diff options
-rw-r--r-- | tests/core/io/test_json.h | 2 | ||||
-rw-r--r-- | tests/core/math/test_aabb.h | 8 | ||||
-rw-r--r-- | tests/core/math/test_basis.h | 10 | ||||
-rw-r--r-- | tests/core/math/test_color.h | 6 | ||||
-rw-r--r-- | tests/core/math/test_expression.h | 20 | ||||
-rw-r--r-- | tests/core/math/test_geometry_2d.h | 24 | ||||
-rw-r--r-- | tests/core/math/test_rect2.h | 8 | ||||
-rw-r--r-- | tests/core/math/test_vector2.h | 28 | ||||
-rw-r--r-- | tests/core/math/test_vector2i.h | 6 | ||||
-rw-r--r-- | tests/core/math/test_vector3.h | 28 | ||||
-rw-r--r-- | tests/core/math/test_vector3i.h | 4 | ||||
-rw-r--r-- | tests/core/math/test_vector4.h | 10 | ||||
-rw-r--r-- | tests/core/math/test_vector4i.h | 4 | ||||
-rw-r--r-- | tests/scene/test_animation.h | 82 | ||||
-rw-r--r-- | tests/scene/test_audio_stream_wav.h | 2 | ||||
-rw-r--r-- | tests/scene/test_curve.h | 54 | ||||
-rw-r--r-- | tests/scene/test_primitives.h | 40 |
17 files changed, 168 insertions, 168 deletions
diff --git a/tests/core/io/test_json.h b/tests/core/io/test_json.h index 478cf1766e..af450da3b8 100644 --- a/tests/core/io/test_json.h +++ b/tests/core/io/test_json.h @@ -83,7 +83,7 @@ TEST_CASE("[JSON] Parsing single data types") { json.get_error_line() == 0, "Parsing a floating-point number as JSON should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(json.get_data()), 0.123456), + double(json.get_data()) == doctest::Approx(0.123456), "Parsing a floating-point number as JSON should return the expected value."); json.parse("\"hello\""); diff --git a/tests/core/math/test_aabb.h b/tests/core/math/test_aabb.h index ebaf441abf..23969556be 100644 --- a/tests/core/math/test_aabb.h +++ b/tests/core/math/test_aabb.h @@ -91,7 +91,7 @@ TEST_CASE("[AABB] Basic setters") { TEST_CASE("[AABB] Volume getters") { AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( - Math::is_equal_approx(aabb.get_volume(), 120), + aabb.get_volume() == doctest::Approx(120), "get_volume() should return the expected value with positive size."); CHECK_MESSAGE( aabb.has_volume(), @@ -99,17 +99,17 @@ TEST_CASE("[AABB] Volume getters") { aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, 5, 6)); CHECK_MESSAGE( - Math::is_equal_approx(aabb.get_volume(), -120), + aabb.get_volume() == doctest::Approx(-120), "get_volume() should return the expected value with negative size (1 component)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, 6)); CHECK_MESSAGE( - Math::is_equal_approx(aabb.get_volume(), 120), + aabb.get_volume() == doctest::Approx(120), "get_volume() should return the expected value with negative size (2 components)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, -6)); CHECK_MESSAGE( - Math::is_equal_approx(aabb.get_volume(), -120), + aabb.get_volume() == doctest::Approx(-120), "get_volume() should return the expected value with negative size (3 components)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6)); diff --git a/tests/core/math/test_basis.h b/tests/core/math/test_basis.h index a4099ebf7d..dce9d5cec3 100644 --- a/tests/core/math/test_basis.h +++ b/tests/core/math/test_basis.h @@ -223,7 +223,7 @@ TEST_CASE("[Basis] Set axis angle") { // Testing the singularity when the angle is 180°. Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1); singularityPi.get_axis_angle(axis, angle); - CHECK(Math::is_equal_approx(angle, pi)); + CHECK(angle == doctest::Approx(pi)); // Testing reversing the an axis (of an 30° angle). float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0)); @@ -231,17 +231,17 @@ TEST_CASE("[Basis] Set axis angle") { Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1); z_positive.get_axis_angle(axis, angle); - CHECK(Math::is_equal_approx(angle, Math::deg_to_rad((real_t)30.0))); + CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0))); CHECK(axis == Vector3(0, 0, 1)); z_negative.get_axis_angle(axis, angle); - CHECK(Math::is_equal_approx(angle, Math::deg_to_rad((real_t)30.0))); + CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0))); CHECK(axis == Vector3(0, 0, -1)); // Testing a rotation of 90° on x-y-z. Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0); x90deg.get_axis_angle(axis, angle); - CHECK(Math::is_equal_approx(angle, pi / (real_t)2)); + CHECK(angle == doctest::Approx(pi / (real_t)2)); CHECK(axis == Vector3(1, 0, 0)); Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0); @@ -255,7 +255,7 @@ TEST_CASE("[Basis] Set axis angle") { // Regression test: checks that the method returns a small angle (not 0). Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad. tiny.get_axis_angle(axis, angle); - CHECK(Math::is_equal_approx(angle, (real_t)0.001, (real_t)0.0001)); + CHECK(angle == doctest::Approx(0.001).epsilon(0.0001)); // Regression test: checks that the method returns an angle which is a number (not NaN) Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024); diff --git a/tests/core/math/test_color.h b/tests/core/math/test_color.h index 51c3bc8bdc..c6550778e8 100644 --- a/tests/core/math/test_color.h +++ b/tests/core/math/test_color.h @@ -101,13 +101,13 @@ TEST_CASE("[Color] Reading methods") { const Color dark_blue = Color(0, 0, 0.5, 0.4); CHECK_MESSAGE( - Math::is_equal_approx(dark_blue.get_h(), 240.0f / 360.0f), + dark_blue.get_h() == doctest::Approx(240.0f / 360.0f), "The returned HSV hue should match the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(dark_blue.get_s(), 1.0f), + dark_blue.get_s() == doctest::Approx(1.0f), "The returned HSV saturation should match the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(dark_blue.get_v(), 0.5f), + dark_blue.get_v() == doctest::Approx(0.5f), "The returned HSV value should match the expected value."); } diff --git a/tests/core/math/test_expression.h b/tests/core/math/test_expression.h index 6e3be541b0..9734fd9f36 100644 --- a/tests/core/math/test_expression.h +++ b/tests/core/math/test_expression.h @@ -83,42 +83,42 @@ TEST_CASE("[Expression] Floating-point arithmetic") { expression.parse("-123.456") == OK, "Float