diff options
author | Rémi Verschelde <rverschelde@gmail.com> | 2020-02-11 14:01:43 +0100 |
---|---|---|
committer | Rémi Verschelde <rverschelde@gmail.com> | 2020-02-11 14:08:44 +0100 |
commit | db81928e08cb58d5f67908c6dfcf9433e572ffe8 (patch) | |
tree | d9a3ec0c72f3a4eda02e16ed883f560e02cf1ccf /thirdparty | |
parent | eb2b1a602247b88b0710a5eaae0146e0afeed265 (diff) |
Vulkan: Move thirdparty code out of drivers, style fixes
- `vk_enum_string_helper.h` is a generated file taken from the SDK
(Vulkan-ValidationLayers).
- `vk_mem_alloc.h` is a library from GPUOpen:
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
Diffstat (limited to 'thirdparty')
-rw-r--r-- | thirdparty/README.md | 5 | ||||
-rw-r--r-- | thirdparty/vulkan/vk_enum_string_helper.h | 3722 | ||||
-rw-r--r-- | thirdparty/vulkan/vk_mem_alloc.cpp | 7 | ||||
-rw-r--r-- | thirdparty/vulkan/vk_mem_alloc.h | 15448 |
4 files changed, 19182 insertions, 0 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md index cab72453d6..7ea2763ac8 100644 --- a/thirdparty/README.md +++ b/thirdparty/README.md @@ -547,6 +547,11 @@ Files extracted from upstream source: `loader/` folder - `LICENSE.txt` +`vk_enum_string_helper.h` is taken from the match `Vulkan-ValidationLayers` SDK +release: https://github.com/KhronosGroup/Vulkan-Loader/tree/master/loader/generated + +`vk_mem_alloc.h` is taken from https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator + ## wslay diff --git a/thirdparty/vulkan/vk_enum_string_helper.h b/thirdparty/vulkan/vk_enum_string_helper.h new file mode 100644 index 0000000000..a0b955e32b --- /dev/null +++ b/thirdparty/vulkan/vk_enum_string_helper.h @@ -0,0 +1,3722 @@ +// *** THIS FILE IS GENERATED - DO NOT EDIT *** +// See helper_file_generator.py for modifications + + +/*************************************************************************** + * + * Copyright (c) 2015-2017 The Khronos Group Inc. + * Copyright (c) 2015-2017 Valve Corporation + * Copyright (c) 2015-2017 LunarG, Inc. + * Copyright (c) 2015-2017 Google Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * + * Author: Mark Lobodzinski <mark@lunarg.com> + * Author: Courtney Goeltzenleuchter <courtneygo@google.com> + * Author: Tobin Ehlis <tobine@google.com> + * Author: Chris Forbes <chrisforbes@google.com> + * Author: John Zulauf<jzulauf@lunarg.com> + * + ****************************************************************************/ + + +#pragma once +#ifdef _WIN32 +#pragma warning( disable : 4065 ) +#endif + +#include <vulkan/vulkan.h> + + +static inline const char* string_VkPipelineCacheHeaderVersion(VkPipelineCacheHeaderVersion input_value) +{ + switch ((VkPipelineCacheHeaderVersion)input_value) + { + case VK_PIPELINE_CACHE_HEADER_VERSION_ONE: + return "VK_PIPELINE_CACHE_HEADER_VERSION_ONE"; + default: + return "Unhandled VkPipelineCacheHeaderVersion"; + } +} + +static inline const char* string_VkResult(VkResult input_value) +{ + switch ((VkResult)input_value) + { + case VK_ERROR_INITIALIZATION_FAILED: + return "VK_ERROR_INITIALIZATION_FAILED"; + case VK_ERROR_OUT_OF_DEVICE_MEMORY: + return "VK_ERROR_OUT_OF_DEVICE_MEMORY"; + case VK_ERROR_NOT_PERMITTED_EXT: + return "VK_ERROR_NOT_PERMITTED_EXT"; + case VK_ERROR_INVALID_EXTERNAL_HANDLE: + return "VK_ERROR_INVALID_EXTERNAL_HANDLE"; + case VK_NOT_READY: + return "VK_NOT_READY"; + case VK_ERROR_FEATURE_NOT_PRESENT: + return "VK_ERROR_FEATURE_NOT_PRESENT"; + case VK_TIMEOUT: + return "VK_TIMEOUT"; + case VK_ERROR_FRAGMENTED_POOL: + return "VK_ERROR_FRAGMENTED_POOL"; + case VK_ERROR_LAYER_NOT_PRESENT: + return "VK_ERROR_LAYER_NOT_PRESENT"; + case VK_ERROR_FRAGMENTATION_EXT: + return "VK_ERROR_FRAGMENTATION_EXT"; + case VK_ERROR_INCOMPATIBLE_DISPLAY_KHR: + return "VK_ERROR_INCOMPATIBLE_DISPLAY_KHR"; + case VK_SUCCESS: + return "VK_SUCCESS"; + case VK_ERROR_INVALID_SHADER_NV: + return "VK_ERROR_INVALID_SHADER_NV"; + case VK_ERROR_FORMAT_NOT_SUPPORTED: + return "VK_ERROR_FORMAT_NOT_SUPPORTED"; + case VK_ERROR_SURFACE_LOST_KHR: + return "VK_ERROR_SURFACE_LOST_KHR"; + case VK_ERROR_VALIDATION_FAILED_EXT: + return "VK_ERROR_VALIDATION_FAILED_EXT"; + case VK_SUBOPTIMAL_KHR: + return "VK_SUBOPTIMAL_KHR"; + case VK_ERROR_TOO_MANY_OBJECTS: + return "VK_ERROR_TOO_MANY_OBJECTS"; + case VK_EVENT_RESET: + return "VK_EVENT_RESET"; + case VK_ERROR_OUT_OF_DATE_KHR: + return "VK_ERROR_OUT_OF_DATE_KHR"; + case VK_ERROR_NATIVE_WINDOW_IN_USE_KHR: + return "VK_ERROR_NATIVE_WINDOW_IN_USE_KHR"; + case VK_ERROR_MEMORY_MAP_FAILED: + return "VK_ERROR_MEMORY_MAP_FAILED"; + case VK_EVENT_SET: + return "VK_EVENT_SET"; + case VK_ERROR_INCOMPATIBLE_DRIVER: + return "VK_ERROR_INCOMPATIBLE_DRIVER"; + case VK_INCOMPLETE: + return "VK_INCOMPLETE"; + case VK_ERROR_DEVICE_LOST: + return "VK_ERROR_DEVICE_LOST"; + case VK_ERROR_EXTENSION_NOT_PRESENT: + return "VK_ERROR_EXTENSION_NOT_PRESENT"; + case VK_ERROR_OUT_OF_POOL_MEMORY: + return "VK_ERROR_OUT_OF_POOL_MEMORY"; + case VK_ERROR_OUT_OF_HOST_MEMORY: + return "VK_ERROR_OUT_OF_HOST_MEMORY"; + default: + return "Unhandled VkResult"; + } +} + +static inline const char* string_VkStructureType(VkStructureType input_value) +{ + switch ((VkStructureType)input_value) + { + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER: + return "VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER"; + case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO: + return "VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO"; + case VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR: + return "VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR"; + case VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2"; + case VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT"; + case VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT"; + case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: + return "VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO: + return "VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO"; + case VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2: + return "VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2"; + case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV: + return "VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV"; + case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: + return "VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO"; + case VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV: + return "VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_BIND_SPARSE_INFO: + return "VK_STRUCTURE_TYPE_BIND_SPARSE_INFO"; + case VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2: + return "VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2"; + case VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR: + return "VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR"; + case VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO: + return "VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO"; + case VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR: + return "VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES"; + case VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO: + return "VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO"; + case VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR: + return "VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR"; + case VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES"; + case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO: + return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO"; + case VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_APPLICATION_INFO: + return "VK_STRUCTURE_TYPE_APPLICATION_INFO"; + case VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO: + return "VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO"; + case VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT: + return "VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT"; + case VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT"; + case VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES: + return "VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES"; + case VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV: + return "VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV"; + case VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT: + return "VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT"; + case VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_EVENT_CREATE_INFO: + return "VK_STRUCTURE_TYPE_EVENT_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES"; + case VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR: + return "VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR"; + case VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_LIMITS_NVX: + return "VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_LIMITS_NVX"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD"; + case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT: + return "VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT"; + case VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV: + return "VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV"; + case VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT: + return "VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT"; + case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO: + return "VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO"; + case VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN: + return "VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN"; + case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT"; + case VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD: + return "VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD"; + case VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR: + return "VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES"; + case VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR: + return "VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR"; + case VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO: + return "VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV: + return "VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV"; + case VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO: + return "VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO"; + case VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT: + return "VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT"; + case VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV: + return "VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV"; + case VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: + return "VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR"; + case VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO: + return "VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV: + return "VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES"; + case VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR: + return "VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR"; + case VK_STRUCTURE_TYPE_OBJECT_TABLE_CREATE_INFO_NVX: + return "VK_STRUCTURE_TYPE_OBJECT_TABLE_CREATE_INFO_NVX"; + case VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2: + return "VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2"; + case VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR: + return "VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR"; + case VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV: + return "VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV"; + case VK_STRUCTURE_TYPE_SUBMIT_INFO: + return "VK_STRUCTURE_TYPE_SUBMIT_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_ADVANCED_STATE_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_ADVANCED_STATE_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD: + return "VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD"; + case VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT"; + case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES: + return "VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES"; + case VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_TAG_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_TAG_INFO_EXT"; + case VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV: + return "VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV"; + case VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR: + return "VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR"; + case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR: + return "VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR"; + case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR: + return "VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR"; + case VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID: + return "VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID"; + case VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_FENCE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_FENCE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO: + return "VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO: + return "VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO"; + case VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NVX: + return "VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NVX"; + case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID: + return "VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID"; + case VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_MEMORY_GET_ANDROID_HARDWARE_BUFFER_INFO_ANDROID: + return "VK_STRUCTURE_TYPE_MEMORY_GET_ANDROID_HARDWARE_BUFFER_INFO_ANDROID"; + case VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO: + return "VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO"; + case VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES"; + case VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX"; + case VK_STRUCTURE_TYPE_CMD_PROCESS_COMMANDS_INFO_NVX: + return "VK_STRUCTURE_TYPE_CMD_PROCESS_COMMANDS_INFO_NVX"; + case VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE: + return "VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE"; + case VK_STRUCTURE_TYPE_PRESENT_INFO_KHR: + return "VK_STRUCTURE_TYPE_PRESENT_INFO_KHR"; + case VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO: + return "VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO"; + case VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE: + return "VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE"; + case VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO: + return "VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_TO_COLOR_STATE_CREATE_INFO_NV: + return "VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_TO_COLOR_STATE_CREATE_INFO_NV"; + case VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO: + return "VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO"; + case VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT"; + case VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK: + return "VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK"; + case VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR: + return "VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR"; + case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO: + return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO"; + case VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER: + return "VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER"; + case VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR: + return "VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR"; + case VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2: + return "VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2"; + case VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO: + return "VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO"; + case VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO: + return "VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO"; + case VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR: + return "VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES"; + case VK_STRUCTURE_TYPE_HDR_METADATA_EXT: + return "VK_STRUCTURE_TYPE_HDR_METADATA_EXT"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2"; + case VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES: + return "VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES"; + case VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2: + return "VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO: + return "VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO"; + case VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_VALIDATION_CACHE_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_VALIDATION_CACHE_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO"; + case VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO: + return "VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO"; + case VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO: + return "VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO"; + case VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES: + return "VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO: + return "VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO"; + case VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_CMD_RESERVE_SPACE_FOR_COMMANDS_INFO_NVX: + return "VK_STRUCTURE_TYPE_CMD_RESERVE_SPACE_FOR_COMMANDS_INFO_NVX"; + case VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO: + return "VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: + return "VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES"; + case VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2: + return "VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2"; + case VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_MEMORY_BARRIER: + return "VK_STRUCTURE_TYPE_MEMORY_BARRIER"; + case VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO: + return "VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO"; + case VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT: + return "VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES"; + case VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2: + return "VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2"; + case VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO: + return "VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO"; + case VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT"; + case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID: + return "VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID"; + case VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES: + return "VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES"; + case VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2: + return "VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2"; + case VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV: + return "VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV"; + case VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT: + return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT"; + case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO: + return "VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT"; + case VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO: + return "VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO"; + case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO: + return "VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO"; + case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT: + return "VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT"; + case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT: + return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES"; + case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: + return "VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO"; + case VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR: + return "VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR"; + case VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT: + return "VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT"; + case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: + return "VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR"; + case VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO: + return "VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO"; + case VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET: + return "VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET"; + case VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR: + return "VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR"; + case VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV: + return "VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV"; + case VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO: + return "VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO"; + case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET: + return "VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES"; + case VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK: + return "VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK"; + case VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID: + return "VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID"; + case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO: + return "VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO"; + case VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR: + return "VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR"; + case VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT: + return "VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT"; + case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO: + return "VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO"; + case VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO: + return "VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO"; + case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID: + return "VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID"; + case VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_FEATURES_NVX: + return "VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_FEATURES_NVX"; + case VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2: + return "VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2"; + case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: + return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2"; + case VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR: + return "VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR"; + case VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2: + return "VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2"; + default: + return "Unhandled VkStructureType"; + } +} + +static inline const char* string_VkSystemAllocationScope(VkSystemAllocationScope input_value) +{ + switch ((VkSystemAllocationScope)input_value) + { + case VK_SYSTEM_ALLOCATION_SCOPE_COMMAND: + return "VK_SYSTEM_ALLOCATION_SCOPE_COMMAND"; + case VK_SYSTEM_ALLOCATION_SCOPE_CACHE: + return "VK_SYSTEM_ALLOCATION_SCOPE_CACHE"; + case VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE: + return "VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE"; + case VK_SYSTEM_ALLOCATION_SCOPE_OBJECT: + return "VK_SYSTEM_ALLOCATION_SCOPE_OBJECT"; + case VK_SYSTEM_ALLOCATION_SCOPE_DEVICE: + return "VK_SYSTEM_ALLOCATION_SCOPE_DEVICE"; + default: + return "Unhandled VkSystemAllocationScope"; + } +} + +static inline const char* string_VkInternalAllocationType(VkInternalAllocationType input_value) +{ + switch ((VkInternalAllocationType)input_value) + { + case VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE: + return "VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE"; + default: + return "Unhandled VkInternalAllocationType"; + } +} + +static inline const char* string_VkFormat(VkFormat input_value) +{ + switch ((VkFormat)input_value) + { + case VK_FORMAT_R32G32B32_SINT: + return "VK_FORMAT_R32G32B32_SINT"; + case VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM: + return "VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM"; + case VK_FORMAT_B8G8R8A8_UINT: + return "VK_FORMAT_B8G8R8A8_UINT"; + case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: + return "VK_FORMAT_ASTC_5x5_SRGB_BLOCK"; + case VK_FORMAT_A2R10G10B10_UINT_PACK32: + return "VK_FORMAT_A2R10G10B10_UINT_PACK32"; + case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: + return "VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK"; + case VK_FORMAT_ASTC_8x6_UNORM_BLOCK: + return "VK_FORMAT_ASTC_8x6_UNORM_BLOCK"; + case VK_FORMAT_B4G4R4A4_UNORM_PACK16: + return "VK_FORMAT_B4G4R4A4_UNORM_PACK16"; + case VK_FORMAT_R16G16_SINT: + return "VK_FORMAT_R16G16_SINT"; + case VK_FORMAT_BC1_RGB_SRGB_BLOCK: + return "VK_FORMAT_BC1_RGB_SRGB_BLOCK"; + case VK_FORMAT_R8G8_USCALED: + return "VK_FORMAT_R8G8_USCALED"; + case VK_FORMAT_ASTC_10x8_UNORM_BLOCK: + return "VK_FORMAT_ASTC_10x8_UNORM_BLOCK"; + case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: + return "VK_FORMAT_G8_B8R8_2PLANE_420_UNORM"; + case VK_FORMAT_B8G8R8A8_SNORM: + return "VK_FORMAT_B8G8R8A8_SNORM"; + case VK_FORMAT_B5G5R5A1_UNORM_PACK16: + return "VK_FORMAT_B5G5R5A1_UNORM_PACK16"; + case VK_FORMAT_R64G64_UINT: + return "VK_FORMAT_R64G64_UINT"; + case VK_FORMAT_R5G5B5A1_UNORM_PACK16: + return "VK_FORMAT_R5G5B5A1_UNORM_PACK16"; + case VK_FORMAT_A2B10G10R10_UNORM_PACK32: + return "VK_FORMAT_A2B10G10R10_UNORM_PACK32"; + case VK_FORMAT_R16G16_USCALED: + return "VK_FORMAT_R16G16_USCALED"; + case VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM: + return "VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM"; + case VK_FORMAT_ASTC_8x8_UNORM_BLOCK: + return "VK_FORMAT_ASTC_8x8_UNORM_BLOCK"; + case VK_FORMAT_R8G8_SSCALED: + return "VK_FORMAT_R8G8_SSCALED"; + case VK_FORMAT_R16G16_SSCALED: + return "VK_FORMAT_R16G16_SSCALED"; + case VK_FORMAT_ASTC_8x5_UNORM_BLOCK: + return "VK_FORMAT_ASTC_8x5_UNORM_BLOCK"; + case VK_FORMAT_EAC_R11_UNORM_BLOCK: + return "VK_FORMAT_EAC_R11_UNORM_BLOCK"; + case VK_FORMAT_A1R5G5B5_UNORM_PACK16: + return "VK_FORMAT_A1R5G5B5_UNORM_PACK16"; + case VK_FORMAT_R16_USCALED: + return "VK_FORMAT_R16_USCALED"; + case VK_FORMAT_BC2_UNORM_BLOCK: + return "VK_FORMAT_BC2_UNORM_BLOCK"; + case VK_FORMAT_R16_UNORM: + return "VK_FORMAT_R16_UNORM"; + case VK_FORMAT_R8_USCALED: + return "VK_FORMAT_R8_USCALED"; + case VK_FORMAT_R16G16_UNORM: + return "VK_FORMAT_R16G16_UNORM"; + case VK_FORMAT_ASTC_10x5_UNORM_BLOCK: + return "VK_FORMAT_ASTC_10x5_UNORM_BLOCK"; + case VK_FORMAT_R16G16B16_SFLOAT: + return "VK_FORMAT_R16G16B16_SFLOAT"; + case VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG: + return "VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG"; + case VK_FORMAT_A2R10G10B10_SNORM_PACK32: + return "VK_FORMAT_A2R10G10B10_SNORM_PACK32"; + case VK_FORMAT_ASTC_10x6_SRGB_BLOCK: + return "VK_FORMAT_ASTC_10x6_SRGB_BLOCK"; + case VK_FORMAT_R8_UNORM: + return "VK_FORMAT_R8_UNORM"; + case VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG: + return "VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG"; + case VK_FORMAT_A8B8G8R8_SINT_PACK32: + return "VK_FORMAT_A8B8G8R8_SINT_PACK32"; + case VK_FORMAT_B8G8R8_UNORM: + return "VK_FORMAT_B8G8R8_UNORM"; + case VK_FORMAT_R8G8_UINT: + return "VK_FORMAT_R8G8_UINT"; + case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: + return "VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK"; + case VK_FORMAT_R8_SSCALED: + return "VK_FORMAT_R8_SSCALED"; + case VK_FORMAT_A8B8G8R8_SRGB_PACK32: + return "VK_FORMAT_A8B8G8R8_SRGB_PACK32"; + case VK_FORMAT_BC7_UNORM_BLOCK: + return "VK_FORMAT_BC7_UNORM_BLOCK"; + case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: + return "VK_FORMAT_A2R10G10B10_SSCALED_PACK32"; + case VK_FORMAT_R16G16B16A16_SINT: + return "VK_FORMAT_R16G16B16A16_SINT"; + case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16: + return "VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16"; + case VK_FORMAT_B8G8R8A8_SSCALED: + return "VK_FORMAT_B8G8R8A8_SSCALED"; + case VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM: + return "VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM"; + case VK_FORMAT_R8G8B8_USCALED: + return "VK_FORMAT_R8G8B8_USCALED"; + case VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG: + return "VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG"; + case VK_FORMAT_B8G8R8_SRGB: + return "VK_FORMAT_B8G8R8_SRGB"; + case VK_FORMAT_A2B10G10R10_UINT_PACK32: + return "VK_FORMAT_A2B10G10R10_UINT_PACK32"; + case VK_FORMAT_R64G64_SINT: + return "VK_FORMAT_R64G64_SINT"; + case VK_FORMAT_B8G8R8G8_422_UNORM: + return "VK_FORMAT_B8G8R8G8_422_UNORM"; + case VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM: + return "VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM"; + case VK_FORMAT_R64_UINT: + return "VK_FORMAT_R64_UINT"; + case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: + return "VK_FORMAT_EAC_R11G11_UNORM_BLOCK"; + case VK_FORMAT_BC5_SNORM_BLOCK: + return "VK_FORMAT_BC5_SNORM_BLOCK"; + case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: + return "VK_FORMAT_ASTC_6x5_SRGB_BLOCK"; + case VK_FORMAT_R16G16B16A16_SSCALED: + return "VK_FORMAT_R16G16B16A16_SSCALED"; + case VK_FORMAT_G8_B8R8_2PLANE_422_UNORM: + return "VK_FORMAT_G8_B8R8_2PLANE_422_UNORM"; + case VK_FORMAT_R32G32B32_UINT: + return "VK_FORMAT_R32G32B32_UINT"; + case VK_FORMAT_R8G8_SNORM: + return "VK_FORMAT_R8G8_SNORM"; + case VK_FORMAT_B8G8R8_USCALED: + return "VK_FORMAT_B8G8R8_USCALED"; + case VK_FORMAT_R16G16B16A16_SFLOAT: + return "VK_FORMAT_R16G16B16A16_SFLOAT"; + case VK_FORMAT_R16G16B16_USCALED: + return "VK_FORMAT_R16G16B16_USCALED"; + case VK_FORMAT_A2R10G10B10_SINT_PACK32: + return "VK_FORMAT_A2R10G10B10_SINT_PACK32"; + case VK_FORMAT_R32_SINT: + return "VK_FORMAT_R32_SINT"; + case VK_FORMAT_R64_SINT: + return "VK_FORMAT_R64_SINT"; + case VK_FORMAT_A8B8G8R8_USCALED_PACK32: + return "VK_FORMAT_A8B8G8R8_USCALED_PACK32"; + case VK_FORMAT_D24_UNORM_S8_UINT: + return "VK_FORMAT_D24_UNORM_S8_UINT"; + case VK_FORMAT_G8B8G8R8_422_UNORM: + return "VK_FORMAT_G8B8G8R8_422_UNORM"; + case VK_FORMAT_BC4_SNORM_BLOCK: + return "VK_FORMAT_BC4_SNORM_BLOCK"; + case VK_FORMAT_R16G16_SFLOAT: + return "VK_FORMAT_R16G16_SFLOAT"; + case VK_FORMAT_BC1_RGB_UNORM_BLOCK: + return "VK_FORMAT_BC1_RGB_UNORM_BLOCK"; + case VK_FORMAT_R64_SFLOAT: + return "VK_FORMAT_R64_SFLOAT"; + case VK_FORMAT_R64G64B64_SFLOAT: + return "VK_FORMAT_R64G64B64_SFLOAT"; + case VK_FORMAT_BC3_SRGB_BLOCK: + return "VK_FORMAT_BC3_SRGB_BLOCK"; + case VK_FORMAT_S8_UINT: + return "VK_FORMAT_S8_UINT"; + case VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG: + return "VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG"; + case VK_FORMAT_R8G8B8_SNORM: + return "VK_FORMAT_R8G8B8_SNORM"; + case VK_FORMAT_D32_SFLOAT: + return "VK_FORMAT_D32_SFLOAT"; + case VK_FORMAT_ASTC_10x10_SRGB_BLOCK: + return "VK_FORMAT_ASTC_10x10_SRGB_BLOCK"; + case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: + return "VK_FORMAT_ASTC_4x4_SRGB_BLOCK"; + case VK_FORMAT_R12X4G12X4_UNORM_2PACK16: + return "VK_FORMAT_R12X4G12X4_UNORM_2PACK16"; + case VK_FORMAT_G16B16G16R16_422_UNORM: + return "VK_FORMAT_G16B16G16R16_422_UNORM"; + case VK_FORMAT_BC7_SRGB_BLOCK: + return "VK_FORMAT_BC7_SRGB_BLOCK"; + case VK_FORMAT_R16G16_SNORM: + return "VK_FORMAT_R16G16_SNORM"; + case VK_FORMAT_R32_UINT: + return "VK_FORMAT_R32_UINT"; + case VK_FORMAT_R4G4B4A4_UNORM_PACK16: + return "VK_FORMAT_R4G4B4A4_UNORM_PACK16"; + case VK_FORMAT_A2R10G10B10_USCALED_PACK32: + return "VK_FORMAT_A2R10G10B10_USCALED_PACK32"; + case VK_FORMAT_R32_SFLOAT: + return "VK_FORMAT_R32_SFLOAT"; + case VK_FORMAT_ASTC_10x5_SRGB_BLOCK: + return "VK_FORMAT_ASTC_10x5_SRGB_BLOCK"; + case VK_FORMAT_R32G32B32_SFLOAT: + return "VK_FORMAT_R32G32B32_SFLOAT"; + case VK_FORMAT_R16_UINT: + return "VK_FORMAT_R16_UINT"; + case VK_FORMAT_ASTC_12x12_UNORM_BLOCK: + return "VK_FORMAT_ASTC_12x12_UNORM_BLOCK"; + case VK_FORMAT_R8G8_SRGB: + return "VK_FORMAT_R8G8_SRGB"; + case VK_FORMAT_R64G64B64A64_UINT: + return "VK_FORMAT_R64G64B64A64_UINT"; + case VK_FORMAT_ASTC_12x10_SRGB_BLOCK: + return "VK_FORMAT_ASTC_12x10_SRGB_BLOCK"; + case VK_FORMAT_R16G16B16_SNORM: + return "VK_FORMAT_R16G16B16_SNORM"; + case VK_FORMAT_R32G32_UINT: + return "VK_FORMAT_R32G32_UINT"; + case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: + return "VK_FORMAT_BC1_RGBA_UNORM_BLOCK"; + case VK_FORMAT_R8G8B8_UNORM: + return "VK_FORMAT_R8G8B8_UNORM"; + case VK_FORMAT_R8G8B8A8_SSCALED: + return "VK_FORMAT_R8G8B8A8_SSCALED"; + case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16: + return "VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16"; + case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16: + return "VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16"; + case VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM: + return "VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM"; + case VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG: + return "VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG"; + case VK_FORMAT_R16G16B16A16_USCALED: + return "VK_FORMAT_R16G16B16A16_USCALED"; + case VK_FORMAT_R8G8B8_SINT: + return "VK_FORMAT_R8G8B8_SINT"; + case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16: + return "VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16"; + case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: + return "VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16"; + case VK_FORMAT_B16G16R16G16_422_UNORM: + return "VK_FORMAT_B16G16R16G16_422_UNORM"; + case VK_FORMAT_R16G16B16_SINT: + return "VK_FORMAT_R16G16B16_SINT"; + case VK_FORMAT_UNDEFINED: + return "VK_FORMAT_UNDEFINED"; + case VK_FORMAT_B5G6R5_UNORM_PACK16: + return "VK_FORMAT_B5G6R5_UNORM_PACK16"; + case VK_FORMAT_R8G8B8A8_SRGB: + return "VK_FORMAT_R8G8B8A8_SRGB"; + case VK_FORMAT_A2B10G10R10_SSCALED_PACK32: + return "VK_FORMAT_A2B10G10R10_SSCALED_PACK32"; + case VK_FORMAT_B8G8R8_SINT: + return "VK_FORMAT_B8G8R8_SINT"; + case VK_FORMAT_B10G11R11_UFLOAT_PACK32: + return "VK_FORMAT_B10G11R11_UFLOAT_PACK32"; + case VK_FORMAT_BC5_UNORM_BLOCK: + return "VK_FORMAT_BC5_UNORM_BLOCK"; + case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: + return "VK_FORMAT_ASTC_5x4_SRGB_BLOCK"; + case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: + return "VK_FORMAT_ASTC_5x4_UNORM_BLOCK"; + case VK_FORMAT_R8G8B8A8_SINT: + return "VK_FORMAT_R8G8B8A8_SINT"; + case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16: + return "VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16"; + case VK_FORMAT_R8G8B8A8_UNORM: + return "VK_FORMAT_R8G8B8A8_UNORM"; + case VK_FORMAT_G16_B16R16_2PLANE_420_UNORM: + return "VK_FORMAT_G16_B16R16_2PLANE_420_UNORM"; + case VK_FORMAT_G16_B16R16_2PLANE_422_UNORM: + return "VK_FORMAT_G16_B16R16_2PLANE_422_UNORM"; + case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: + return "VK_FORMAT_EAC_R11G11_SNORM_BLOCK"; + case VK_FORMAT_R8G8_UNORM: + return "VK_FORMAT_R8G8_UNORM"; + case VK_FORMAT_A2B10G10R10_SINT_PACK32: + return "VK_FORMAT_A2B10G10R10_SINT_PACK32"; + case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: + return "VK_FORMAT_ASTC_4x4_UNORM_BLOCK"; + case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16: + return "VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16"; + case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16: + return "VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16"; + case VK_FORMAT_R16_SINT: + return "VK_FORMAT_R16_SINT"; + case VK_FORMAT_R8G8B8_SRGB: + return "VK_FORMAT_R8G8B8_SRGB"; + case VK_FORMAT_B8G8R8_SNORM: + return "VK_FORMAT_B8G8R8_SNORM"; + case VK_FORMAT_ASTC_12x12_SRGB_BLOCK: + return "VK_FORMAT_ASTC_12x12_SRGB_BLOCK"; + case VK_FORMAT_BC2_SRGB_BLOCK: + return "VK_FORMAT_BC2_SRGB_BLOCK"; + case VK_FORMAT_R10X6_UNORM_PACK16: + return "VK_FORMAT_R10X6_UNORM_PACK16"; + case VK_FORMAT_R64G64_SFLOAT: + return "VK_FORMAT_R64G64_SFLOAT"; + case VK_FORMAT_R4G4_UNORM_PACK8: + return "VK_FORMAT_R4G4_UNORM_PACK8"; + case VK_FORMAT_R16_SSCALED: + return "VK_FORMAT_R16_SSCALED"; + case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16: + return "VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16"; + case VK_FORMAT_R32G32B32A32_SINT: + return "VK_FORMAT_R32G32B32A32_SINT"; + case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: + return "VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK"; + case VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG: + return "VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG"; + case VK_FORMAT_R8G8B8_UINT: + return "VK_FORMAT_R8G8B8_UINT"; + case VK_FORMAT_R16G16B16_UNORM: + return "VK_FORMAT_R16G16B16_UNORM"; + case VK_FORMAT_R16G16B16_UINT: + return "VK_FORMAT_R16G16B16_UINT"; + case VK_FORMAT_A8B8G8R8_UNORM_PACK32: + return "VK_FORMAT_A8B8G8R8_UNORM_PACK32"; + case VK_FORMAT_B8G8R8_SSCALED: + return "VK_FORMAT_B8G8R8_SSCALED"; + case VK_FORMAT_X8_D24_UNORM_PACK32: + return "VK_FORMAT_X8_D24_UNORM_PACK32"; + case VK_FORMAT_R32G32_SFLOAT: + return "VK_FORMAT_R32G32_SFLOAT"; + case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: + return "VK_FORMAT_E5B9G9R9_UFLOAT_PACK32"; + case VK_FORMAT_ASTC_6x6_SRGB_BLOCK: + return "VK_FORMAT_ASTC_6x6_SRGB_BLOCK"; + case VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG: + return "VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG"; + case VK_FORMAT_R16G16B16A16_UINT: + return "VK_FORMAT_R16G16B16A16_UINT"; + case VK_FORMAT_R8G8B8A8_USCALED: + return "VK_FORMAT_R8G8B8A8_USCALED"; + case VK_FORMAT_R16G16B16A16_SNORM: + return "VK_FORMAT_R16G16B16A16_SNORM"; + case VK_FORMAT_R16G16B16A16_UNORM: + return "VK_FORMAT_R16G16B16A16_UNORM"; + case VK_FORMAT_D16_UNORM: + return "VK_FORMAT_D16_UNORM"; + case VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16: + return "VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16"; + case VK_FORMAT_BC3_UNORM_BLOCK: + return "VK_FORMAT_BC3_UNORM_BLOCK"; + case VK_FORMAT_A2B10G10R10_USCALED_PACK32: + return "VK_FORMAT_A2B10G10R10_USCALED_PACK32"; + case VK_FORMAT_R8_SRGB: + return "VK_FORMAT_R8_SRGB"; + case VK_FORMAT_R32G32B32A32_SFLOAT: + return "VK_FORMAT_R32G32B32A32_SFLOAT"; + case VK_FORMAT_A2R10G10B10_UNORM_PACK32: + return "VK_FORMAT_A2R10G10B10_UNORM_PACK32"; + case VK_FORMAT_R8G8_SINT: + return "VK_FORMAT_R8G8_SINT"; + case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16: + return "VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16"; + case VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16: + return "VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16"; + case VK_FORMAT_A2B10G10R10_SNORM_PACK32: + return "VK_FORMAT_A2B10G10R10_SNORM_PACK32"; + case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: + return "VK_FORMAT_BC1_RGBA_SRGB_BLOCK"; + case VK_FORMAT_D32_SFLOAT_S8_UINT: + return "VK_FORMAT_D32_SFLOAT_S8_UINT"; + case VK_FORMAT_B8G8R8A8_USCALED: + return "VK_FORMAT_B8G8R8A8_USCALED"; + case VK_FORMAT_ASTC_6x6_UNORM_BLOCK: + return "VK_FORMAT_ASTC_6x6_UNORM_BLOCK"; + case VK_FORMAT_R5G6B5_UNORM_PACK16: + return "VK_FORMAT_R5G6B5_UNORM_PACK16"; + case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: + return "VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK"; + case VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16: + return "VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16"; + case VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG: + return "VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG"; + case VK_FORMAT_R8G8B8A8_SNORM: + return "VK_FORMAT_R8G8B8A8_SNORM"; + case VK_FORMAT_ASTC_10x10_UNORM_BLOCK: + return "VK_FORMAT_ASTC_10x10_UNORM_BLOCK"; + case VK_FORMAT_BC6H_SFLOAT_BLOCK: + return "VK_FORMAT_BC6H_SFLOAT_BLOCK"; + case VK_FORMAT_R16_SFLOAT: + return "VK_FORMAT_R16_SFLOAT"; + case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: + return "VK_FORMAT_A8B8G8R8_SSCALED_PACK32"; + case VK_FORMAT_ASTC_10x8_SRGB_BLOCK: + return "VK_FORMAT_ASTC_10x8_SRGB_BLOCK"; + case VK_FORMAT_B8G8R8A8_SINT: + return "VK_FORMAT_B8G8R8A8_SINT"; + case VK_FORMAT_R8_SNORM: + return "VK_FORMAT_R8_SNORM"; + case VK_FORMAT_R32G32_SINT: + return "VK_FORMAT_R32G32_SINT"; + case VK_FORMAT_R32G32B32A32_UINT: + return "VK_FORMAT_R32G32B32A32_UINT"; + case VK_FORMAT_A8B8G8R8_SNORM_PACK32: + return "VK_FORMAT_A8B8G8R8_SNORM_PACK32"; + case VK_FORMAT_A8B8G8R8_UINT_PACK32: + return "VK_FORMAT_A8B8G8R8_UINT_PACK32"; + case VK_FORMAT_BC4_UNORM_BLOCK: + return "VK_FORMAT_BC4_UNORM_BLOCK"; + case VK_FORMAT_B8G8R8_UINT: + return "VK_FORMAT_B8G8R8_UINT"; + case VK_FORMAT_D16_UNORM_S8_UINT: + return "VK_FORMAT_D16_UNORM_S8_UINT"; + case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: + return "VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK"; + case VK_FORMAT_R8G8B8A8_UINT: + return "VK_FORMAT_R8G8B8A8_UINT"; + case VK_FORMAT_R12X4_UNORM_PACK16: + return "VK_FORMAT_R12X4_UNORM_PACK16"; + case VK_FORMAT_R64G64B64_SINT: + return "VK_FORMAT_R64G64B64_SINT"; + case VK_FORMAT_EAC_R11_SNORM_BLOCK: + return "VK_FORMAT_EAC_R11_SNORM_BLOCK"; + case VK_FORMAT_R64G64B64_UINT: + return "VK_FORMAT_R64G64B64_UINT"; + case VK_FORMAT_R64G64B64A64_SINT: + return "VK_FORMAT_R64G64B64A64_SINT"; + case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: + return "VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK"; + case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: + return "VK_FORMAT_ASTC_6x5_UNORM_BLOCK"; + case VK_FORMAT_ASTC_8x5_SRGB_BLOCK: + return "VK_FORMAT_ASTC_8x5_SRGB_BLOCK"; + case VK_FORMAT_ASTC_12x10_UNORM_BLOCK: + return "VK_FORMAT_ASTC_12x10_UNORM_BLOCK"; + case VK_FORMAT_ASTC_8x6_SRGB_BLOCK: + return "VK_FORMAT_ASTC_8x6_SRGB_BLOCK"; + case VK_FORMAT_R8G8B8_SSCALED: + return "VK_FORMAT_R8G8B8_SSCALED"; + case VK_FORMAT_B8G8R8A8_UNORM: + return "VK_FORMAT_B8G8R8A8_UNORM"; + case VK_FORMAT_R16_SNORM: + return "VK_FORMAT_R16_SNORM"; + case VK_FORMAT_R8_UINT: + return "VK_FORMAT_R8_UINT"; + case VK_FORMAT_R64G64B64A64_SFLOAT: + return "VK_FORMAT_R64G64B64A64_SFLOAT"; + case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: + return "VK_FORMAT_ASTC_5x5_UNORM_BLOCK"; + case VK_FORMAT_ASTC_8x8_SRGB_BLOCK: + return "VK_FORMAT_ASTC_8x8_SRGB_BLOCK"; + case VK_FORMAT_R8_SINT: + return "VK_FORMAT_R8_SINT"; + case VK_FORMAT_B8G8R8A8_SRGB: + return "VK_FORMAT_B8G8R8A8_SRGB"; + case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16: + return "VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16"; + case VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16: + return "VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16"; + case VK_FORMAT_BC6H_UFLOAT_BLOCK: + return "VK_FORMAT_BC6H_UFLOAT_BLOCK"; + case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: + return "VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM"; + case VK_FORMAT_R10X6G10X6_UNORM_2PACK16: + return "VK_FORMAT_R10X6G10X6_UNORM_2PACK16"; + case VK_FORMAT_R16G16_UINT: + return "VK_FORMAT_R16G16_UINT"; + case VK_FORMAT_ASTC_10x6_UNORM_BLOCK: + return "VK_FORMAT_ASTC_10x6_UNORM_BLOCK"; + case VK_FORMAT_R16G16B16_SSCALED: + return "VK_FORMAT_R16G16B16_SSCALED"; + case VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16: + return "VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16"; + default: + return "Unhandled VkFormat"; + } +} + +static inline const char* string_VkFormatFeatureFlagBits(VkFormatFeatureFlagBits input_value) +{ + switch ((VkFormatFeatureFlagBits)input_value) + { + case VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT: + return "VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT"; + case VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT: + return "VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT"; + case VK_FORMAT_FEATURE_TRANSFER_DST_BIT: + return "VK_FORMAT_FEATURE_TRANSFER_DST_BIT"; + case VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT: + return "VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT"; + case VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT: + return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT"; + case VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT: + return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT"; + case VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT: + return "VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT"; + case VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT: + return "VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT"; + case VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT: + return "VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT"; + case VK_FORMAT_FEATURE_DISJOINT_BIT: + return "VK_FORMAT_FEATURE_DISJOINT_BIT"; + case VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT: + return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT"; + case VK_FORMAT_FEATURE_TRANSFER_SRC_BIT: + return "VK_FORMAT_FEATURE_TRANSFER_SRC_BIT"; + case VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT: + return "VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT"; + case VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG: + return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG"; + case VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT: + return "VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT"; + case VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT: + return "VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT"; + case VK_FORMAT_FEATURE_BLIT_DST_BIT: + return "VK_FORMAT_FEATURE_BLIT_DST_BIT"; + case VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT: + return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT"; + case VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT: + return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT"; + case VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT: + return "VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT"; + case VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT: + return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT"; + case VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT: + return "VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT"; + case VK_FORMAT_FEATURE_BLIT_SRC_BIT: + return "VK_FORMAT_FEATURE_BLIT_SRC_BIT"; + case VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT: + return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT"; + default: + return "Unhandled VkFormatFeatureFlagBits"; + } +} + +static inline const char* string_VkImageType(VkImageType input_value) +{ + switch ((VkImageType)input_value) + { + case VK_IMAGE_TYPE_2D: + return "VK_IMAGE_TYPE_2D"; + case VK_IMAGE_TYPE_1D: + return "VK_IMAGE_TYPE_1D"; + case VK_IMAGE_TYPE_3D: + return "VK_IMAGE_TYPE_3D"; + default: + return "Unhandled VkImageType"; + } +} + +static inline const char* string_VkImageTiling(VkImageTiling input_value) +{ + switch ((VkImageTiling)input_value) + { + case VK_IMAGE_TILING_OPTIMAL: + return "VK_IMAGE_TILING_OPTIMAL"; + case VK_IMAGE_TILING_LINEAR: + return "VK_IMAGE_TILING_LINEAR"; + default: + return "Unhandled VkImageTiling"; + } +} + +static inline const char* string_VkImageUsageFlagBits(VkImageUsageFlagBits input_value) +{ + switch ((VkImageUsageFlagBits)input_value) + { + case VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT: + return "VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT"; + case VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT: + return "VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT"; + case VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT: + return "VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT"; + case VK_IMAGE_USAGE_SAMPLED_BIT: + return "VK_IMAGE_USAGE_SAMPLED_BIT"; + case VK_IMAGE_USAGE_TRANSFER_DST_BIT: + return "VK_IMAGE_USAGE_TRANSFER_DST_BIT"; + case VK_IMAGE_USAGE_STORAGE_BIT: + return "VK_IMAGE_USAGE_STORAGE_BIT"; + case VK_IMAGE_USAGE_TRANSFER_SRC_BIT: + return "VK_IMAGE_USAGE_TRANSFER_SRC_BIT"; + case VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT: + return "VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT"; + default: + return "Unhandled VkImageUsageFlagBits"; + } +} + +static inline const char* string_VkImageCreateFlagBits(VkImageCreateFlagBits input_value) +{ + switch ((VkImageCreateFlagBits)input_value) + { + case VK_IMAGE_CREATE_ALIAS_BIT: + return "VK_IMAGE_CREATE_ALIAS_BIT"; + case VK_IMAGE_CREATE_PROTECTED_BIT: + return "VK_IMAGE_CREATE_PROTECTED_BIT"; + case VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT: + return "VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT"; + case VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT: + return "VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT"; + case VK_IMAGE_CREATE_EXTENDED_USAGE_BIT: + return "VK_IMAGE_CREATE_EXTENDED_USAGE_BIT"; + case VK_IMAGE_CREATE_DISJOINT_BIT: + return "VK_IMAGE_CREATE_DISJOINT_BIT"; + case VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT: + return "VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT"; + case VK_IMAGE_CREATE_SPARSE_BINDING_BIT: + return "VK_IMAGE_CREATE_SPARSE_BINDING_BIT"; + case VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT: + return "VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT"; + case VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT: + return "VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT"; + case VK_IMAGE_CREATE_SPARSE_ALIASED_BIT: + return "VK_IMAGE_CREATE_SPARSE_ALIASED_BIT"; + case VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT: + return "VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT"; + case VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT: + return "VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT"; + default: + return "Unhandled VkImageCreateFlagBits"; + } +} + +static inline const char* string_VkSampleCountFlagBits(VkSampleCountFlagBits input_value) +{ + switch ((VkSampleCountFlagBits)input_value) + { + case VK_SAMPLE_COUNT_32_BIT: + return "VK_SAMPLE_COUNT_32_BIT"; + case VK_SAMPLE_COUNT_1_BIT: + return "VK_SAMPLE_COUNT_1_BIT"; + case VK_SAMPLE_COUNT_2_BIT: + return "VK_SAMPLE_COUNT_2_BIT"; + case VK_SAMPLE_COUNT_64_BIT: + return "VK_SAMPLE_COUNT_64_BIT"; + case VK_SAMPLE_COUNT_16_BIT: + return "VK_SAMPLE_COUNT_16_BIT"; + case VK_SAMPLE_COUNT_4_BIT: + return "VK_SAMPLE_COUNT_4_BIT"; + case VK_SAMPLE_COUNT_8_BIT: + return "VK_SAMPLE_COUNT_8_BIT"; + default: + return "Unhandled VkSampleCountFlagBits"; + } +} + +static inline const char* string_VkPhysicalDeviceType(VkPhysicalDeviceType input_value) +{ + switch ((VkPhysicalDeviceType)input_value) + { + case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: + return "VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU"; + case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: + return "VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU"; + case VK_PHYSICAL_DEVICE_TYPE_OTHER: + return "VK_PHYSICAL_DEVICE_TYPE_OTHER"; + case VK_PHYSICAL_DEVICE_TYPE_CPU: + return "VK_PHYSICAL_DEVICE_TYPE_CPU"; + case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: + return "VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU"; + default: + return "Unhandled VkPhysicalDeviceType"; + } +} + +static inline const char* string_VkQueueFlagBits(VkQueueFlagBits input_value) +{ + switch ((VkQueueFlagBits)input_value) + { + case VK_QUEUE_SPARSE_BINDING_BIT: + return "VK_QUEUE_SPARSE_BINDING_BIT"; + case VK_QUEUE_GRAPHICS_BIT: + return "VK_QUEUE_GRAPHICS_BIT"; + case VK_QUEUE_COMPUTE_BIT: + return "VK_QUEUE_COMPUTE_BIT"; + case VK_QUEUE_PROTECTED_BIT: + return "VK_QUEUE_PROTECTED_BIT"; + case VK_QUEUE_TRANSFER_BIT: + return "VK_QUEUE_TRANSFER_BIT"; + default: + return "Unhandled VkQueueFlagBits"; + } +} + +static inline const char* string_VkMemoryPropertyFlagBits(VkMemoryPropertyFlagBits input_value) +{ + switch ((VkMemoryPropertyFlagBits)input_value) + { + case VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT: + return "VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT"; + case VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT: + return "VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT"; + case VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT: + return "VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT"; + case VK_MEMORY_PROPERTY_HOST_CACHED_BIT: + return "VK_MEMORY_PROPERTY_HOST_CACHED_BIT"; + case VK_MEMORY_PROPERTY_HOST_COHERENT_BIT: + return "VK_MEMORY_PROPERTY_HOST_COHERENT_BIT"; + case VK_MEMORY_PROPERTY_PROTECTED_BIT: + return "VK_MEMORY_PROPERTY_PROTECTED_BIT"; + default: + return "Unhandled VkMemoryPropertyFlagBits"; + } +} + +static inline const char* string_VkMemoryHeapFlagBits(VkMemoryHeapFlagBits input_value) +{ + switch ((VkMemoryHeapFlagBits)input_value) + { + case VK_MEMORY_HEAP_DEVICE_LOCAL_BIT: + return "VK_MEMORY_HEAP_DEVICE_LOCAL_BIT"; + case VK_MEMORY_HEAP_MULTI_INSTANCE_BIT: + return "VK_MEMORY_HEAP_MULTI_INSTANCE_BIT"; + default: + return "Unhandled VkMemoryHeapFlagBits"; + } +} + +static inline const char* string_VkDeviceQueueCreateFlagBits(VkDeviceQueueCreateFlagBits input_value) +{ + switch ((VkDeviceQueueCreateFlagBits)input_value) + { + case VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT: + return "VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT"; + default: + return "Unhandled VkDeviceQueueCreateFlagBits"; + } +} + +static inline const char* string_VkPipelineStageFlagBits(VkPipelineStageFlagBits input_value) +{ + switch ((VkPipelineStageFlagBits)input_value) + { + case VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT: + return "VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT"; + case VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT: + return "VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT"; + case VK_PIPELINE_STAGE_TRANSFER_BIT: + return "VK_PIPELINE_STAGE_TRANSFER_BIT"; + case VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT: + return "VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT"; + case VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX: + return "VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX"; + case VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT: + return "VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT"; + case VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT: + return "VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT"; + case VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT: + return "VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT"; + case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT: + return "VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT"; + case VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT: + return "VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT"; + case VK_PIPELINE_STAGE_ALL_COMMANDS_BIT: + return "VK_PIPELINE_STAGE_ALL_COMMANDS_BIT"; + case VK_PIPELINE_STAGE_VERTEX_SHADER_BIT: + return "VK_PIPELINE_STAGE_VERTEX_SHADER_BIT"; + case VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT: + return "VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT"; + case VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT: + return "VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT"; + case VK_PIPELINE_STAGE_HOST_BIT: + return "VK_PIPELINE_STAGE_HOST_BIT"; + case VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT: + return "VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT"; + case VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT: + return "VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT"; + case VK_PIPELINE_STAGE_VERTEX_INPUT_BIT: + return "VK_PIPELINE_STAGE_VERTEX_INPUT_BIT"; + default: + return "Unhandled VkPipelineStageFlagBits"; + } +} + +static inline const char* string_VkImageAspectFlagBits(VkImageAspectFlagBits input_value) +{ + switch ((VkImageAspectFlagBits)input_value) + { + case VK_IMAGE_ASPECT_PLANE_0_BIT: + return "VK_IMAGE_ASPECT_PLANE_0_BIT"; + case VK_IMAGE_ASPECT_PLANE_2_BIT: + return "VK_IMAGE_ASPECT_PLANE_2_BIT"; + case VK_IMAGE_ASPECT_STENCIL_BIT: + return "VK_IMAGE_ASPECT_STENCIL_BIT"; + case VK_IMAGE_ASPECT_PLANE_1_BIT: + return "VK_IMAGE_ASPECT_PLANE_1_BIT"; + case VK_IMAGE_ASPECT_COLOR_BIT: + return "VK_IMAGE_ASPECT_COLOR_BIT"; + case VK_IMAGE_ASPECT_METADATA_BIT: + return "VK_IMAGE_ASPECT_METADATA_BIT"; + case VK_IMAGE_ASPECT_DEPTH_BIT: + return "VK_IMAGE_ASPECT_DEPTH_BIT"; + default: + return "Unhandled VkImageAspectFlagBits"; + } +} + +static inline const char* string_VkSparseImageFormatFlagBits(VkSparseImageFormatFlagBits input_value) +{ + switch ((VkSparseImageFormatFlagBits)input_value) + { + case VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT: + return "VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT"; + case VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT: + return "VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT"; + case VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT: + return "VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT"; + default: + return "Unhandled VkSparseImageFormatFlagBits"; + } +} + +static inline const char* string_VkSparseMemoryBindFlagBits(VkSparseMemoryBindFlagBits input_value) +{ + switch ((VkSparseMemoryBindFlagBits)input_value) + { + case VK_SPARSE_MEMORY_BIND_METADATA_BIT: + return "VK_SPARSE_MEMORY_BIND_METADATA_BIT"; + default: + return "Unhandled VkSparseMemoryBindFlagBits"; + } +} + +static inline const char* string_VkFenceCreateFlagBits(VkFenceCreateFlagBits input_value) +{ + switch ((VkFenceCreateFlagBits)input_value) + { + case VK_FENCE_CREATE_SIGNALED_BIT: + return "VK_FENCE_CREATE_SIGNALED_BIT"; + default: + return "Unhandled VkFenceCreateFlagBits"; + } +} + +static inline const char* string_VkQueryType(VkQueryType input_value) +{ + switch ((VkQueryType)input_value) + { + case VK_QUERY_TYPE_TIMESTAMP: + return "VK_QUERY_TYPE_TIMESTAMP"; + case VK_QUERY_TYPE_PIPELINE_STATISTICS: + return "VK_QUERY_TYPE_PIPELINE_STATISTICS"; + case VK_QUERY_TYPE_OCCLUSION: + return "VK_QUERY_TYPE_OCCLUSION"; + default: + return "Unhandled VkQueryType"; + } +} + +static inline const char* string_VkQueryPipelineStatisticFlagBits(VkQueryPipelineStatisticFlagBits input_value) +{ + switch ((VkQueryPipelineStatisticFlagBits)input_value) + { + case VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT"; + case VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT: + return "VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT"; + default: + return "Unhandled VkQueryPipelineStatisticFlagBits"; + } +} + +static inline const char* string_VkQueryResultFlagBits(VkQueryResultFlagBits input_value) +{ + switch ((VkQueryResultFlagBits)input_value) + { + case VK_QUERY_RESULT_64_BIT: + return "VK_QUERY_RESULT_64_BIT"; + case VK_QUERY_RESULT_WITH_AVAILABILITY_BIT: + return "VK_QUERY_RESULT_WITH_AVAILABILITY_BIT"; + case VK_QUERY_RESULT_WAIT_BIT: + return "VK_QUERY_RESULT_WAIT_BIT"; + case VK_QUERY_RESULT_PARTIAL_BIT: + return "VK_QUERY_RESULT_PARTIAL_BIT"; + default: + return "Unhandled VkQueryResultFlagBits"; + } +} + +static inline const char* string_VkBufferCreateFlagBits(VkBufferCreateFlagBits input_value) +{ + switch ((VkBufferCreateFlagBits)input_value) + { + case VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT: + return "VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT"; + case VK_BUFFER_CREATE_SPARSE_BINDING_BIT: + return "VK_BUFFER_CREATE_SPARSE_BINDING_BIT"; + case VK_BUFFER_CREATE_PROTECTED_BIT: + return "VK_BUFFER_CREATE_PROTECTED_BIT"; + case VK_BUFFER_CREATE_SPARSE_ALIASED_BIT: + return "VK_BUFFER_CREATE_SPARSE_ALIASED_BIT"; + default: + return "Unhandled VkBufferCreateFlagBits"; + } +} + +static inline const char* string_VkBufferUsageFlagBits(VkBufferUsageFlagBits input_value) +{ + switch ((VkBufferUsageFlagBits)input_value) + { + case VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT: + return "VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT"; + case VK_BUFFER_USAGE_STORAGE_BUFFER_BIT: + return "VK_BUFFER_USAGE_STORAGE_BUFFER_BIT"; + case VK_BUFFER_USAGE_VERTEX_BUFFER_BIT: + return "VK_BUFFER_USAGE_VERTEX_BUFFER_BIT"; + case VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT: + return "VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT"; + case VK_BUFFER_USAGE_TRANSFER_SRC_BIT: + return "VK_BUFFER_USAGE_TRANSFER_SRC_BIT"; + case VK_BUFFER_USAGE_TRANSFER_DST_BIT: + return "VK_BUFFER_USAGE_TRANSFER_DST_BIT"; + case VK_BUFFER_USAGE_INDEX_BUFFER_BIT: + return "VK_BUFFER_USAGE_INDEX_BUFFER_BIT"; + case VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT: + return "VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT"; + case VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT: + return "VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT"; + default: + return "Unhandled VkBufferUsageFlagBits"; + } +} + +static inline const char* string_VkSharingMode(VkSharingMode input_value) +{ + switch ((VkSharingMode)input_value) + { + case VK_SHARING_MODE_EXCLUSIVE: + return "VK_SHARING_MODE_EXCLUSIVE"; + case VK_SHARING_MODE_CONCURRENT: + return "VK_SHARING_MODE_CONCURRENT"; + default: + return "Unhandled VkSharingMode"; + } +} + +static inline const char* string_VkImageLayout(VkImageLayout input_value) +{ + switch ((VkImageLayout)input_value) + { + case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: + return "VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL"; + case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: + return "VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL"; + case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL: + return "VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL"; + case VK_IMAGE_LAYOUT_GENERAL: + return "VK_IMAGE_LAYOUT_GENERAL"; + case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL: + return "VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL"; + case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: + return "VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL"; + case VK_IMAGE_LAYOUT_UNDEFINED: + return "VK_IMAGE_LAYOUT_UNDEFINED"; + case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: + return "VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL"; + case VK_IMAGE_LAYOUT_PREINITIALIZED: + return "VK_IMAGE_LAYOUT_PREINITIALIZED"; + case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: + return "VK_IMAGE_LAYOUT_PRESENT_SRC_KHR"; + case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: + return "VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL"; + case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: + return "VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL"; + case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR: + return "VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR"; + default: + return "Unhandled VkImageLayout"; + } +} + +static inline const char* string_VkImageViewType(VkImageViewType input_value) +{ + switch ((VkImageViewType)input_value) + { + case VK_IMAGE_VIEW_TYPE_2D_ARRAY: + return "VK_IMAGE_VIEW_TYPE_2D_ARRAY"; + case VK_IMAGE_VIEW_TYPE_1D_ARRAY: + return "VK_IMAGE_VIEW_TYPE_1D_ARRAY"; + case VK_IMAGE_VIEW_TYPE_1D: + return "VK_IMAGE_VIEW_TYPE_1D"; + case VK_IMAGE_VIEW_TYPE_3D: + return "VK_IMAGE_VIEW_TYPE_3D"; + case VK_IMAGE_VIEW_TYPE_CUBE: + return "VK_IMAGE_VIEW_TYPE_CUBE"; + case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: + return "VK_IMAGE_VIEW_TYPE_CUBE_ARRAY"; + case VK_IMAGE_VIEW_TYPE_2D: + return "VK_IMAGE_VIEW_TYPE_2D"; + default: + return "Unhandled VkImageViewType"; + } +} + +static inline const char* string_VkComponentSwizzle(VkComponentSwizzle input_value) +{ + switch ((VkComponentSwizzle)input_value) + { + case VK_COMPONENT_SWIZZLE_ONE: + return "VK_COMPONENT_SWIZZLE_ONE"; + case VK_COMPONENT_SWIZZLE_R: + return "VK_COMPONENT_SWIZZLE_R"; + case VK_COMPONENT_SWIZZLE_ZERO: + return "VK_COMPONENT_SWIZZLE_ZERO"; + case VK_COMPONENT_SWIZZLE_IDENTITY: + return "VK_COMPONENT_SWIZZLE_IDENTITY"; + case VK_COMPONENT_SWIZZLE_G: + return "VK_COMPONENT_SWIZZLE_G"; + case VK_COMPONENT_SWIZZLE_A: + return "VK_COMPONENT_SWIZZLE_A"; + case VK_COMPONENT_SWIZZLE_B: + return "VK_COMPONENT_SWIZZLE_B"; + default: + return "Unhandled VkComponentSwizzle"; + } +} + +static inline const char* string_VkPipelineCreateFlagBits(VkPipelineCreateFlagBits input_value) +{ + switch ((VkPipelineCreateFlagBits)input_value) + { + case VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT: + return "VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT"; + case VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT: + return "VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT"; + case VK_PIPELINE_CREATE_DISPATCH_BASE: + return "VK_PIPELINE_CREATE_DISPATCH_BASE"; + case VK_PIPELINE_CREATE_DERIVATIVE_BIT: + return "VK_PIPELINE_CREATE_DERIVATIVE_BIT"; + case VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT: + return "VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT"; + default: + return "Unhandled VkPipelineCreateFlagBits"; + } +} + +static inline const char* string_VkShaderStageFlagBits(VkShaderStageFlagBits input_value) +{ + switch ((VkShaderStageFlagBits)input_value) + { + case VK_SHADER_STAGE_VERTEX_BIT: + return "VK_SHADER_STAGE_VERTEX_BIT"; + case VK_SHADER_STAGE_ALL: + return "VK_SHADER_STAGE_ALL"; + case VK_SHADER_STAGE_FRAGMENT_BIT: + return "VK_SHADER_STAGE_FRAGMENT_BIT"; + case VK_SHADER_STAGE_COMPUTE_BIT: + return "VK_SHADER_STAGE_COMPUTE_BIT"; + case VK_SHADER_STAGE_ALL_GRAPHICS: + return "VK_SHADER_STAGE_ALL_GRAPHICS"; + case VK_SHADER_STAGE_GEOMETRY_BIT: + return "VK_SHADER_STAGE_GEOMETRY_BIT"; + case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: + return "VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT"; + case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: + return "VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT"; + default: + return "Unhandled VkShaderStageFlagBits"; + } +} + +static inline const char* string_VkVertexInputRate(VkVertexInputRate input_value) +{ + switch ((VkVertexInputRate)input_value) + { + case VK_VERTEX_INPUT_RATE_VERTEX: + return "VK_VERTEX_INPUT_RATE_VERTEX"; + case VK_VERTEX_INPUT_RATE_INSTANCE: + return "VK_VERTEX_INPUT_RATE_INSTANCE"; + default: + return "Unhandled VkVertexInputRate"; + } +} + +static inline const char* string_VkPrimitiveTopology(VkPrimitiveTopology input_value) +{ + switch ((VkPrimitiveTopology)input_value) + { + case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: + return "VK_PRIMITIVE_TOPOLOGY_PATCH_LIST"; + case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: + return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST"; + case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: + return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN"; + case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: + return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY"; + case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: + return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY"; + case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: + return "VK_PRIMITIVE_TOPOLOGY_LINE_STRIP"; + case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: + return "VK_PRIMITIVE_TOPOLOGY_POINT_LIST"; + case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: + return "VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY"; + case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: + return "VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY"; + case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: + return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP"; + case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: + return "VK_PRIMITIVE_TOPOLOGY_LINE_LIST"; + default: + return "Unhandled VkPrimitiveTopology"; + } +} + +static inline