--tests/scene/test_audio_stream_wav.h243
-rw-r--r--tests/test_main.cpp16
3 files changed, 648 insertions, 0 deletions
diff --git a/tests/core/math/test_quaternion.h b/tests/core/math/test_quaternion.h
new file mode 100644
index 0000000000..94eef6c463
--- /dev/null
+++ b/tests/core/math/test_quaternion.h
@@ -0,0 +1,389 @@
+/*************************************************************************/
+/* test_quaternion.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_QUATERNION_H
+#define TEST_QUATERNION_H
+
+#include "core/math/math_defs.h"
+#include "core/math/math_funcs.h"
+#include "core/math/quaternion.h"
+#include "core/math/vector3.h"
+
+#include "tests/test_macros.h"
+
+namespace TestQuaternion {
+
+Quaternion quat_euler_yxz_deg(Vector3 angle) {
+ double yaw = Math::deg2rad(angle[1]);
+ double pitch = Math::deg2rad(angle[0]);
+ double roll = Math::deg2rad(angle[2]);
+
+ // Generate YXZ (Z-then-X-then-Y) Quaternion using single-axis Euler
+ // constructor and quaternion product, both tested separately.
+ Quaternion q_y(Vector3(0.0, yaw, 0.0));
+ Quaternion q_p(Vector3(pitch, 0.0, 0.0));
+ Quaternion q_r(Vector3(0.0, 0.0, roll));
+ // Roll-Z is followed by Pitch-X, then Yaw-Y.
+ Quaternion q_yxz = q_y * q_p * q_r;
+
+ return q_yxz;
+}
+
+TEST_CASE("[Quaternion] Default Construct") {
+ Quaternion q;
+
+ CHECK(q[0] == 0.0);
+ CHECK(q[1] == 0.0);
+ CHECK(q[2] == 0.0);
+ CHECK(q[3] == 1.0);
+}
+
+TEST_CASE("[Quaternion] Construct x,y,z,w") {
+ // Values are taken from actual use in another project & are valid (except roundoff error).
+ Quaternion q(0.2391, 0.099, 0.3696, 0.8924);
+
+ CHECK(q[0] == doctest::Approx(0.2391));
+ CHECK(q[1] == doctest::Approx(0.099));
+ CHECK(q[2] == doctest::Approx(0.3696));
+ CHECK(q[3] == doctest::Approx(0.8924));
+}
+
+TEST_CASE("[Quaternion] Construct AxisAngle 1") {
+ // Easy to visualize: 120 deg about X-axis.
+ Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg2rad(120.0));
+
+ // 0.866 isn't close enough; doctest::Approx doesn't cut much slack!
+ CHECK(q[0] == doctest::Approx(0.866025)); // Sine of half the angle.
+ CHECK(q[1] == doctest::Approx(0.0));
+ CHECK(q[2] == doctest::Approx(0.0));
+ CHECK(q[3] == doctest::Approx(0.5)); // Cosine of half the angle.
+}
+
+TEST_CASE("[Quaternion] Construct AxisAngle 2") {
+ // Easy to visualize: 30 deg about Y-axis.
+ Quaternion q(Vector3(0.0, 1.0, 0.0), Math::deg2rad(30.0));
+
+ CHECK(q[0] == doctest::Approx(0.0));
+ CHECK(q[1] == doctest::Approx(0.258819)); // Sine of half the angle.
+ CHECK(q[2] == doctest::Approx(0.0));
+ CHECK(q[3] == doctest::Approx(0.965926)); // Cosine of half the angle.
+}
+
+TEST_CASE("[Quaternion] Construct AxisAngle 3") {
+ // Easy to visualize: 60 deg about Z-axis.
+ Quaternion q(Vector3(0.0, 0.0, 1.0), Math::deg2rad(60.0));
+
+ CHECK(q[0] == doctest::Approx(0.0));
+ CHECK(q[1] == doctest::Approx(0.0));
+ CHECK(q[2] == doctest::Approx(0.5)); // Sine of half the angle.