identity should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), -123.456), + double(expression.execute()) == doctest::Approx(-123.456), "Float identity should return the expected result."); CHECK_MESSAGE( expression.parse("2.0 + 3.0") == OK, "Float addition should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 5), + double(expression.execute()) == doctest::Approx(5), "Float addition should return the expected result."); CHECK_MESSAGE( expression.parse("3.0 / 10") == OK, "Float / integer division should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 0.3), + double(expression.execute()) == doctest::Approx(0.3), "Float / integer division should return the expected result."); CHECK_MESSAGE( expression.parse("3 / 10.0") == OK, "Basic integer / float division should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 0.3), + double(expression.execute()) == doctest::Approx(0.3), "Basic integer / float division should return the expected result."); CHECK_MESSAGE( expression.parse("3.0 / 10.0") == OK, "Float / float division should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 0.3), + double(expression.execute()) == doctest::Approx(0.3), "Float / float division should return the expected result."); CHECK_MESSAGE( expression.parse("2.5 * (6.0 + 14.25) / 2.0 - 5.12345") == OK, "Float multiplication-addition-subtraction-division should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 20.18905), + double(expression.execute()) == doctest::Approx(20.18905), "Float multiplication-addition-subtraction-division should return the expected result."); } @@ -129,7 +129,7 @@ TEST_CASE("[Expression] Scientific notation") { expression.parse("2.e5") == OK, "The expression should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 200'000), + double(expression.execute()) == doctest::Approx(200'000), "The expression should return the expected result."); // The middle "e" is ignored here. @@ -137,14 +137,14 @@ TEST_CASE("[Expression] Scientific notation") { expression.parse("2e5") == OK, "The expression should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 2e5), + double(expression.execute()) == doctest::Approx(2e5), "The expression should return the expected result."); CHECK_MESSAGE( expression.parse("2e.5") == OK, "The expression should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 2), + double(expression.execute()) == doctest::Approx(2), "The expression should return the expected result."); } @@ -176,7 +176,7 @@ TEST_CASE("[Expression] Built-in functions") { expression.parse("snapped(sin(0.5), 0.01)") == OK, "The expression should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 0.48), + double(expression.execute()) == doctest::Approx(0.48), "`snapped(sin(0.5), 0.01)` should return the expected result."); CHECK_MESSAGE( diff --git a/tests/core/math/test_geometry_2d.h b/tests/core/math/test_geometry_2d.h index 54893a0b87..27c9e7f58b 100644 --- a/tests/core/math/test_geometry_2d.h +++ b/tests/core/math/test_geometry_2d.h @@ -171,43 +171,43 @@ TEST_CASE("[Geometry2D] Segment intersection with circle") { real_t one = 1.0; CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(4, 0), Vector2(0, 0), 1.0), one_quarter), + Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(4, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter), "Segment from inside to outside of circle should intersect it."); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(4, 0), Vector2(0, 0), Vector2(0, 0), 1.0), three_quarters), + Geometry2D::segment_intersects_circle(Vector2(4, 0), Vector2(0, 0), Vector2(0, 0), 1.0) == doctest::Approx(three_quarters), "Segment from outside to inside of circle should intersect it."); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(-2, 0), Vector2(2, 0), Vector2(0, 0), 1.0), one_quarter), + Geometry2D::segment_intersects_circle(Vector2(-2, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter), "Segment running through circle should intersect it."); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(-2, 0), Vector2(0, 0), 1.0), one_quarter), + Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(-2, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter), "Segment running through circle should intersect it."); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(1, 0), Vector2(0, 0), 1.0), one), + Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(1, 0), Vector2(0, 0), 1.0) == doctest::Approx(one), "Segment starting inside the circle and ending on the circle should intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(0, 0), Vector2(0, 0), 1.0), zero), + Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(0, 0), Vector2(0, 0), 1.0) == doctest::Approx(zero), "Segment starting on the circle and going inwards should intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(2, 0), Vector2(0, 0), 1.0), zero), + Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(zero), "Segment starting on the circle and going outwards should intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(1, 0), Vector2(0, 0), 1.0), one), + Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(1, 0), Vector2(0, 0), 1.0) == doctest::Approx(one), "Segment starting outside the circle and ending on the circle intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(-1, 0), Vector2(1, 0), Vector2(0, 0), 2.0), minus_one), + Geometry2D::segment_intersects_circle(Vector2(-1, 0), Vector2(1, 0), Vector2(0, 0), 2.0) == doctest::Approx(minus_one), "Segment completely within the circle should not intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(-1, 0), Vector2(0, 0), 2.0), minus_one), + Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(-1, 0), Vector2(0, 0), 2.0) == doctest::Approx(minus_one), "Segment completely within the circle should not intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(3, 0), Vector2(0, 0), 1.0), minus_one), + Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(3, 0), Vector2(0, 0), 1.0) == doctest::Approx(minus_one), "Segment completely outside the