+ CHECK(q[3] == doctest::Approx(0.866025)); // Cosine of half the angle.
+}
+
+TEST_CASE("[Quaternion] Construct AxisAngle 4") {
+ // More complex & hard to visualize, so test w/ data from online calculator.
+ Vector3 axis(1.0, 2.0, 0.5);
+ Quaternion q(axis.normalized(), Math::deg2rad(35.0));
+
+ CHECK(q[0] == doctest::Approx(0.131239));
+ CHECK(q[1] == doctest::Approx(0.262478));
+ CHECK(q[2] == doctest::Approx(0.0656194));
+ CHECK(q[3] == doctest::Approx(0.953717));
+}
+
+TEST_CASE("[Quaternion] Construct from Quaternion") {
+ Vector3 axis(1.0, 2.0, 0.5);
+ Quaternion q_src(axis.normalized(), Math::deg2rad(35.0));
+ Quaternion q(q_src);
+
+ CHECK(q[0] == doctest::Approx(0.131239));
+ CHECK(q[1] == doctest::Approx(0.262478));
+ CHECK(q[2] == doctest::Approx(0.0656194));
+ CHECK(q[3] == doctest::Approx(0.953717));
+}
+
+TEST_CASE("[Quaternion] Construct Euler SingleAxis") {
+ double yaw = Math::deg2rad(45.0);
+ double pitch = Math::deg2rad(30.0);
+ double roll = Math::deg2rad(10.0);
+
+ Vector3 euler_y(0.0, yaw, 0.0);
+ Quaternion q_y(euler_y);
+ CHECK(q_y[0] == doctest::Approx(0.0));
+ CHECK(q_y[1] == doctest::Approx(0.382684));
+ CHECK(q_y[2] == doctest::Approx(0.0));
+ CHECK(q_y[3] == doctest::Approx(0.923879));
+
+ Vector3 euler_p(pitch, 0.0, 0.0);
+ Quaternion q_p(euler_p);
+ CHECK(q_p[0] == doctest::Approx(0.258819));
+ CHECK(q_p[1] == doctest::Approx(0.0));
+ CHECK(q_p[2] == doctest::Approx(0.0));
+ CHECK(q_p[3] == doctest::Approx(0.965926));
+
+ Vector3 euler_r(0.0, 0.0, roll);
+ Quaternion q_r(euler_r);
+ CHECK(q_r[0] == doctest::Approx(0.0));
+ CHECK(q_r[1] == doctest::Approx(0.0));
+ CHECK(q_r[2] == doctest::Approx(0.0871558));
+ CHECK(q_r[3] == doctest::Approx(0.996195));
+}
+
+TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") {
+ double yaw = Math::deg2rad(45.0);
+ double pitch = Math::deg2rad(30.0);
+ double roll = Math::deg2rad(10.0);
+
+ // Generate YXZ comparision data (Z-then-X-then-Y) using single-axis Euler
+ // constructor and quaternion product, both tested separately.
+ Vector3 euler_y(0.0, yaw, 0.0);
+ Quaternion q_y(euler_y);
+ Vector3 euler_p(pitch, 0.0, 0.0);
+ Quaternion q_p(euler_p);
+ Vector3 euler_r(0.0, 0.0, roll);
+ Quaternion q_r(euler_r);
+
+ // Roll-Z is followed by Pitch-X.
+ Quaternion check_xz = q_p * q_r;
+ // Then Yaw-Y follows both.
+ Quaternion check_yxz = q_y * check_xz;
+
+ // Test construction from YXZ Euler angles.
+ Vector3 euler_yxz(pitch, yaw, roll);
+ Quaternion q(euler_yxz);
+ CHECK(q[0] == doctest::Approx(check_yxz[0]));
+ CHECK(q[1] == doctest::Approx(check_yxz[1]));
+ CHECK(q[2] == doctest::Approx(check_yxz[2]));
+ CHECK(q[3] == doctest::Approx(check_yxz[3]));
+
+ // Sneak in a test of is_equal_approx.