circle should not intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(3, 0), Vector2(2, 0), Vector2(0, 0), 1.0), minus_one), + Geometry2D::segment_intersects_circle(Vector2(3, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(minus_one), "Segment completely outside the circle should not intersect it"); } diff --git a/tests/core/math/test_rect2.h b/tests/core/math/test_rect2.h index d784875c1c..9984823331 100644 --- a/tests/core/math/test_rect2.h +++ b/tests/core/math/test_rect2.h @@ -102,16 +102,16 @@ TEST_CASE("[Rect2] Basic setters") { TEST_CASE("[Rect2] Area getters") { CHECK_MESSAGE( - Math::is_equal_approx(Rect2(0, 100, 1280, 720).get_area(), 921'600), + Rect2(0, 100, 1280, 720).get_area() == doctest::Approx(921'600), "get_area() should return the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Rect2(0, 100, -1280, -720).get_area(), 921'600), + Rect2(0, 100, -1280, -720).get_area() == doctest::Approx(921'600), "get_area() should return the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Rect2(0, 100, 1280, -720).get_area(), -921'600), + Rect2(0, 100, 1280, -720).get_area() == doctest::Approx(-921'600), "get_area() should return the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Rect2(0, 100, -1280, 720).get_area(), -921'600), + Rect2(0, 100, -1280, 720).get_area() == doctest::Approx(-921'600), "get_area() should return the expected value."); CHECK_MESSAGE( Math::is_zero_approx(Rect2(0, 100, 0, 720).get_area()), diff --git a/tests/core/math/test_vector2.h b/tests/core/math/test_vector2.h index f7e9259329..8f8fccd717 100644 --- a/tests/core/math/test_vector2.h +++ b/tests/core/math/test_vector2.h @@ -49,16 +49,16 @@ TEST_CASE("[Vector2] Angle methods") { const Vector2 vector_x = Vector2(1, 0); const Vector2 vector_y = Vector2(0, 1); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4), + vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4), "Vector2 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_y.angle_to(vector_x), (real_t)-Math_TAU / 4), + vector_y.angle_to(vector_x) == doctest::Approx((real_t)-Math_TAU / 4), "Vector2 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.angle_to_point(vector_y), (real_t)Math_TAU * 3 / 8), + vector_x.angle_to_point(vector_y) == doctest::Approx((real_t)Math_TAU * 3 / 8), "Vector2 angle_to_point should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_y.angle_to_point(vector_x), (real_t)-Math_TAU / 8), + vector_y.angle_to_point(vector_x) == doctest::Approx((real_t)-Math_TAU / 8), "Vector2 angle_to_point should work as expected."); } @@ -113,10 +113,10 @@ TEST_CASE("[Vector2] Interpolation methods") { Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)), "Vector2 slerp should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)4.31959610746631919), + vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)4.31959610746631919), "Vector2 slerp with different length input should return a vector with an interpolated length."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)), + vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)), "Vector2 slerp with different length input should return a vector with an interpolated angle."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5), @@ -136,19 +136,19 @@ TEST_CASE("[Vector2] Length methods") { vector1.length_squared() == 200, "Vector2 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT2), + vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT2), "Vector2 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 1300, "Vector2 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), (real_t)36.05551275463989293119), + vector2.length() == doctest::Approx((real_t)36.05551275463989293119), "Vector2 length should work as expected."); CHECK_MESSAGE( vector1.distance_squared_to(vector2) == 500, "Vector2 distance_squared_to should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.distance_to(vector2), (real_t)22.36067977499789696409), + vector1.distance_to(vector2) == doctest::Approx((real_t)22.36067977499789696409), "Vector2 distance_to should work as expected."); } @@ -294,7 +294,7 @@ TEST_CASE("[Vector2] Operators") { TEST_CASE("[Vector2] Other methods") { const Vector2 vector = Vector2(1.2, 3.4); CHECK_MESSAGE( - Math::is_equal_approx(vector.aspect(), (real_t)1.2 / (real_t)3.4), + vector.aspect() == doctest::Approx((real_t)1.2 / (real_t)3.4), "Vector2 aspect should work as expected."); CHECK_MESSAGE( @@ -443,10 +443,10 @@ TEST_CASE("[Vector2] Linear algebra methods") { vector_y.cross(vector_x) == -1, "Vector2 cross product of Y and X should give negative 1."); CHECK_MESSAGE( - Math::is_equal_approx(a.cross(b), (real_t)-28.1), + a.cross(b) == doctest::Approx((real_t)-28.1), "Vector2 cross should return expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)), (real_t)-28.1), + Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-28.1), "Vector2 cross should return expected value."); CHECK_MESSAGE( @@ -459,10 +459,10 @@ TEST_CASE("[Vector2] Linear algebra methods") { (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector2 dot product of same direction vectors should behave as expected."); CHECK_MESSAGE( - Math::is_equal_approx(a.dot(b), (real_t)57.3), + a.dot(b) == doctest::Approx((real_t)57.3), "Vector2 dot should return expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)), (real_t)-57.3), + Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-57.3), "Vector2 dot should return expected value."); } diff --git a/tests/core/math/test_vector2i.h b/tests/core/math/test_vector2i.h index 49b0632e3c..c7a0dccdcc 100644 --- a/tests/core/math/test_vector2i.h +++ b/tests/core/math/test_vector2i.h @@ -79,13 +79,13 @@ TEST_CASE("[Vector2i] Length methods") { vector1.length_squared() == 200, "Vector2i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 10 * Math_SQRT2), + vector1.length() == doctest::Approx(10 * Math_SQRT2), "Vector2i length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 1300, "Vector2i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), 