+ CHECK(q.is_equal_approx(check_yxz));
+}
+
+TEST_CASE("[Quaternion] Construct Basis Euler") {
+ double yaw = Math::deg2rad(45.0);
+ double pitch = Math::deg2rad(30.0);
+ double roll = Math::deg2rad(10.0);
+ Vector3 euler_yxz(pitch, yaw, roll);
+ Quaternion q_yxz(euler_yxz);
+ Basis basis_axes(euler_yxz);
+ Quaternion q(basis_axes);
+ CHECK(q.is_equal_approx(q_yxz));
+}
+
+TEST_CASE("[Quaternion] Construct Basis Axes") {
+ // Arbitrary Euler angles.
+ Vector3 euler_yxz(Math::deg2rad(31.41), Math::deg2rad(-49.16), Math::deg2rad(12.34));
+ // Basis vectors from online calculation of rotation matrix.
+ Vector3 i_unit(0.5545787, 0.1823950, 0.8118957);
+ Vector3 j_unit(-0.5249245, 0.8337420, 0.1712555);
+ Vector3 k_unit(-0.6456754, -0.5211586, 0.5581192);
+ // Quaternion from online calculation.
+ Quaternion q_calc(0.2016913, -0.4245716, 0.206033, 0.8582598);
+ // Quaternion from local calculation.
+ Quaternion q_local = quat_euler_yxz_deg(Vector3(31.41, -49.16, 12.34));
+ // Quaternion from Euler angles constructor.
+ Quaternion q_euler(euler_yxz);
+ CHECK(q_calc.is_equal_approx(q_local));
+ CHECK(q_local.is_equal_approx(q_euler));
+
+ // Calculate Basis and construct Quaternion.
+ // When this is written, C++ Basis class does not construct from basis vectors.
+ // This is by design, but may be subject to change.
+ // Workaround by constructing Basis from Euler angles.
+ // basis_axes = Basis(i_unit, j_unit, k_unit);
+ Basis basis_axes(euler_yxz);
+ Quaternion q(basis_axes);
+
+ CHECK(basis_axes.get_column(0).is_equal_approx(i_unit));
+ CHECK(basis_axes.get_column(1).is_equal_approx(j_unit));
+ CHECK(basis_axes.get_column(2).is_equal_approx(k_unit));
+
+ CHECK(q.is_equal_approx(q_calc));
+ CHECK_FALSE(q.inverse().is_equal_approx(q_calc));
+ CHECK(q.is_equal_approx(q_local));
+ CHECK(q.is_equal_approx(q_euler));
+ CHECK(q[0] == doctest::Approx(0.2016913));
+ CHECK(q[1] == doctest::Approx(-0.4245716));
+ CHECK(q[2] == doctest::Approx(0.206033));
+ CHECK(q[3] == doctest::Approx(0.8582598));
+}
+
+TEST_CASE("[Quaternion] Product (book)") {
+ // Example from "Quaternions and Rotation Sequences" by Jack Kuipers, p. 108.
+ Quaternion p(1.0, -2.0, 1.0, 3.0);
+ Quaternion q(-1.0, 2.0, 3.0, 2.0);
+
+ Quaternion pq = p * q;
+ CHECK(pq[0] == doctest::Approx(-9.0));
+ CHECK(pq[1] == doctest::Approx(-2.0));
+ CHECK(pq[2] == doctest::Approx(11.0));
+ CHECK(pq[3] == doctest::Approx(8.0));
+}
+
+TEST_CASE("[Quaternion] Product") {
+ double yaw = Math::deg2rad(45.0);
+ double pitch = Math::deg2rad(30.0);
+ double roll = Math::deg2rad(10.0);
+
+ Vector3 euler_y(0.0, yaw, 0.0);
+ Quaternion q_y(euler_y);
+ CHECK(q_y[0] == doctest::Approx(0.0));
+ CHECK(q_y[1] == doctest::Approx(0.382684));
+ CHECK(q_y[2] == doctest::Approx(0.0));
+ CHECK(q_y[3] == doctest::Approx(0.923879));
+
+ Vector3 euler_p(pitch, 0.0, 0.0);
+ Quaternion q_p(euler_p);
+ CHECK(q_p[0] == doctest::Approx(0.258819));
+ CHECK(q_p[1] == doctest::Approx(0.0));
+ CHECK(q_p[2] == doctest::Approx(0.0));
+ CHECK(q_p[3] == doctest::Approx(0.965926));
+
+ Vector3 euler_r(0.0, 0.0, roll);
+ Quaternion q_r(euler_r);
+ CHECK(q_r[0] == doctest::Approx(0.0));
+ CHECK(q_r[1] == doctest::Approx(0.0));
+ CHECK(q_r[2] == doctest::Approx(0.0871558));
+ CHECK(q_r[3] == doctest::Approx(0.996195));
+
+ // Test ZYX dynamic-axes since test data is available online.
+ // Rotate first about X axis, then new Y axis, then new Z axis.
+ // (Godot uses YXZ Yaw-Pitch-Roll order).
+ Quaternion q_yp = q_y * q_p;
+ CHECK(q_yp[0] == doctest::Approx(0.239118));
+ CHECK(q_yp[1] == doctest::Approx(0.369644));
+ CHECK(q_yp[2] == doctest::Approx(-0.099046));
+ CHECK(q_yp[3] == doctest::Approx(0.892399));
+
+ Quaternion q_ryp = q_r * q_yp;
+ CHECK(q_ryp[0] == doctest::Approx(0.205991));
+ CHECK(q_ryp[1] == doctest::Approx(0.389078));
+ CHECK(q_ryp[2] == doctest::Approx(-0.0208912));
+ CHECK(q_ryp[3] == doctest::Approx(0.897636));
+}
+
+TEST_CASE("[Quaternion] xform unit vectors") {
+ // Easy to visualize: 120 deg about X-axis.
+ // Transform the i, j, & k unit vectors.
+ Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg2rad(120.0));
+ Vector3 i_t = q.xform(Vector3(1.0, 0.0, 0.0));
+ Vector3 j_t = q.xform(Vector3(0.0, 1.0, 0.0));
+ Vector3 k_t = q.xform(Vector3(0.0, 0.0, 1.0));
+ //
+ CHECK(i_t.is_equal_approx(Vector3(1.0, 0.0, 0.0)));
+ CHECK(j_t.is_equal_approx(Vector3(0.0, -0.5, 0.866025)));
+ CHECK(k_t.is_equal_approx(Vector3(0.0, -0.866025, -0.5)));
+ CHECK(i_t.length_squared() == doctest::Approx(1.0));
+ CHECK(j_t.length_squared() == doctest::Approx(1.0));
+ CHECK(k_t.length_squared() == doctest::Approx(1.0));
+
+ // Easy to visualize: 30 deg about Y-axis.
+ q = Quaternion(Vector3(0.0, 1.0, 0.0), Math::deg2rad(30.0));
+ i_t = q.xform(Vector3(1.0, 0.0, 0.0));
+ j_t = q.xform(Vector3(0.0, 1.0, 0.0));
+ k_t = q.xform(Vector3(0.0, 0.0, 1.0));
+ //
+ CHECK(i_t.is_equal_approx(Vector3(0.866025, 0.0, -0.5)));
+ CHECK(j_t.is_equal_approx(Vector3(0.0, 1.0, 0.0)));
+ CHECK(k_t.is_equal_approx(Vector3(0.5, 0.0, 0.866025)));
+ CHECK(i_t.length_squared() == doctest::Approx(1.0));
+ CHECK(j_t.length_squared() == doctest::Approx(1.0));
+ CHECK(k_t.length_squared() == doctest::Approx(1.0));
+
+ // Easy to visualize: 60 deg about Z-axis.