36.05551275463989293119), + vector2.length() == doctest::Approx(36.05551275463989293119), "Vector2i length should work as expected."); } @@ -127,7 +127,7 @@ TEST_CASE("[Vector2i] Operators") { TEST_CASE("[Vector2i] Other methods") { const Vector2i vector = Vector2i(1, 3); CHECK_MESSAGE( - Math::is_equal_approx(vector.aspect(), (real_t)1.0 / (real_t)3.0), + vector.aspect() == doctest::Approx((real_t)1.0 / (real_t)3.0), "Vector2i aspect should work as expected."); CHECK_MESSAGE( diff --git a/tests/core/math/test_vector3.h b/tests/core/math/test_vector3.h index 77d3a9d93c..89d73ee6de 100644 --- a/tests/core/math/test_vector3.h +++ b/tests/core/math/test_vector3.h @@ -52,26 +52,26 @@ TEST_CASE("[Vector3] Angle methods") { const Vector3 vector_y = Vector3(0, 1, 0); const Vector3 vector_yz = Vector3(0, 1, 1); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4), + vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.angle_to(vector_yz), (real_t)Math_TAU / 4), + vector_x.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_yz.angle_to(vector_x), (real_t)Math_TAU / 4), + vector_yz.angle_to(vector_x) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_y.angle_to(vector_yz), (real_t)Math_TAU / 8), + vector_y.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 8), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.signed_angle_to(vector_y, vector_y), (real_t)Math_TAU / 4), + vector_x.signed_angle_to(vector_y, vector_y) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 signed_angle_to edge case should be positive."); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.signed_angle_to(vector_yz, vector_y), (real_t)Math_TAU / -4), + vector_x.signed_angle_to(vector_yz, vector_y) == doctest::Approx((real_t)Math_TAU / -4), "Vector3 signed_angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_yz.signed_angle_to(vector_x, vector_y), (real_t)Math_TAU / 4), + vector_yz.signed_angle_to(vector_x, vector_y) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 signed_angle_to should work as expected."); } @@ -130,10 +130,10 @@ TEST_CASE("[Vector3] Interpolation methods") { Vector3(4, 6, 2).slerp(Vector3(8, 10, 3), 0.5).is_equal_approx(Vector3(5.90194219811429941053, 8.06758688849378394534, 2.558307894718317120038)), "Vector3 slerp should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)6.25831088708303172), + vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)6.25831088708303172), "Vector3 slerp with different length input should return a vector with an interpolated length."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)), + vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)), "Vector3 slerp with different length input should return a vector with an interpolated angle."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625), @@ -153,19 +153,19 @@ TEST_CASE("[Vector3] Length methods") { vector1.length_squared() == 300, "Vector3 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT3), + vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT3), "Vector3 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 2900, "Vector3 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), (real_t)53.8516480713450403125), + vector2.length() == doctest::Approx((real_t)53.8516480713450403125), "Vector3 length should work as expected."); CHECK_MESSAGE( vector1.distance_squared_to(vector2) == 1400, "Vector3 distance_squared_to should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.distance_to(vector2), (real_t)37.41657386773941385584), + vector1.distance_to(vector2) == doctest::Approx((real_t)37.41657386773941385584), "Vector3 distance_to should work as expected."); } @@ -473,10 +473,10 @@ TEST_CASE("[Vector3] Linear algebra methods") { (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector3 dot product of same direction vectors should behave as expected."); CHECK_MESSAGE( - Math::is_equal_approx(a.dot(b), (real_t)75.24), + a.dot(b) == doctest::Approx((real_t)75.24), "Vector3 dot should return expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)), (real_t)-75.24), + Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)) == doctest::Approx((real_t)-75.24), "Vector3 dot should return expected value."); } diff --git a/tests/core/math/test_vector3i.h b/tests/core/math/test_vector3i.h index 2050b222d0..56578f99eb 100644 --- a/tests/core/math/test_vector3i.h +++ b/tests/core/math/test_vector3i.h @@ -82,13 +82,13 @@ TEST_CASE("[Vector3i] Length methods") { vector1.length_squared() == 300, "Vector3i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 10 * Math_SQRT3), + vector1.length() == doctest::Approx(10 * Math_SQRT3), "Vector3i length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 2900, "Vector3i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), 53.8516480713450403125), + vector2.length() == doctest::Approx(53.8516480713450403125), "Vector3i length should work as expected."); } diff --git a/tests/core/math/test_vector4.h b/tests/core/math/test_vector4.h index b31db56f67..6ed85661cb 100644 --- a/tests/core/math/test_vector4.h +++ b/tests/core/math/test_vector4.h @@ -91,19 +91,19 @@ TEST_CASE("[Vector4] Length methods") { vector1.length_squared() == 400, "Vector4 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 20), + vector1.length() == doctest::Approx(20), "Vector4 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 5400, "Vector4 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), (real_t)73.484692283495), + vector2.length() == doctest::Approx((real_t)73.484692283495), "Vector4 length should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.distance_to(vector2), (real_t)54.772255750517), + vector1.distance_to(vector2) == doctest::Approx((real_t)54.772255750517), "Vector4 distance_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.distance_squared_to(vector2), 3000), + vector1.distance_squared_to(vector2) == doctest::Approx(3000), "Vector4 distance_squared_to should work as expected."); } @@ -311,7 +311,7 @@ TEST_CASE("[Vector4] Linear algebra