+ q = Quaternion(Vector3(0.0, 0.0, 1.0), Math::deg2rad(60.0));
+ i_t = q.xform(Vector3(1.0, 0.0, 0.0));
+ j_t = q.xform(Vector3(0.0, 1.0, 0.0));
+ k_t = q.xform(Vector3(0.0, 0.0, 1.0));
+ //
+ CHECK(i_t.is_equal_approx(Vector3(0.5, 0.866025, 0.0)));
+ CHECK(j_t.is_equal_approx(Vector3(-0.866025, 0.5, 0.0)));
+ CHECK(k_t.is_equal_approx(Vector3(0.0, 0.0, 1.0)));
+ CHECK(i_t.length_squared() == doctest::Approx(1.0));
+ CHECK(j_t.length_squared() == doctest::Approx(1.0));
+ CHECK(k_t.length_squared() == doctest::Approx(1.0));
+}
+
+TEST_CASE("[Quaternion] xform vector") {
+ // Arbitrary quaternion rotates an arbitrary vector.
+ Vector3 euler_yzx(Math::deg2rad(31.41), Math::deg2rad(-49.16), Math::deg2rad(12.34));
+ Basis basis_axes(euler_yzx);
+ Quaternion q(basis_axes);
+
+ Vector3 v_arb(3.0, 4.0, 5.0);
+ Vector3 v_rot = q.xform(v_arb);
+ Vector3 v_compare = basis_axes.xform(v_arb);
+
+ CHECK(v_rot.length_squared() == doctest::Approx(v_arb.length_squared()));
+ CHECK(v_rot.is_equal_approx(v_compare));
+}
+
+// Test vector xform for a single combination of Quaternion and Vector.
+void test_quat_vec_rotate(Vector3 euler_yzx, Vector3 v_in) {
+ Basis basis_axes(euler_yzx);
+ Quaternion q(basis_axes);
+
+ Vector3 v_rot = q.xform(v_in);
+ Vector3 v_compare = basis_axes.xform(v_in);
+
+ CHECK(v_rot.length_squared() == doctest::Approx(v_in.length_squared()));
+ CHECK(v_rot.is_equal_approx(v_compare));
+}
+
+TEST_CASE("[Stress][Quaternion] Many vector xforms") {
+ // Many arbitrary quaternions rotate many arbitrary vectors.
+ // For each trial, check that rotation by Quaternion yields same result as
+ // rotation by Basis.
+ const int STEPS = 100; // Number of test steps in each dimension
+ const double delta = 2.0 * Math_PI / STEPS; // Angle increment per step
+ const double delta_vec = 20.0 / STEPS; // Vector increment per step
+ Vector3 vec_arb(1.0, 1.0, 1.0);
+ double x_angle = -Math_PI;
+ double y_angle = -Math_PI;
+ double z_angle = -Math_PI;
+ for (double i = 0; i < STEPS; ++i) {
+ vec_arb[0] = -10.0 + i * delta_vec;
+ x_angle = i * delta - Math_PI;
+ for (double j = 0; j < STEPS; ++j) {
+ vec_arb[1] = -10.0 + j * delta_vec;
+ y_angle = j * delta - Math_PI;
+ for (double k = 0; k < STEPS; ++k) {
+ vec_arb[2] = -10.0 + k * delta_vec;
+ z_angle = k * delta - Math_PI;
+ Vector3 euler_yzx(x_angle, y_angle, z_angle);
+ test_quat_vec_rotate(euler_yzx, vec_arb);
+ }
+ }
+ }
+}
+
+} // namespace TestQuaternion
+
+#endif // TEST_QUATERNION_H
diff --git a/tests/scene/test_audio_stream_wav.h b/tests/scene/test_audio_stream_wav.h
new file mode 100644
index 0000000000..92c524525c
--- /dev/null
+++ b/tests/scene/test_audio_stream_wav.h
@@ -0,0 +1,243 @@
+/*************************************************************************/
+/* test_audio_stream_wav.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_AUDIO_STREAM_WAV_H
+#define TEST_AUDIO_STREAM_WAV_H
+
+#include "core/math/math_defs.h"
+#include "core/math/math_funcs.h"
+#include "scene/resources/audio_stream_wav.h"
+
+#include "tests/test_macros.h"
+
+#ifdef TOOLS_ENABLED
+#include "core/io/resource_loader.h"
+#include "editor/import/resource_importer_wav.h"
+#endif
+
+namespace TestAudioStreamWAV {
+
+// Default wav rate for test cases.