methods") { (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector4 dot product of same direction vectors should behave as expected."); CHECK_MESSAGE( - Math::is_equal_approx((vector1 * 2).dot(vector2 * 4), (real_t)-25.9 * 8), + (vector1 * 2).dot(vector2 * 4) == doctest::Approx((real_t)-25.9 * 8), "Vector4 dot product should work as expected."); } diff --git a/tests/core/math/test_vector4i.h b/tests/core/math/test_vector4i.h index 309162c3f7..30d38607dd 100644 --- a/tests/core/math/test_vector4i.h +++ b/tests/core/math/test_vector4i.h @@ -82,13 +82,13 @@ TEST_CASE("[Vector4i] Length methods") { vector1.length_squared() == 400, "Vector4i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 20), + vector1.length() == doctest::Approx(20), "Vector4i length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 5400, "Vector4i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), 73.4846922835), + vector2.length() == doctest::Approx(73.4846922835), "Vector4i length should work as expected."); } diff --git a/tests/scene/test_animation.h b/tests/scene/test_animation.h index ca80f0ecab..e921779c23 100644 --- a/tests/scene/test_animation.h +++ b/tests/scene/test_animation.h @@ -40,8 +40,8 @@ namespace TestAnimation { TEST_CASE("[Animation] Empty animation getters") { const Ref<Animation> animation = memnew(Animation); - CHECK(Math::is_equal_approx(animation->get_length(), real_t(1.0))); - CHECK(Math::is_equal_approx(animation->get_step(), real_t(0.1))); + CHECK(animation->get_length() == doctest::Approx(real_t(1.0))); + CHECK(animation->get_step() == doctest::Approx(real_t(0.1))); } TEST_CASE("[Animation] Create value track") { @@ -59,33 +59,33 @@ TEST_CASE("[Animation] Create value track") { CHECK(int(animation->track_get_key_value(0, 0)) == 0); CHECK(int(animation->track_get_key_value(0, 1)) == 100); - CHECK(Math::is_equal_approx(animation->value_track_interpolate(0, -0.2), 0.0)); - CHECK(Math::is_equal_approx(animation->value_track_interpolate(0, 0.0), 0.0)); - CHECK(Math::is_equal_approx(animation->value_track_interpolate(0, 0.2), 40.0)); - CHECK(Math::is_equal_approx(animation->value_track_interpolate(0, 0.4), 80.0)); - CHECK(Math::is_equal_approx(animation->value_track_interpolate(0, 0.5), 100.0)); - CHECK(Math::is_equal_approx(animation->value_track_interpolate(0, 0.6), 100.0)); + CHECK(animation->value_track_interpolate(0, -0.2) == doctest::Approx(0.0)); + CHECK(animation->value_track_interpolate(0, 0.0) == doctest::Approx(0.0)); + CHECK(animation->value_track_interpolate(0, 0.2) == doctest::Approx(40.0)); + CHECK(animation->value_track_interpolate(0, 0.4) == doctest::Approx(80.0)); + CHECK(animation->value_track_interpolate(0, 0.5) == doctest::Approx(100.0)); + CHECK(animation->value_track_interpolate(0, 0.6) == doctest::Approx(100.0)); - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 0), real_t(1.0))); - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 1), real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 0) == doctest::Approx(real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 1) == doctest::Approx(real_t(1.0))); ERR_PRINT_OFF; // Nonexistent keys. CHECK(animation->track_get_key_value(0, 2).is_null()); CHECK(animation->track_get_key_value(0, -1).is_null()); - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 2), real_t(-1.0))); + CHECK(animation->track_get_key_transition(0, 2) == doctest::Approx(real_t(-1.0))); // Nonexistent track (and keys). CHECK(animation->track_get_key_value(1, 0).is_null()); CHECK(animation->track_get_key_value(1, 1).is_null()); CHECK(animation->track_get_key_value(1, 2).is_null()); CHECK(animation->track_get_key_value(1, -1).is_null()); - CHECK(Math::is_equal_approx(animation->track_get_key_transition(1, 0), real_t(-1.0))); + CHECK(animation->track_get_key_transition(1, 0) == doctest::Approx(real_t(-1.0))); // This is a value track, so the methods below should return errors. CHECK(animation->position_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); CHECK(animation->rotation_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); CHECK(animation->scale_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); - CHECK(Math::is_zero_approx(animation->bezier_track_interpolate(0, 0.0))); + CHECK(animation->bezier_track_interpolate(0, 0.0) == doctest::Approx(0.0)); CHECK(animation->blend_shape_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); ERR_PRINT_ON; } @@ -123,15 +123,15 @@ TEST_CASE("[Animation] Create 3D position track") { CHECK(r_interpolation.is_equal_approx(Vector3(3.5, 4, 5))); // 3D position tracks always use linear interpolation for performance reasons. - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 0), real_t(1.0))); - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 1), real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 0) == doctest::Approx(real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 1) == doctest::Approx(real_t(1.0))); // This is a 3D position track, so the methods below should return errors. ERR_PRINT_OFF; CHECK(animation->value_track_interpolate(0, 0.0).is_null()); CHECK(animation->rotation_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); CHECK(animation->scale_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); - CHECK(Math::is_zero_approx(animation->bezier_track_interpolate(0, 0.0))); + CHECK(animation->bezier_track_interpolate(0, 0.0) == doctest::Approx(0.0)); CHECK(animation->blend_shape_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); ERR_PRINT_ON; } @@ -169,15 +169,15 @@ TEST_CASE("[Animation] Create 3D rotation track") { CHECK(r_interpolation.is_equal_approx(Quaternion(0.231055, 0.374912, 0.761204, 0.476048))); // 3D rotation tracks always use linear interpolation for performance reasons. - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 0), real_t(1.0))); - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 1), real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 0) == doctest::Approx(real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 