+constexpr float WAV_RATE = 44100;
+/* Default wav count for test cases. 1 second of audio is used so that the file can be listened
+to manually if needed. */
+constexpr int WAV_COUNT = WAV_RATE;
+
+float gen_wav(float frequency, float wav_rate, int wav_number) {
+ // formula for generating a sin wave with given frequency.
+ return Math::sin((Math_TAU * frequency / wav_rate) * wav_number);
+}
+
+/* Generates a 440Hz sin wave in channel 0 (mono channel or left stereo channel)
+ * and a 261.63Hz wave in channel 1 (right stereo channel).
+ * These waves correspond to the music notes A4 and C4 respectively.
+ */
+Vector<uint8_t> gen_pcm8_test(float wav_rate, int wav_count, bool stereo) {
+ Vector<uint8_t> buffer;
+ buffer.resize(stereo ? wav_count * 2 : wav_count);
+
+ uint8_t *write_ptr = buffer.ptrw();
+ for (int i = 0; i < buffer.size(); i++) {
+ float wav;
+ if (stereo) {
+ if (i % 2 == 0) {
+ wav = gen_wav(440, wav_rate, i / 2);
+ } else {
+ wav = gen_wav(261.63, wav_rate, i / 2);
+ }
+ } else {
+ wav = gen_wav(440, wav_rate, i);
+ }
+
+ // Map sin wave to full range of 8-bit values.
+ uint8_t wav_8bit = Math::fast_ftoi(((wav + 1) / 2) * UINT8_MAX);
+ // Unlike the .wav format, AudioStreamWAV expects signed 8-bit wavs.
+ uint8_t wav_8bit_signed = wav_8bit - (INT8_MAX + 1);
+ write_ptr[i] = wav_8bit_signed;
+ }
+
+ return buffer;
+}
+
+// Same as gen_pcm8_test but with 16-bit wavs.
+Vector<uint8_t> gen_pcm16_test(float wav_rate, int wav_count, bool stereo) {
+ Vector<uint8_t> buffer;
+ buffer.resize(stereo ? wav_count * 4 : wav_count * 2);
+
+ uint8_t *write_ptr = buffer.ptrw();
+ for (int i = 0; i < buffer.size() / 2; i++) {
+ float wav;
+ if (stereo) {
+ if (i % 2 == 0) {
+ wav = gen_wav(440, wav_rate, i / 2);
+ } else {
+ wav = gen_wav(261.63, wav_rate, i / 2);
+ }
+ } else {
+ wav = gen_wav(440, wav_rate, i);
+ }
+
+ // Map sin wave to full range of 16-bit values.
+ uint16_t wav_16bit = Math::fast_ftoi(((wav + 1) / 2) * UINT16_MAX);
+ // The .wav format expects wavs larger than 8 bits to be signed.
+ uint16_t wav_16bit_signed = wav_16bit - (INT16_MAX + 1);
+ encode_uint16(wav_16bit_signed, write_ptr + (i * 2));
+ }
+
+ return buffer;
+}
+
+void run_test(String file_name, AudioStreamWAV::Format data_format, bool stereo, float wav_rate, float wav_count) {
+ String save_path = OS::get_singleton()->get_cache_path().plus_file(file_name);
+
+ Vector<uint8_t> test_data;
+ if (data_format == AudioStreamWAV::FORMAT_8_BITS) {
+ test_data = gen_pcm8_test(wav_rate, wav_count, stereo);
+ } else {
+ test_data = gen_pcm16_test(wav_rate, wav_count, stereo);
+ }
+
+ Ref<AudioStreamWAV> stream = memnew(AudioStreamWAV);
+ stream->set_mix_rate(wav_rate);
+ CHECK(stream->get_mix_rate() == wav_rate);
+
+ stream->set_format(data_format);
+ CHECK(stream->get_format() == data_format);
+
+ stream->set_stereo(stereo);
+ CHECK(stream->is_stereo() == stereo);
+
+ stream->set_data(test_data);
+ CHECK(stream->get_data() == test_data);
+
+ SUBCASE("Stream length is computed properly") {
+ CHECK(Math::is_equal_approx(stream->get_length(), wav_count / wav_rate));
+ }
+
+ SUBCASE("Stream can be saved as .wav") {
+ REQUIRE(stream->save_to_wav(save_path) == OK);
+
+ Error error;
+ Ref<FileAccess> wav_file = FileAccess::open(save_path, FileAccess::READ, &error);
+ REQUIRE(error == OK);
+
+#if TOOLS_ENABLED
+ // The WAV importer can be used if enabled to check that the saved file is valid.
+ Ref<ResourceImporterWAV> wav_importer = memnew(ResourceImporterWAV);
+
+ List<ResourceImporter::ImportOption> options_list;
+ wav_importer->get_import_options("", &options_list);
+
+ HashMap<StringName, Variant> options_map;
+ for (const ResourceImporter::ImportOption &E : options_list) {
+ options_map[E.option.name] = E.default_value;
+ }
+
+ REQUIRE(wav_importer->import(save_path, save_path, options_map, nullptr) == OK);
+
+ String load_path = save_path + "." + wav_importer->get_save_extension();
+ Ref<AudioStreamWAV> loaded_stream = ResourceLoader::load(load_path, "AudioStreamWAV", ResourceFormatImporter::CACHE_MODE_IGNORE, &error);
+ REQUIRE(error == OK);
+
+ CHECK(loaded_stream->get_format() == stream->get_format());
+ CHECK(loaded_stream->get_loop_mode() == stream->get_loop_mode());
+ CHECK(loaded_stream->get_loop_begin() == stream->get_loop_begin());
+ CHECK(loaded_stream->get_loop_end() == stream->get_loop_end());
+ CHECK(loaded_stream->get_mix_rate() == stream->get_mix_rate());
+ CHECK(loaded_stream->is_stereo() == stream->is_stereo());
+ CHECK(loaded_stream->get_length() == stream->get_length());
+ CHECK(loaded_stream->is_monophonic() == stream->is_monophonic());
+ CHECK(loaded_stream->get_data() == stream->get_data());
+#endif
+ }
+}
+
+TEST_CASE("[AudioStreamWAV] Mono PCM8 format") {
+ run_test("test_pcm8_mono.wav", AudioStreamWAV::FORMAT_8_BITS, false, WAV_RATE, WAV_COUNT);
+}
+
+TEST_CASE("[AudioStreamWAV] Mono PCM16 format") {
+ run_test("test_pcm16_mono.wav", AudioStreamWAV::FORMAT_16_BITS, false, WAV_RATE, WAV_COUNT);
+}
+
+TEST_CASE("[AudioStreamWAV] Stereo PCM8 format") {
+ run_test("test_pcm8_stereo.wav", AudioStreamWAV::FORMAT_8_BITS, true, WAV_RATE, WAV_COUNT);
+}
+
+TEST_CASE("[AudioStreamWAV] Stereo PCM16 format") {
+ run_test("test_pcm16_stereo.wav", AudioStreamWAV::FORMAT_16_BITS, true, WAV_RATE, WAV_COUNT);
+}
+
+TEST_CASE("[AudioStreamWAV] Alternate mix rate") {
+ run_test("test_pcm16_stereo_38000Hz.wav", AudioStreamWAV::FORMAT_16_BITS, true, 38000, 38000);
+}
+
+TEST_CASE("[AudioStreamWAV] save_to_wav() adds '.wav' file extension automatically") {
+ String save_path = OS::get_singleton()->get_cache_path().plus_file("test_wav_extension");
+ Vector<uint8_t> test_data = gen_pcm8_test(WAV_RATE, WAV_COUNT, false);
+ Ref<AudioStreamWAV> stream = memnew(AudioStreamWAV);
+ stream->set_data(test_data);
+
+ REQUIRE(stream->save_to_wav(save_path) == OK);
+ Error error;
+ Ref<FileAccess> wav_file = FileAccess::open(save_path + ".wav", FileAccess::READ, &error);
+ CHECK(error == OK);
+}
+
+TEST_CASE("[AudioStreamWAV] Default values") {
+ Ref<AudioStreamWAV> stream = memnew(AudioStreamWAV);