1) == doctest::Approx(real_t(1.0))); // This is a 3D rotation track, so the methods below should return errors. ERR_PRINT_OFF; CHECK(animation->value_track_interpolate(0, 0.0).is_null()); CHECK(animation->position_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); CHECK(animation->scale_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); - CHECK(Math::is_zero_approx(animation->bezier_track_interpolate(0, 0.0))); + CHECK(animation->bezier_track_interpolate(0, 0.0) == doctest::Approx(real_t(0.0))); CHECK(animation->blend_shape_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); ERR_PRINT_ON; } @@ -215,15 +215,15 @@ TEST_CASE("[Animation] Create 3D scale track") { CHECK(r_interpolation.is_equal_approx(Vector3(3.5, 4, 5))); // 3D scale tracks always use linear interpolation for performance reasons. - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 0), real_t(1.0))); - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 1), real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 0) == doctest::Approx(1.0)); + CHECK(animation->track_get_key_transition(0, 1) == doctest::Approx(1.0)); // This is a 3D scale track, so the methods below should return errors. ERR_PRINT_OFF; CHECK(animation->value_track_interpolate(0, 0.0).is_null()); CHECK(animation->position_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); CHECK(animation->rotation_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); - CHECK(Math::is_zero_approx(animation->bezier_track_interpolate(0, 0.0))); + CHECK(animation->bezier_track_interpolate(0, 0.0) == doctest::Approx(0.0)); CHECK(animation->blend_shape_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); ERR_PRINT_ON; } @@ -242,32 +242,32 @@ TEST_CASE("[Animation] Create blend shape track") { float r_blend = 0.0f; CHECK(animation->blend_shape_track_get_key(0, 0, &r_blend) == OK); - CHECK(Math::is_equal_approx(r_blend, -1.0f)); + CHECK(r_blend == doctest::Approx(-1.0f)); CHECK(animation->blend_shape_track_get_key(0, 1, &r_blend) == OK); - CHECK(Math::is_equal_approx(r_blend, 1.0f)); + CHECK(r_blend == doctest::Approx(1.0f)); CHECK(animation->blend_shape_track_interpolate(0, -0.2, &r_blend) == OK); - CHECK(Math::is_equal_approx(r_blend, -1.0f)); + CHECK(r_blend == doctest::Approx(-1.0f)); CHECK(animation->blend_shape_track_interpolate(0, 0.0, &r_blend) == OK); - CHECK(Math::is_equal_approx(r_blend, -1.0f)); + CHECK(r_blend == doctest::Approx(-1.0f)); CHECK(animation->blend_shape_track_interpolate(0, 0.2, &r_blend) == OK); - CHECK(Math::is_equal_approx(r_blend, -0.2f)); + CHECK(r_blend == doctest::Approx(-0.2f)); CHECK(animation->blend_shape_track_interpolate(0, 0.4, &r_blend) == OK); - CHECK(Math::is_equal_approx(r_blend, 0.6f)); + CHECK(r_blend == doctest::Approx(0.6f)); CHECK(animation->blend_shape_track_interpolate(0, 0.5, &r_blend) == OK); - CHECK(Math::is_equal_approx(r_blend, 1.0f)); + CHECK(r_blend == doctest::Approx(1.0f)); CHECK(animation->blend_shape_track_interpolate(0, 0.6, &r_blend) == OK); - CHECK(Math::is_equal_approx(r_blend, 1.0f)); + CHECK(r_blend == doctest::Approx(1.0f)); // Blend shape tracks always use linear interpolation for performance reasons. - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 0), real_t(1.0))); - CHECK(Math::is_equal_approx(animation->track_get_key_transition(0, 1), real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 0) == doctest::Approx(real_t(1.0))); + CHECK(animation->track_get_key_transition(0, 1) == doctest::Approx(real_t(1.0))); // This is a blend shape track, so the methods below should return errors. ERR_PRINT_OFF; @@ -275,7 +275,7 @@ TEST_CASE("[Animation] Create blend shape track") { CHECK(animation->position_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); CHECK(animation->rotation_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); CHECK(animation->scale_track_interpolate(0, 0.0, nullptr) == ERR_INVALID_PARAMETER); - CHECK(Math::is_zero_approx(animation->bezier_track_interpolate(0, 0.0))); + CHECK(animation->bezier_track_interpolate(0, 0.0) == doctest::Approx(0.0)); ERR_PRINT_ON; } @@ -289,15 +289,15 @@ TEST_CASE("[Animation] Create Bezier track") { CHECK(animation->get_track_count() == 1); CHECK(!animation->track_is_compressed(0)); - CHECK(Math::is_equal_approx(animation->bezier_track_get_key_value(0, 0), real_t(-1.0))); - CHECK(Math::is_equal_approx(animation->bezier_track_get_key_value(0, 1), real_t(1.0))); + CHECK(animation->bezier_track_get_key_value(0, 0) == doctest::Approx(real_t(-1.0))); + CHECK(animation->bezier_track_get_key_value(0, 1) == doctest::Approx(real_t(1.0))); - CHECK(Math::is_equal_approx(animation->bezier_track_interpolate(0, -0.2), real_t(-1.0))); - CHECK(Math::is_equal_approx(animation->bezier_track_interpolate(0, 0.0), real_t(-1.0))); - CHECK(Math::is_equal_approx(animation->bezier_track_interpolate(0, 0.2), real_t(-0.76057207584381))); - CHECK(Math::is_equal_approx(animation->bezier_track_interpolate(0, 0.4), real_t(-0.39975279569626))); - CHECK(Math::is_equal_approx(animation->bezier_track_interpolate(0, 0.5), real_t(1.0))); - CHECK(Math::is_equal_approx(animation->bezier_track_interpolate(0, 0.6), real_t(1.0))); + CHECK(animation->bezier_track_interpolate(0, -0.2) == doctest::Approx(real_t(-1.0))); + CHECK(animation->bezier_track_interpolate(0, 0.0) == doctest::Approx(real_t(-1.0))); + CHECK(animation->bezier_track_interpolate(0, 0.2) == doctest::Approx(real_t(-0.76057207584381))); + CHECK(animation->bezier_track_interpolate(0, 0.4) == doctest::Approx(real_t(-0.39975279569626))); + CHECK(animation->bezier_track_interpolate(0, 0.5) == doctest::Approx(real_t(1.0))); + CHECK(animation->bezier_track_interpolate(0, 0.6) == doctest::Approx(real_t(1.0))); // This is a bezier track, so the methods below should return errors. ERR_PRINT_OFF; diff --git a/tests/scene/test_audio_stream_wav.h b/tests/scene/test_audio_stream_wav.h index 4ba431dfc2..c84c66b0e6 100644 --- a/tests/scene/test_audio_stream_wav.h +++ b/tests/scene/test_audio_stream_wav.h @@ -138,7 +138,7 @@ void run_test(String