+ CHECK(stream->get_format() == AudioStreamWAV::FORMAT_8_BITS);
+ CHECK(stream->get_loop_mode() == AudioStreamWAV::LOOP_DISABLED);
+ CHECK(stream->get_loop_begin() == 0);
+ CHECK(stream->get_loop_end() == 0);
+ CHECK(stream->get_mix_rate() == 44100);
+ CHECK(stream->is_stereo() == false);
+ CHECK(stream->get_length() == 0);
+ CHECK(stream->is_monophonic() == false);
+ CHECK(stream->get_data() == Vector<uint8_t>{});
+ CHECK(stream->get_stream_name() == "");
+}
+
+TEST_CASE("[AudioStreamWAV] Save empty file") {
+ run_test("test_empty.wav", AudioStreamWAV::FORMAT_8_BITS, false, WAV_RATE, 0);
+}
+
+TEST_CASE("[AudioStreamWAV] Saving IMA ADPCM is not supported") {
+ String save_path = OS::get_singleton()->get_cache_path().plus_file("test_adpcm.wav");
+ Ref<AudioStreamWAV> stream = memnew(AudioStreamWAV);
+ stream->set_format(AudioStreamWAV::FORMAT_IMA_ADPCM);
+ ERR_PRINT_OFF;
+ CHECK(stream->save_to_wav(save_path) == ERR_UNAVAILABLE);
+ ERR_PRINT_ON;
+}
+
+} // namespace TestAudioStreamWAV
+
+#endif // TEST_AUDIO_STREAM_WAV_H
diff --git a/tests/test_main.cpp b/tests/test_main.cpp
index fca484a6b3..e8502f6b46 100644
--- a/tests/test_main.cpp
+++ b/tests/test_main.cpp
@@ -48,6 +48,7 @@
#include "tests/core/math/test_geometry_2d.h"
#include "tests/core/math/test_geometry_3d.h"
#include "tests/core/math/test_plane.h"
+#include "tests/core/math/test_quaternion.h"
#include "tests/core/math/test_random_number_generator.h"
#include "tests/core/math/test_rect2.h"
#include "tests/core/math/test_rect2i.h"
@@ -81,6 +82,7 @@
#include "tests/core/variant/test_dictionary.h"
#include "tests/core/variant/test_variant.h"
#include "tests/scene/test_animation.h"
+#include "tests/scene/test_audio_stream_wav.h"
#include "tests/scene/test_code_edit.h"
#include "tests/scene/test_curve.h"
#include "tests/scene/test_gradient.h"
@@ -218,6 +220,15 @@ struct GodotTestCaseListener : public doctest::IReporter {
SceneTree::get_singleton()->initialize();
return;
}
+
+ if (name.find("Audio") != -1) {
+ // The last driver index should always be the dummy driver.
+ int dummy_idx = AudioDriverManager::get_driver_count() - 1;
+ AudioDriverManager::initialize(dummy_idx);
+ AudioServer *audio_server = memnew(AudioServer);
+ audio_server->init();
+ return;
+ }
}
void test_case_end(const doctest::CurrentTestCaseStats &) override {
@@ -280,6 +291,11 @@ struct GodotTestCaseListener : public doctest::IReporter {
MessageQueue::get_singleton()->flush();
memdelete(MessageQueue::get_singleton());
}
+
+ if (AudioServer::get_singleton()) {
+ AudioServer::get_singleton()->finish();
+ memdelete(AudioServer::get_singleton());
+ }
}
void test_run_start() override {