file_name, AudioStreamWAV::Format data_format, bool stereo, CHECK(stream->get_data() == test_data); SUBCASE("Stream length is computed properly") { - CHECK(Math::is_equal_approx(stream->get_length(), double(wav_count / wav_rate))); + CHECK(stream->get_length() == doctest::Approx(double(wav_count / wav_rate))); } SUBCASE("Stream can be saved as .wav") { diff --git a/tests/scene/test_curve.h b/tests/scene/test_curve.h index ad7625ddc5..36ec0c0a4d 100644 --- a/tests/scene/test_curve.h +++ b/tests/scene/test_curve.h @@ -83,54 +83,54 @@ TEST_CASE("[Curve] Custom curve with free tangents") { Math::is_zero_approx(curve->sample(-0.1)), "Custom free curve should return the expected value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.1), (real_t)0.352), + curve->sample(0.1) == doctest::Approx((real_t)0.352), "Custom free curve should return the expected value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.4), (real_t)0.352), + curve->sample(0.4) == doctest::Approx((real_t)0.352), "Custom free curve should return the expected value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.7), (real_t)0.896), + curve->sample(0.7) == doctest::Approx((real_t)0.896), "Custom free curve should return the expected value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(1), 1), + curve->sample(1) == doctest::Approx(1), "Custom free curve should return the expected value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(2), 1), + curve->sample(2) == doctest::Approx(1), "Custom free curve should return the expected value at offset 0.1."); CHECK_MESSAGE( Math::is_zero_approx(curve->sample_baked(-0.1)), "Custom free curve should return the expected baked value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.1), (real_t)0.352), + curve->sample_baked(0.1) == doctest::Approx((real_t)0.352), "Custom free curve should return the expected baked value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.4), (real_t)0.352), + curve->sample_baked(0.4) == doctest::Approx((real_t)0.352), "Custom free curve should return the expected baked value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.7), (real_t)0.896), + curve->sample_baked(0.7) == doctest::Approx((real_t)0.896), "Custom free curve should return the expected baked value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(1), 1), + curve->sample_baked(1) == doctest::Approx(1), "Custom free curve should return the expected baked value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(2), 1), + curve->sample_baked(2) == doctest::Approx(1), "Custom free curve should return the expected baked value at offset 0.1."); curve->remove_point(1); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.1), 0), + curve->sample(0.1) == doctest::Approx(0), "Custom free curve should return the expected value at offset 0.1 after removing point at index 1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.1), 0), + curve->sample_baked(0.1) == doctest::Approx(0), "Custom free curve should return the expected baked value at offset 0.1 after removing point at index 1."); curve->clear_points(); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.6), 0), + curve->sample(0.6) == doctest::Approx(0), "Custom free curve should return the expected value at offset 0.6 after clearing all points."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.6), 0), + curve->sample_baked(0.6) == doctest::Approx(0), "Custom free curve should return the expected baked value at offset 0.6 after clearing all points."); } @@ -143,7 +143,7 @@ TEST_CASE("[Curve] Custom curve with linear tangents") { curve->add_point(Vector2(0.75, 1), 0, 0, Curve::TangentMode::TANGENT_LINEAR, Curve::TangentMode::TANGENT_LINEAR); CHECK_MESSAGE( - Math::is_equal_approx(curve->get_point_left_tangent(3), 4), + curve->get_point_left_tangent(3) == doctest::Approx(4), "get_point_left_tangent() should return the expected value for point index 3."); CHECK_MESSAGE( Math::is_zero_approx(curve->get_point_right_tangent(3)), @@ -172,48 +172,48 @@ TEST_CASE("[Curve] Custom curve with linear tangents") { Math::is_zero_approx(curve->sample(-0.1)), "Custom linear curve should return the expected value at offset -0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.1), (real_t)0.4), + curve->sample(0.1) == doctest::Approx((real_t)0.4), "Custom linear curve should return the expected value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.4), (real_t)0.4), + curve->sample(0.4) == doctest::Approx((real_t)0.4), "Custom linear curve should return the expected value at offset 0.4."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.7), (real_t)0.8), + curve->sample(0.7) == doctest::Approx((real_t)0.8), "Custom linear curve should return the expected value at offset 0.7."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(1), 1), + curve->sample(1) == doctest::Approx(1), "Custom linear curve should return the expected value at offset 1.0."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(2), 1), + curve->sample(2) == doctest::Approx(1), "Custom linear curve should return the expected value at offset 2.0."); CHECK_MESSAGE( Math::is_zero_approx(curve->sample_baked(-0.1)), "Custom linear curve should return the expected baked value at offset -0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.1), (real_t)0.4), + curve->sample_baked(0.1) == doctest::Approx((real_t)0.4), "Custom linear curve should return the expected baked value at offset 0.1."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.4), (real_t)0.4), + curve->sample_baked(0.4) == doctest::Approx((real_t)0.4), "Custom linear curve should return the expected baked value at offset 0.4."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.7), (real_t)0.8), + curve->sample_baked(0.7) == doctest::Approx((real_t)0.8), "Custom linear curve should return the expected baked value at offset 0.7."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(1), 1), + curve->sample_baked(1) == doctest::Approx(1), "Custom linear curve should return the expected baked value at offset 1.0."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(2), 1), + curve->sample_baked(2) == doctest::Approx(1), "Custom linear curve should return the expected baked value at offset 2.0."); ERR_PRINT_OFF; curve->remove_point(10); ERR_PRINT_ON; CHECK_MESSAGE( - Math::is_equal_approx(curve->sample(0.7), (real_t)0.8), + curve->sample(0.7) == doctest::Approx((real_t)0.8), "Custom free curve should return the expected value at offset 0.7 after removing point at invalid index 10."); CHECK_MESSAGE( - Math::is_equal_approx(curve->sample_baked(0.7), (real_t)0.8), + curve->sample_baked(0.7) == doctest::Approx((real_t)0.8), "Custom free curve should return the expected baked value at offset 0.7 after removing point at invalid index 10."); } diff --git a/tests/scene/test_primitives.h b/tests/scene/test_primitives.h index ceec117700..8bac903d93 100644 --- a/tests/scene/test_primitives.h +++ b/tests/scene/test_primitives.h @@ -57,9 +57,9 @@ TEST_CASE("[SceneTree][Primitive][Capsule] Capsule Primitive") { capsule->set_radial_segments(16); capsule->set_rings(32); - CHECK_MESSAGE(Math::is_equal_approx(capsule->get_radius(), 1.3f), + CHECK_MESSAGE(capsule->get_radius() == doctest::Approx(1.3f), "Get/Set radius work with one set."); - CHECK_MESSAGE(Math::is_equal_approx(capsule->get_height(), 7.1f), + CHECK_MESSAGE(capsule->get_height() == doctest::Approx(7.1f), "Get/Set radius work with one set."); CHECK_MESSAGE(capsule->get_radial_segments() == 16, "Get/Set radius work with one set."); @@ -129,7 +129,7 @@ TEST_CASE("[SceneTree][Primitive][Capsule] Capsule Primitive") { if (normals[ii].y == 0.f) { float mag_of_normal = Math::sqrt(normals[ii].x * normals[ii].x + normals[ii].z * normals[ii].z); Vector3 normalized_normal = normals[ii] / mag_of_normal; - CHECK_MESSAGE(Math::is_equal_approx(point_dist_from_yaxis, radius), + CHECK_MESSAGE(point_dist_from_yaxis == doctest::Approx(radius), "Points on the tube of the capsule are radius away from y-axis."); CHECK_MESSAGE(normalized_normal.is_equal_approx(yaxis_to_point), "Normal points orthogonal from mid cylinder."); @@ -244,9 +244,9 @@ TEST_CASE("[SceneTree][Primitive][Cylinder] Cylinder Primitive") { cylinder->set_cap_top(false); cylinder->set_cap_bottom(false); - CHECK(Math::is_equal_approx(cylinder->get_top_radius(), 4.3f)); - CHECK(Math::is_equal_approx(cylinder->get_bottom_radius(), 1.2f)); - CHECK(Math::is_equal_approx(cylinder->get_height(), 9.77f)); + CHECK(cylinder->get_top_radius() == doctest::Approx(4.3f)); + CHECK(cylinder->get_bottom_radius() == doctest::Approx(1.2f)); + CHECK(cylinder->get_height() == doctest::Approx(9.77f)); CHECK(cylinder->get_radial_segments() == 12); CHECK(cylinder->get_rings() == 16); CHECK(!cylinder->is_cap_top()); @@ -478,7 +478,7 @@ TEST_CASE("[SceneTree][Primitive][Prism] Prism Primitive") { prism->set_subdivide_height(5); prism->set_subdivide_depth(64); - CHECK(Math::is_equal_approx(prism->get_left_to_right(), 3.4f)); + CHECK(prism->get_left_to_right() == doctest::Approx(3.4f)); CHECK(prism->get_size().is_equal_approx(size)); CHECK(prism->get_subdivide_width() == 36); CHECK(prism->get_subdivide_height() == 5); @@ -513,8 +513,8 @@ TEST_CASE("[SceneTree][Primitive][Sphere] Sphere Primitive") { sphere->set_rings(5); sphere->set_is_hemisphere(true); - CHECK(Math::is_equal_approx(sphere->get_radius(), 3.4f)); - CHECK(Math::is_equal_approx(sphere->get_height(), 2.2f)); + CHECK(sphere->get_radius() == doctest::Approx(3.4f)); + CHECK(sphere->get_height() == doctest::Approx(2.2f)); CHECK(sphere->get_radial_segments() == 36); CHECK(sphere->get_rings() == 5); CHECK(sphere->get_is_hemisphere()); @@ -581,8 +581,8 @@ TEST_CASE("[SceneTree][Primitive][Torus] Torus Primitive") { torus->set_rings(19); torus->set_ring_segments(43); - CHECK(Math::is_equal_approx(torus->get_inner_radius(), 3.2f)); - CHECK(Math::is_equal_approx(torus->get_outer_radius(), 9.5f)); + CHECK(torus->get_inner_radius() == doctest::Approx(3.2f)); + CHECK(torus->get_outer_radius() == doctest::Approx(9.5f)); CHECK(torus->get_rings() == 19); CHECK(torus->get_ring_segments() == 43); } @@ -610,8 +610,8 @@ TEST_CASE("[SceneTree][Primitive][TubeTrail] TubeTrail Primitive") { Ref<Curve> curve = memnew(Curve); tube->set_curve(curve); - CHECK(Math::is_equal_approx(tube->get_radius(), 7.2f)); - CHECK(Math::is_equal_approx(tube->get_section_length(), 5.5f)); + CHECK(tube->get_radius() == doctest::Approx(7.2f)); + CHECK(tube->get_section_length() == doctest::Approx(5.5f)); CHECK(tube->get_radial_steps() == 9); CHECK(tube->get_sections() == 33); CHECK(tube->get_section_rings() == 12); @@ -670,8 +670,8 @@ TEST_CASE("[SceneTree][Primitive][RibbonTrail] RibbonTrail Primitive") { ribbon->set_section_segments(9); ribbon->set_curve(curve); - CHECK(Math::is_equal_approx(ribbon->get_size(), 4.3f)); - CHECK(Math::is_equal_approx(ribbon->get_section_length(), 1.3f)); + CHECK(ribbon->get_size() == doctest::Approx(4.3f)); + CHECK(ribbon->get_section_length() == doctest::Approx(1.3f)); CHECK(ribbon->get_sections() == 16); CHECK(ribbon->get_section_segments() == 9); CHECK(ribbon->get_curve() == curve); @@ -781,11 +781,11 @@ TEST_CASE("[SceneTree][Primitive][Text] Text Primitive") { CHECK(text->get_structured_text_bidi_override_options() == options); CHECK(text->is_uppercase() == true); CHECK(text->get_offset() == offset); - CHECK(Math::is_equal_approx(text->get_line_spacing(), 1.7f)); - CHECK(Math::is_equal_approx(text->get_width(), width)); - CHECK(Math::is_equal_approx(text->get_depth(), depth)); - CHECK(Math::is_equal_approx(text->get_curve_step(), curve_step)); - CHECK(Math::is_equal_approx(text->get_pixel_size(), pixel_size)); + CHECK(text->get_line_spacing() == doctest::Approx(1.7f)); + CHECK(text->get_width() == doctest::Approx(width)); + CHECK(text->get_depth() == doctest::Approx(depth)); + CHECK(text->get_curve_step() == doctest::Approx(curve_step)); + CHECK(text->get_pixel_size() == doctest::Approx(pixel_size)); } SUBCASE("[Primitive][Text] Set objects multiple times.") { |