const char* string_VkPolygonMode(VkPolygonMode input_value) +{ + switch ((VkPolygonMode)input_value) + { + case VK_POLYGON_MODE_POINT: + return "VK_POLYGON_MODE_POINT"; + case VK_POLYGON_MODE_FILL: + return "VK_POLYGON_MODE_FILL"; + case VK_POLYGON_MODE_LINE: + return "VK_POLYGON_MODE_LINE"; + case VK_POLYGON_MODE_FILL_RECTANGLE_NV: + return "VK_POLYGON_MODE_FILL_RECTANGLE_NV"; + default: + return "Unhandled VkPolygonMode"; + } +} + +static inline const char* string_VkCullModeFlagBits(VkCullModeFlagBits input_value) +{ + switch ((VkCullModeFlagBits)input_value) + { + case VK_CULL_MODE_FRONT_BIT: + return "VK_CULL_MODE_FRONT_BIT"; + case VK_CULL_MODE_FRONT_AND_BACK: + return "VK_CULL_MODE_FRONT_AND_BACK"; + case VK_CULL_MODE_BACK_BIT: + return "VK_CULL_MODE_BACK_BIT"; + case VK_CULL_MODE_NONE: + return "VK_CULL_MODE_NONE"; + default: + return "Unhandled VkCullModeFlagBits"; + } +} + +static inline const char* string_VkFrontFace(VkFrontFace input_value) +{ + switch ((VkFrontFace)input_value) + { + case VK_FRONT_FACE_CLOCKWISE: + return "VK_FRONT_FACE_CLOCKWISE"; + case VK_FRONT_FACE_COUNTER_CLOCKWISE: + return "VK_FRONT_FACE_COUNTER_CLOCKWISE"; + default: + return "Unhandled VkFrontFace"; + } +} + +static inline const char* string_VkCompareOp(VkCompareOp input_value) +{ + switch ((VkCompareOp)input_value) + { + case VK_COMPARE_OP_ALWAYS: + return "VK_COMPARE_OP_ALWAYS"; + case VK_COMPARE_OP_NOT_EQUAL: + return "VK_COMPARE_OP_NOT_EQUAL"; + case VK_COMPARE_OP_LESS: + return "VK_COMPARE_OP_LESS"; + case VK_COMPARE_OP_LESS_OR_EQUAL: + return "VK_COMPARE_OP_LESS_OR_EQUAL"; + case VK_COMPARE_OP_NEVER: + return "VK_COMPARE_OP_NEVER"; + case VK_COMPARE_OP_GREATER: + return "VK_COMPARE_OP_GREATER"; + case VK_COMPARE_OP_EQUAL: + return "VK_COMPARE_OP_EQUAL"; + case VK_COMPARE_OP_GREATER_OR_EQUAL: + return "VK_COMPARE_OP_GREATER_OR_EQUAL"; + default: + return "Unhandled VkCompareOp"; + } +} + +static inline const char* string_VkStencilOp(VkStencilOp input_value) +{ + switch ((VkStencilOp)input_value) + { + case VK_STENCIL_OP_INVERT: + return "VK_STENCIL_OP_INVERT"; + case VK_STENCIL_OP_KEEP: + return "VK_STENCIL_OP_KEEP"; + case VK_STENCIL_OP_DECREMENT_AND_CLAMP: + return "VK_STENCIL_OP_DECREMENT_AND_CLAMP"; + case VK_STENCIL_OP_REPLACE: + return "VK_STENCIL_OP_REPLACE"; + case VK_STENCIL_OP_INCREMENT_AND_WRAP: + return "VK_STENCIL_OP_INCREMENT_AND_WRAP"; + case VK_STENCIL_OP_ZERO: + return "VK_STENCIL_OP_ZERO"; + case VK_STENCIL_OP_INCREMENT_AND_CLAMP: + return "VK_STENCIL_OP_INCREMENT_AND_CLAMP"; + case VK_STENCIL_OP_DECREMENT_AND_WRAP: + return "VK_STENCIL_OP_DECREMENT_AND_WRAP"; + default: + return "Unhandled VkStencilOp"; + } +} + +static inline const char* string_VkLogicOp(VkLogicOp input_value) +{ + switch ((VkLogicOp)input_value) + { + case VK_LOGIC_OP_NOR: + return "VK_LOGIC_OP_NOR"; + case VK_LOGIC_OP_OR: + return "VK_LOGIC_OP_OR"; + case VK_LOGIC_OP_NO_OP: + return "VK_LOGIC_OP_NO_OP"; + case VK_LOGIC_OP_NAND: + return "VK_LOGIC_OP_NAND"; + case VK_LOGIC_OP_XOR: + return "VK_LOGIC_OP_XOR"; + case VK_LOGIC_OP_AND_REVERSE: + return "VK_LOGIC_OP_AND_REVERSE"; + case VK_LOGIC_OP_COPY: + return "VK_LOGIC_OP_COPY"; + case VK_LOGIC_OP_AND: + return "VK_LOGIC_OP_AND"; + case VK_LOGIC_OP_CLEAR: + return "VK_LOGIC_OP_CLEAR"; + case VK_LOGIC_OP_COPY_INVERTED: + return "VK_LOGIC_OP_COPY_INVERTED"; + case VK_LOGIC_OP_SET: + return "VK_LOGIC_OP_SET"; + case VK_LOGIC_OP_INVERT: + return "VK_LOGIC_OP_INVERT"; + case VK_LOGIC_OP_AND_INVERTED: + return "VK_LOGIC_OP_AND_INVERTED"; + case VK_LOGIC_OP_OR_REVERSE: + return "VK_LOGIC_OP_OR_REVERSE"; + case VK_LOGIC_OP_OR_INVERTED: + return "VK_LOGIC_OP_OR_INVERTED"; + case VK_LOGIC_OP_EQUIVALENT: + return "VK_LOGIC_OP_EQUIVALENT"; + default: + return "Unhandled VkLogicOp"; + } +} + +static inline const char* string_VkBlendFactor(VkBlendFactor input_value) +{ + switch ((VkBlendFactor)input_value) + { + case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: + return "VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA"; + case VK_BLEND_FACTOR_CONSTANT_ALPHA: + return "VK_BLEND_FACTOR_CONSTANT_ALPHA"; + case VK_BLEND_FACTOR_ONE: + return "VK_BLEND_FACTOR_ONE"; + case VK_BLEND_FACTOR_DST_COLOR: + return "VK_BLEND_FACTOR_DST_COLOR"; + case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: + return "VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR"; + case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: + return "VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR"; + case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: + return "VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA"; + case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: + return "VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA"; + case VK_BLEND_FACTOR_SRC1_COLOR: + return "VK_BLEND_FACTOR_SRC1_COLOR"; + case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: + return "VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA"; + case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: + return "VK_BLEND_FACTOR_SRC_ALPHA_SATURATE"; + case VK_BLEND_FACTOR_SRC_COLOR: + return "VK_BLEND_FACTOR_SRC_COLOR"; + case VK_BLEND_FACTOR_DST_ALPHA: + return "VK_BLEND_FACTOR_DST_ALPHA"; + case VK_BLEND_FACTOR_SRC_ALPHA: + return "VK_BLEND_FACTOR_SRC_ALPHA"; + case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: + return "VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR"; + case VK_BLEND_FACTOR_SRC1_ALPHA: + return "VK_BLEND_FACTOR_SRC1_ALPHA"; + case VK_BLEND_FACTOR_CONSTANT_COLOR: + return "VK_BLEND_FACTOR_CONSTANT_COLOR"; + case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: + return "VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR"; + case VK_BLEND_FACTOR_ZERO: + return "VK_BLEND_FACTOR_ZERO"; + default: + return "Unhandled VkBlendFactor"; + } +} + +static inline const char* string_VkBlendOp(VkBlendOp input_value) +{ + switch ((VkBlendOp)input_value) + { + case VK_BLEND_OP_ADD: + return "VK_BLEND_OP_ADD"; + case VK_BLEND_OP_SRC_EXT: + return "VK_BLEND_OP_SRC_EXT"; + case VK_BLEND_OP_DST_EXT: + return "VK_BLEND_OP_DST_EXT"; + case VK_BLEND_OP_DIFFERENCE_EXT: + return "VK_BLEND_OP_DIFFERENCE_EXT"; + case VK_BLEND_OP_MINUS_EXT: + return "VK_BLEND_OP_MINUS_EXT"; + case VK_BLEND_OP_MINUS_CLAMPED_EXT: + return "VK_BLEND_OP_MINUS_CLAMPED_EXT"; + case VK_BLEND_OP_SOFTLIGHT_EXT: + return "VK_BLEND_OP_SOFTLIGHT_EXT"; + case VK_BLEND_OP_LINEARDODGE_EXT: + return "VK_BLEND_OP_LINEARDODGE_EXT"; + case VK_BLEND_OP_HARDMIX_EXT: + return "VK_BLEND_OP_HARDMIX_EXT"; + case VK_BLEND_OP_MIN: + return "VK_BLEND_OP_MIN"; + case VK_BLEND_OP_HSL_LUMINOSITY_EXT: + return "VK_BLEND_OP_HSL_LUMINOSITY_EXT"; + case VK_BLEND_OP_SRC_ATOP_EXT: + return "VK_BLEND_OP_SRC_ATOP_EXT"; + case VK_BLEND_OP_SUBTRACT: + return "VK_BLEND_OP_SUBTRACT"; + case VK_BLEND_OP_HSL_HUE_EXT: + return "VK_BLEND_OP_HSL_HUE_EXT"; + case VK_BLEND_OP_REVERSE_SUBTRACT: + return "VK_BLEND_OP_REVERSE_SUBTRACT"; + case VK_BLEND_OP_DST_OVER_EXT: + return "VK_BLEND_OP_DST_OVER_EXT"; + case VK_BLEND_OP_VIVIDLIGHT_EXT: + return "VK_BLEND_OP_VIVIDLIGHT_EXT"; + case VK_BLEND_OP_HSL_COLOR_EXT: + return "VK_BLEND_OP_HSL_COLOR_EXT"; + case VK_BLEND_OP_EXCLUSION_EXT: + return "VK_BLEND_OP_EXCLUSION_EXT"; + case VK_BLEND_OP_PLUS_DARKER_EXT: + return "VK_BLEND_OP_PLUS_DARKER_EXT"; + case VK_BLEND_OP_DST_IN_EXT: + return "VK_BLEND_OP_DST_IN_EXT"; + case VK_BLEND_OP_INVERT_OVG_EXT: + return "VK_BLEND_OP_INVERT_OVG_EXT"; + case VK_BLEND_OP_CONTRAST_EXT: + return "VK_BLEND_OP_CONTRAST_EXT"; + case VK_BLEND_OP_SRC_OUT_EXT: + return "VK_BLEND_OP_SRC_OUT_EXT"; + case VK_BLEND_OP_COLORDODGE_EXT: + return "VK_BLEND_OP_COLORDODGE_EXT"; + case VK_BLEND_OP_SRC_IN_EXT: + return "VK_BLEND_OP_SRC_IN_EXT"; + case VK_BLEND_OP_MAX: + return "VK_BLEND_OP_MAX"; + case VK_BLEND_OP_HSL_SATURATION_EXT: + return "VK_BLEND_OP_HSL_SATURATION_EXT"; + case VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT: + return "VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT"; + case VK_BLEND_OP_DARKEN_EXT: + return "VK_BLEND_OP_DARKEN_EXT"; + case VK_BLEND_OP_BLUE_EXT: + return "VK_BLEND_OP_BLUE_EXT"; + case VK_BLEND_OP_XOR_EXT: + return "VK_BLEND_OP_XOR_EXT"; + case VK_BLEND_OP_HARDLIGHT_EXT: + return "VK_BLEND_OP_HARDLIGHT_EXT"; + case VK_BLEND_OP_RED_EXT: + return "VK_BLEND_OP_RED_EXT"; + case VK_BLEND_OP_INVERT_EXT: + return "VK_BLEND_OP_INVERT_EXT"; + case VK_BLEND_OP_ZERO_EXT: + return "VK_BLEND_OP_ZERO_EXT"; + case VK_BLEND_OP_LIGHTEN_EXT: + return "VK_BLEND_OP_LIGHTEN_EXT"; + case VK_BLEND_OP_SCREEN_EXT: + return "VK_BLEND_OP_SCREEN_EXT"; + case VK_BLEND_OP_DST_OUT_EXT: + return "VK_BLEND_OP_DST_OUT_EXT"; + case VK_BLEND_OP_MULTIPLY_EXT: + return "VK_BLEND_OP_MULTIPLY_EXT"; + case VK_BLEND_OP_OVERLAY_EXT: + return "VK_BLEND_OP_OVERLAY_EXT"; + case VK_BLEND_OP_LINEARLIGHT_EXT: + return "VK_BLEND_OP_LINEARLIGHT_EXT"; + case VK_BLEND_OP_PLUS_EXT: + return "VK_BLEND_OP_PLUS_EXT"; + case VK_BLEND_OP_PLUS_CLAMPED_EXT: + return "VK_BLEND_OP_PLUS_CLAMPED_EXT"; + case VK_BLEND_OP_INVERT_RGB_EXT: + return "VK_BLEND_OP_INVERT_RGB_EXT"; + case VK_BLEND_OP_DST_ATOP_EXT: + return "VK_BLEND_OP_DST_ATOP_EXT"; + case VK_BLEND_OP_LINEARBURN_EXT: + return "VK_BLEND_OP_LINEARBURN_EXT"; + case VK_BLEND_OP_GREEN_EXT: + return "VK_BLEND_OP_GREEN_EXT"; + case VK_BLEND_OP_COLORBURN_EXT: + return "VK_BLEND_OP_COLORBURN_EXT"; + case VK_BLEND_OP_PINLIGHT_EXT: + return "VK_BLEND_OP_PINLIGHT_EXT"; + case VK_BLEND_OP_SRC_OVER_EXT: + return "VK_BLEND_OP_SRC_OVER_EXT"; + default: + return "Unhandled VkBlendOp"; + } +} + +static inline const char* string_VkColorComponentFlagBits(VkColorComponentFlagBits input_value) +{ + switch ((VkColorComponentFlagBits)input_value) + { + case VK_COLOR_COMPONENT_R_BIT: + return "VK_COLOR_COMPONENT_R_BIT"; + case VK_COLOR_COMPONENT_B_BIT: + return "VK_COLOR_COMPONENT_B_BIT"; + case VK_COLOR_COMPONENT_G_BIT: + return "VK_COLOR_COMPONENT_G_BIT"; + case VK_COLOR_COMPONENT_A_BIT: + return "VK_COLOR_COMPONENT_A_BIT"; + default: + return "Unhandled VkColorComponentFlagBits"; + } +} + +static inline const char* string_VkDynamicState(VkDynamicState input_value) +{ + switch ((VkDynamicState)input_value) + { + case VK_DYNAMIC_STATE_LINE_WIDTH: + return "VK_DYNAMIC_STATE_LINE_WIDTH"; + case VK_DYNAMIC_STATE_DEPTH_BIAS: + return "VK_DYNAMIC_STATE_DEPTH_BIAS"; + case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: + return "VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK"; + case VK_DYNAMIC_STATE_STENCIL_REFERENCE: + return "VK_DYNAMIC_STATE_STENCIL_REFERENCE"; + case VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV: + return "VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV"; + case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: + return "VK_DYNAMIC_STATE_STENCIL_WRITE_MASK"; + case VK_DYNAMIC_STATE_SCISSOR: + return "VK_DYNAMIC_STATE_SCISSOR"; + case VK_DYNAMIC_STATE_VIEWPORT: + return "VK_DYNAMIC_STATE_VIEWPORT"; + case VK_DYNAMIC_STATE_DEPTH_BOUNDS: + return "VK_DYNAMIC_STATE_DEPTH_BOUNDS"; + case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT: + return "VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT"; + case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT: + return "VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT"; + case VK_DYNAMIC_STATE_BLEND_CONSTANTS: + return "VK_DYNAMIC_STATE_BLEND_CONSTANTS"; + default: + return "Unhandled VkDynamicState"; + } +} + +static inline const char* string_VkFilter(VkFilter input_value) +{ + switch ((VkFilter)input_value) + { + case VK_FILTER_LINEAR: + return "VK_FILTER_LINEAR"; + case VK_FILTER_CUBIC_IMG: + return "VK_FILTER_CUBIC_IMG"; + case VK_FILTER_NEAREST: + return "VK_FILTER_NEAREST"; + default: + return "Unhandled VkFilter"; + } +} + +static inline const char* string_VkSamplerMipmapMode(VkSamplerMipmapMode input_value) +{ + switch ((VkSamplerMipmapMode)input_value) + { + case VK_SAMPLER_MIPMAP_MODE_NEAREST: + return "VK_SAMPLER_MIPMAP_MODE_NEAREST"; + case VK_SAMPLER_MIPMAP_MODE_LINEAR: + return "VK_SAMPLER_MIPMAP_MODE_LINEAR"; + default: + return "Unhandled VkSamplerMipmapMode"; + } +} + +static inline const char* string_VkSamplerAddressMode(VkSamplerAddressMode input_value) +{ + switch ((VkSamplerAddressMode)input_value) + { + case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: + return "VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE"; + case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: + return "VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER"; + case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: + return "VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT"; + case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: + return "VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE"; + case VK_SAMPLER_ADDRESS_MODE_REPEAT: + return "VK_SAMPLER_ADDRESS_MODE_REPEAT"; + default: + return "Unhandled VkSamplerAddressMode"; + } +} + +static inline const char* string_VkBorderColor(VkBorderColor input_value) +{ + switch ((VkBorderColor)input_value) + { + case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK: + return "VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK"; + case VK_BORDER_COLOR_INT_OPAQUE_BLACK: + return "VK_BORDER_COLOR_INT_OPAQUE_BLACK"; + case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK: + return "VK_BORDER_COLOR_INT_TRANSPARENT_BLACK"; + case VK_BORDER_COLOR_INT_OPAQUE_WHITE: + return "VK_BORDER_COLOR_INT_OPAQUE_WHITE"; + case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE: + return "VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE"; + case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK: + return "VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK"; + default: + return "Unhandled VkBorderColor"; + } +} + +static inline const char* string_VkDescriptorSetLayoutCreateFlagBits(VkDescriptorSetLayoutCreateFlagBits input_value) +{ + switch ((VkDescriptorSetLayoutCreateFlagBits)input_value) + { + case VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT: + return "VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT"; + case VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR: + return "VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR"; + default: + return "Unhandled VkDescriptorSetLayoutCreateFlagBits"; + } +} + +static inline const char* string_VkDescriptorType(VkDescriptorType input_value) +{ + switch ((VkDescriptorType)input_value) + { + case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: + return "VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER"; + case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: + return "VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER"; + case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: + return "VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC"; + case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: + return "VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT"; + case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: + return "VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER"; + case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: + return "VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER"; + case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: + return "VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE"; + case VK_DESCRIPTOR_TYPE_SAMPLER: + return "VK_DESCRIPTOR_TYPE_SAMPLER"; + case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: + return "VK_DESCRIPTOR_TYPE_STORAGE_IMAGE"; + case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: + return "VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC"; + case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: + return "VK_DESCRIPTOR_TYPE_STORAGE_BUFFER"; + default: + return "Unhandled VkDescriptorType"; + } +} + +static inline const char* string_VkDescriptorPoolCreateFlagBits(VkDescriptorPoolCreateFlagBits input_value) +{ + switch ((VkDescriptorPoolCreateFlagBits)input_value) + { + case VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT: + return "VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT"; + case VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT: + return "VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT"; + default: + return "Unhandled VkDescriptorPoolCreateFlagBits"; + } +} + +static inline const char* string_VkAttachmentDescriptionFlagBits(VkAttachmentDescriptionFlagBits input_value) +{ + switch ((VkAttachmentDescriptionFlagBits)input_value) + { + case VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT: + return "VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT"; + default: + return "Unhandled VkAttachmentDescriptionFlagBits"; + } +} + +static inline const char* string_VkAttachmentLoadOp(VkAttachmentLoadOp input_value) +{ + switch ((VkAttachmentLoadOp)input_value) + { + case VK_ATTACHMENT_LOAD_OP_DONT_CARE: + return "VK_ATTACHMENT_LOAD_OP_DONT_CARE"; + case VK_ATTACHMENT_LOAD_OP_CLEAR: + return "VK_ATTACHMENT_LOAD_OP_CLEAR"; + case VK_ATTACHMENT_LOAD_OP_LOAD: + return "VK_ATTACHMENT_LOAD_OP_LOAD"; + default: + return "Unhandled VkAttachmentLoadOp"; + } +} + +static inline const char* string_VkAttachmentStoreOp(VkAttachmentStoreOp input_value) +{ + switch ((VkAttachmentStoreOp)input_value) + { + case VK_ATTACHMENT_STORE_OP_DONT_CARE: + return "VK_ATTACHMENT_STORE_OP_DONT_CARE"; + case VK_ATTACHMENT_STORE_OP_STORE: + return "VK_ATTACHMENT_STORE_OP_STORE"; + default: + return "Unhandled VkAttachmentStoreOp"; + } +} + +static inline const char* string_VkSubpassDescriptionFlagBits(VkSubpassDescriptionFlagBits input_value) +{ + switch ((VkSubpassDescriptionFlagBits)input_value) + { + case VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX: + return "VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX"; + case VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX: + return "VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX"; + default: + return "Unhandled VkSubpassDescriptionFlagBits"; + } +} + +static inline const char* string_VkPipelineBindPoint(VkPipelineBindPoint input_value) +{ + switch ((VkPipelineBindPoint)input_value) + { + case VK_PIPELINE_BIND_POINT_COMPUTE: + return "VK_PIPELINE_BIND_POINT_COMPUTE"; + case VK_PIPELINE_BIND_POINT_GRAPHICS: + return "VK_PIPELINE_BIND_POINT_GRAPHICS"; + default: + return "Unhandled VkPipelineBindPoint"; + } +} + +static inline const char* string_VkAccessFlagBits(VkAccessFlagBits input_value) +{ + switch ((VkAccessFlagBits)input_value) + { + case VK_ACCESS_UNIFORM_READ_BIT: + return "VK_ACCESS_UNIFORM_READ_BIT"; + case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT: + return "VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT"; + case VK_ACCESS_INDIRECT_COMMAND_READ_BIT: + return "VK_ACCESS_INDIRECT_COMMAND_READ_BIT"; + case VK_ACCESS_HOST_READ_BIT: + return "VK_ACCESS_HOST_READ_BIT"; + case VK_ACCESS_HOST_WRITE_BIT: + return "VK_ACCESS_HOST_WRITE_BIT"; + case VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT: + return "VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT"; + case VK_ACCESS_COLOR_ATTACHMENT_READ_BIT: + return "VK_ACCESS_COLOR_ATTACHMENT_READ_BIT"; + case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT: + return "VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT"; + case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT: + return "VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT"; + case VK_ACCESS_TRANSFER_WRITE_BIT: + return "VK_ACCESS_TRANSFER_WRITE_BIT"; + case VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX: + return "VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX"; + case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT: + return "VK_ACCESS_INPUT_ATTACHMENT_READ_BIT"; + case VK_ACCESS_SHADER_READ_BIT: + return "VK_ACCESS_SHADER_READ_BIT"; + case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT: + return "VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT"; + case VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX: + return "VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX"; + case VK_ACCESS_MEMORY_READ_BIT: + return "VK_ACCESS_MEMORY_READ_BIT"; + case VK_ACCESS_SHADER_WRITE_BIT: + return "VK_ACCESS_SHADER_WRITE_BIT"; + case VK_ACCESS_INDEX_READ_BIT: + return "VK_ACCESS_INDEX_READ_BIT"; + case VK_ACCESS_MEMORY_WRITE_BIT: + return "VK_ACCESS_MEMORY_WRITE_BIT"; + case VK_ACCESS_TRANSFER_READ_BIT: + return "VK_ACCESS_TRANSFER_READ_BIT"; + default: + return "Unhandled VkAccessFlagBits"; + } +} + +static inline const char* string_VkDependencyFlagBits(VkDependencyFlagBits input_value) +{ + switch ((VkDependencyFlagBits)input_value) + { + case VK_DEPENDENCY_DEVICE_GROUP_BIT: + return "VK_DEPENDENCY_DEVICE_GROUP_BIT"; + case VK_DEPENDENCY_BY_REGION_BIT: + return "VK_DEPENDENCY_BY_REGION_BIT"; + case VK_DEPENDENCY_VIEW_LOCAL_BIT: + return "VK_DEPENDENCY_VIEW_LOCAL_BIT"; + default: + return "Unhandled VkDependencyFlagBits"; + } +} + +static inline const char* string_VkCommandPoolCreateFlagBits(VkCommandPoolCreateFlagBits input_value) +{ + switch ((VkCommandPoolCreateFlagBits)input_value) + { + case VK_COMMAND_POOL_CREATE_TRANSIENT_BIT: + return "VK_COMMAND_POOL_CREATE_TRANSIENT_BIT"; + case VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT: + return "VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT"; + case VK_COMMAND_POOL_CREATE_PROTECTED_BIT: + return "VK_COMMAND_POOL_CREATE_PROTECTED_BIT"; + default: + return "Unhandled VkCommandPoolCreateFlagBits"; + } +} + +static inline const char* string_VkCommandPoolResetFlagBits(VkCommandPoolResetFlagBits input_value) +{ + switch ((VkCommandPoolResetFlagBits)input_value) + { + case VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT: + return "VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT"; + default: + return "Unhandled VkCommandPoolResetFlagBits"; + } +} + +static inline const char* string_VkCommandBufferLevel(VkCommandBufferLevel input_value) +{ + switch ((VkCommandBufferLevel)input_value) + { + case VK_COMMAND_BUFFER_LEVEL_SECONDARY: + return "VK_COMMAND_BUFFER_LEVEL_SECONDARY"; + case VK_COMMAND_BUFFER_LEVEL_PRIMARY: + return "VK_COMMAND_BUFFER_LEVEL_PRIMARY"; + default: + return "Unhandled VkCommandBufferLevel"; + } +} + +static inline const char* string_VkCommandBufferUsageFlagBits(VkCommandBufferUsageFlagBits input_value) +{ + switch ((VkCommandBufferUsageFlagBits)input_value) + { + case VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT: + return "VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT"; + case VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT: + return "VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT"; + case VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT: + return "VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT"; + default: + return "Unhandled VkCommandBufferUsageFlagBits"; + } +} + +static inline const char* string_VkQueryControlFlagBits(VkQueryControlFlagBits input_value) +{ + switch ((VkQueryControlFlagBits)input_value) + { + case VK_QUERY_CONTROL_PRECISE_BIT: + return "VK_QUERY_CONTROL_PRECISE_BIT"; + default: + return "Unhandled VkQueryControlFlagBits"; + } +} + +static inline const char* string_VkCommandBufferResetFlagBits(VkCommandBufferResetFlagBits input_value) +{ + switch ((VkCommandBufferResetFlagBits)input_value) + { + case VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT: + return "VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT"; + default: + return "Unhandled VkCommandBufferResetFlagBits"; + } +} + +static inline const char* string_VkStencilFaceFlagBits(VkStencilFaceFlagBits input_value) +{ + switch ((VkStencilFaceFlagBits)input_value) + { + case VK_STENCIL_FACE_BACK_BIT: + return "VK_STENCIL_FACE_BACK_BIT"; + case VK_STENCIL_FRONT_AND_BACK: + return "VK_STENCIL_FRONT_AND_BACK"; + case VK_STENCIL_FACE_FRONT_BIT: + return "VK_STENCIL_FACE_FRONT_BIT"; + default: + return "Unhandled VkStencilFaceFlagBits"; + } +} + +static inline const char* string_VkIndexType(VkIndexType input_value) +{ + switch ((VkIndexType)input_value) + { + case VK_INDEX_TYPE_UINT16: + return "VK_INDEX_TYPE_UINT16"; + case VK_INDEX_TYPE_UINT32: + return "VK_INDEX_TYPE_UINT32"; + default: + return "Unhandled VkIndexType"; + } +} + +static inline const char* string_VkSubpassContents(VkSubpassContents input_value) +{ + switch ((VkSubpassContents)input_value) + { + case VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS: + return "VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS"; + case VK_SUBPASS_CONTENTS_INLINE: + return "VK_SUBPASS_CONTENTS_INLINE"; + default: + return "Unhandled VkSubpassContents"; + } +} + +static inline const char* string_VkObjectType(VkObjectType input_value) +{ + switch ((VkObjectType)input_value) + { + case VK_OBJECT_TYPE_SEMAPHORE: + return "VK_OBJECT_TYPE_SEMAPHORE"; + case VK_OBJECT_TYPE_PIPELINE: + return "VK_OBJECT_TYPE_PIPELINE"; + case VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT: + return "VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT"; + case VK_OBJECT_TYPE_SURFACE_KHR: + return "VK_OBJECT_TYPE_SURFACE_KHR"; + case VK_OBJECT_TYPE_BUFFER: + return "VK_OBJECT_TYPE_BUFFER"; + case VK_OBJECT_TYPE_PHYSICAL_DEVICE: + return "VK_OBJECT_TYPE_PHYSICAL_DEVICE"; + case VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION: + return "VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION"; + case VK_OBJECT_TYPE_QUEUE: + return "VK_OBJECT_TYPE_QUEUE"; + case VK_OBJECT_TYPE_DEVICE: + return "VK_OBJECT_TYPE_DEVICE"; + case VK_OBJECT_TYPE_COMMAND_BUFFER: + return "VK_OBJECT_TYPE_COMMAND_BUFFER"; + case VK_OBJECT_TYPE_DESCRIPTOR_SET: + return "VK_OBJECT_TYPE_DESCRIPTOR_SET"; + case VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT: + return "VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT"; + case VK_OBJECT_TYPE_COMMAND_POOL: + return "VK_OBJECT_TYPE_COMMAND_POOL"; + case VK_OBJECT_TYPE_UNKNOWN: + return "VK_OBJECT_TYPE_UNKNOWN"; + case VK_OBJECT_TYPE_DESCRIPTOR_POOL: + return "VK_OBJECT_TYPE_DESCRIPTOR_POOL"; + case VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE: + return "VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE"; + case VK_OBJECT_TYPE_BUFFER_VIEW: + return "VK_OBJECT_TYPE_BUFFER_VIEW"; + case VK_OBJECT_TYPE_DEVICE_MEMORY: + return "VK_OBJECT_TYPE_DEVICE_MEMORY"; + case VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT: + return "VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT"; + case VK_OBJECT_TYPE_IMAGE: + return "VK_OBJECT_TYPE_IMAGE"; + case VK_OBJECT_TYPE_INSTANCE: + return "VK_OBJECT_TYPE_INSTANCE"; + case VK_OBJECT_TYPE_DISPLAY_MODE_KHR: + return "VK_OBJECT_TYPE_DISPLAY_MODE_KHR"; + case VK_OBJECT_TYPE_IMAGE_VIEW: + return "VK_OBJECT_TYPE_IMAGE_VIEW"; + case VK_OBJECT_TYPE_PIPELINE_LAYOUT: + return "VK_OBJECT_TYPE_PIPELINE_LAYOUT"; + case VK_OBJECT_TYPE_EVENT: + return "VK_OBJECT_TYPE_EVENT"; + case VK_OBJECT_TYPE_RENDER_PASS: + return "VK_OBJECT_TYPE_RENDER_PASS"; + case VK_OBJECT_TYPE_FRAMEBUFFER: + return "VK_OBJECT_TYPE_FRAMEBUFFER"; + case VK_OBJECT_TYPE_SAMPLER: + return "VK_OBJECT_TYPE_SAMPLER"; + case VK_OBJECT_TYPE_SWAPCHAIN_KHR: + return "VK_OBJECT_TYPE_SWAPCHAIN_KHR"; + case VK_OBJECT_TYPE_QUERY_POOL: + return "VK_OBJECT_TYPE_QUERY_POOL"; + case VK_OBJECT_TYPE_DISPLAY_KHR: + return "VK_OBJECT_TYPE_DISPLAY_KHR"; + case VK_OBJECT_TYPE_SHADER_MODULE: + return "VK_OBJECT_TYPE_SHADER_MODULE"; + case VK_OBJECT_TYPE_PIPELINE_CACHE: + return "VK_OBJECT_TYPE_PIPELINE_CACHE"; + case VK_OBJECT_TYPE_FENCE: + return "VK_OBJECT_TYPE_FENCE"; + case VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX: + return "VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX"; + case VK_OBJECT_TYPE_OBJECT_TABLE_NVX: + return "VK_OBJECT_TYPE_OBJECT_TABLE_NVX"; + case VK_OBJECT_TYPE_VALIDATION_CACHE_EXT: + return "VK_OBJECT_TYPE_VALIDATION_CACHE_EXT"; + default: + return "Unhandled VkObjectType"; + } +} + +static inline const char* string_VkSubgroupFeatureFlagBits(VkSubgroupFeatureFlagBits input_value) +{ + switch ((VkSubgroupFeatureFlagBits)input_value) + { + case VK_SUBGROUP_FEATURE_SHUFFLE_BIT: + return "VK_SUBGROUP_FEATURE_SHUFFLE_BIT"; + case VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT: + return "VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT"; + case VK_SUBGROUP_FEATURE_QUAD_BIT: + return "VK_SUBGROUP_FEATURE_QUAD_BIT"; + case VK_SUBGROUP_FEATURE_BALLOT_BIT: + return "VK_SUBGROUP_FEATURE_BALLOT_BIT"; + case VK_SUBGROUP_FEATURE_CLUSTERED_BIT: + return "VK_SUBGROUP_FEATURE_CLUSTERED_BIT"; + case VK_SUBGROUP_FEATURE_ARITHMETIC_BIT: + return "VK_SUBGROUP_FEATURE_ARITHMETIC_BIT"; + case VK_SUBGROUP_FEATURE_VOTE_BIT: + return "VK_SUBGROUP_FEATURE_VOTE_BIT"; + case VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV: + return "VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV"; + case VK_SUBGROUP_FEATURE_BASIC_BIT: + return "VK_SUBGROUP_FEATURE_BASIC_BIT"; + default: + return "Unhandled VkSubgroupFeatureFlagBits"; + } +} + +static inline const char* string_VkPeerMemoryFeatureFlagBits(VkPeerMemoryFeatureFlagBits input_value) +{ + switch ((VkPeerMemoryFeatureFlagBits)input_value) + { + case VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT: + return "VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT"; + case VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT: + return "VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT"; + case VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT: + return "VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT"; + case VK_PEER_MEMORY_FEATURE_COPY_DST_BIT: + return "VK_PEER_MEMORY_FEATURE_COPY_DST_BIT"; + default: + return "Unhandled VkPeerMemoryFeatureFlagBits"; + } +} + +static inline const char* string_VkMemoryAllocateFlagBits(VkMemoryAllocateFlagBits input_value) +{ + switch ((VkMemoryAllocateFlagBits)input_value) + { + case VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT: + return "VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT"; + default: + return "Unhandled VkMemoryAllocateFlagBits"; + } +} + +static inline const char* string_VkPointClippingBehavior(VkPointClippingBehavior input_value) +{ + switch ((VkPointClippingBehavior)input_value) + { + case VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES: + return "VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES"; + case VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY: + return "VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY"; + default: + return "Unhandled VkPointClippingBehavior"; + } +} + +static inline const char* string_VkTessellationDomainOrigin(VkTessellationDomainOrigin input_value) +{ + switch ((VkTessellationDomainOrigin)input_value) + { + case VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT: + return "VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT"; + case VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT: + return "VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT"; + default: + return "Unhandled VkTessellationDomainOrigin"; + } +} + +static inline const char* string_VkSamplerYcbcrModelConversion(VkSamplerYcbcrModelConversion input_value) +{ + switch ((VkSamplerYcbcrModelConversion)input_value) + { + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020"; + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY"; + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY"; + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709"; + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601"; + default: + return "Unhandled VkSamplerYcbcrModelConversion"; + } +} + +static inline const char* string_VkSamplerYcbcrRange(VkSamplerYcbcrRange input_value) +{ + switch ((VkSamplerYcbcrRange)input_value) + { + case VK_SAMPLER_YCBCR_RANGE_ITU_FULL: + return "VK_SAMPLER_YCBCR_RANGE_ITU_FULL"; + case VK_SAMPLER_YCBCR_RANGE_ITU_NARROW: + return "VK_SAMPLER_YCBCR_RANGE_ITU_NARROW"; + default: + return "Unhandled VkSamplerYcbcrRange"; + } +} + +static inline const char* string_VkChromaLocation(VkChromaLocation input_value) +{ + switch ((VkChromaLocation)input_value) + { + case VK_CHROMA_LOCATION_COSITED_EVEN: + return "VK_CHROMA_LOCATION_COSITED_EVEN"; + case VK_CHROMA_LOCATION_MIDPOINT: + return "VK_CHROMA_LOCATION_MIDPOINT"; + default: + return "Unhandled VkChromaLocation"; + } +} + +static inline const char* string_VkDescriptorUpdateTemplateType(VkDescriptorUpdateTemplateType input_value) +{ + switch ((VkDescriptorUpdateTemplateType)input_value) + { + case VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR: + return "VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR"; + case VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET: + return "VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET"; + default: + return "Unhandled VkDescriptorUpdateTemplateType"; + } +} + +static inline const char* string_VkExternalMemoryHandleTypeFlagBits(VkExternalMemoryHandleTypeFlagBits input_value) +{ + switch ((VkExternalMemoryHandleTypeFlagBits)input_value) + { + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT"; + default: + return "Unhandled VkExternalMemoryHandleTypeFlagBits"; + } +} + +static inline const char* string_VkExternalMemoryFeatureFlagBits(VkExternalMemoryFeatureFlagBits input_value) +{ + switch ((VkExternalMemoryFeatureFlagBits)input_value) + { + case VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT: + return "VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT"; + case VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT: + return "VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT"; + case VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT: + return "VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT"; + default: + return "Unhandled VkExternalMemoryFeatureFlagBits"; + } +} + +static inline const char* string_VkExternalFenceHandleTypeFlagBits(VkExternalFenceHandleTypeFlagBits input_value) +{ + switch ((VkExternalFenceHandleTypeFlagBits)input_value) + { + case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT: + return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT"; + case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: + return "VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT"; + case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: + return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT"; + case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT: + return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT"; + default: + return "Unhandled VkExternalFenceHandleTypeFlagBits"; + } +} + +static inline const char* string_VkExternalFenceFeatureFlagBits(VkExternalFenceFeatureFlagBits input_value) +{ + switch ((VkExternalFenceFeatureFlagBits)input_value) + { + case VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT: + return "VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT"; + case VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT: + return "VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT"; + default: + return "Unhandled VkExternalFenceFeatureFlagBits"; + } +} + +static inline const char* string_VkFenceImportFlagBits(VkFenceImportFlagBits input_value) +{ + switch ((VkFenceImportFlagBits)input_value) + { + case VK_FENCE_IMPORT_TEMPORARY_BIT: + return "VK_FENCE_IMPORT_TEMPORARY_BIT"; + default: + return "Unhandled VkFenceImportFlagBits"; + } +} + +static inline const char* string_VkSemaphoreImportFlagBits(VkSemaphoreImportFlagBits input_value) +{ + switch ((VkSemaphoreImportFlagBits)input_value) + { + case VK_SEMAPHORE_IMPORT_TEMPORARY_BIT: + return "VK_SEMAPHORE_IMPORT_TEMPORARY_BIT"; + default: + return "Unhandled VkSemaphoreImportFlagBits"; + } +} + +static inline const char* string_VkExternalSemaphoreHandleTypeFlagBits(VkExternalSemaphoreHandleTypeFlagBits input_value) +{ + switch ((VkExternalSemaphoreHandleTypeFlagBits)input_value) + { + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT"; + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT"; + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT"; + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT"; + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT"; + default: + return "Unhandled VkExternalSemaphoreHandleTypeFlagBits"; + } +} + +static inline const char* string_VkExternalSemaphoreFeatureFlagBits(VkExternalSemaphoreFeatureFlagBits input_value) +{ + switch ((VkExternalSemaphoreFeatureFlagBits)input_value) + { + case VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT: + return "VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT"; + case VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT: + return "VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT"; + default: + return "Unhandled VkExternalSemaphoreFeatureFlagBits"; + } +} + +static inline const char* string_VkSurfaceTransformFlagBitsKHR(VkSurfaceTransformFlagBitsKHR input_value) +{ + switch ((VkSurfaceTransformFlagBitsKHR)input_value) + { + case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: + return "VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR"; + case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: + return "VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR"; + case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: + return "VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR"; + case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: + return "VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR"; + case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: + return "VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR"; + case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: + return "VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR"; + case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: + return "VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR"; + case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: + return "VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR"; + case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR: + return "VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR"; + default: + return "Unhandled VkSurfaceTransformFlagBitsKHR"; + } +} + +static inline const char* string_VkCompositeAlphaFlagBitsKHR(VkCompositeAlphaFlagBitsKHR input_value) +{ + switch ((VkCompositeAlphaFlagBitsKHR)input_value) + { + case VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR: + return "VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR"; + case VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR: + return "VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR"; + case VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR: + return "VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR"; + case VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR: + return "VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR"; + default: + return "Unhandled VkCompositeAlphaFlagBitsKHR"; + } +} + +static inline const char* string_VkColorSpaceKHR(VkColorSpaceKHR input_value) +{ + switch ((VkColorSpaceKHR)input_value) + { + case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT: + return "VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT"; + case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT: + return "VK_COLOR_SPACE_DCI_P3_LINEAR_EXT"; + case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT: + return "VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT"; + case VK_COLOR_SPACE_BT709_NONLINEAR_EXT: + return "VK_COLOR_SPACE_BT709_NONLINEAR_EXT"; + case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT: + return "VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT"; + case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT: + return "VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT"; + case VK_COLOR_SPACE_HDR10_HLG_EXT: + return "VK_COLOR_SPACE_HDR10_HLG_EXT"; + case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT: + return "VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT"; + case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT: + return "VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT"; + case VK_COLOR_SPACE_PASS_THROUGH_EXT: + return "VK_COLOR_SPACE_PASS_THROUGH_EXT"; + case VK_COLOR_SPACE_HDR10_ST2084_EXT: + return "VK_COLOR_SPACE_HDR10_ST2084_EXT"; + case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR: + return "VK_COLOR_SPACE_SRGB_NONLINEAR_KHR"; + case VK_COLOR_SPACE_BT2020_LINEAR_EXT: + return "VK_COLOR_SPACE_BT2020_LINEAR_EXT"; + case VK_COLOR_SPACE_BT709_LINEAR_EXT: + return "VK_COLOR_SPACE_BT709_LINEAR_EXT"; + case VK_COLOR_SPACE_DOLBYVISION_EXT: + return "VK_COLOR_SPACE_DOLBYVISION_EXT"; + default: + return "Unhandled VkColorSpaceKHR"; + } +} + +static inline const char* string_VkPresentModeKHR(VkPresentModeKHR input_value) +{ + switch ((VkPresentModeKHR)input_value) + { + case VK_PRESENT_MODE_FIFO_KHR: + return "VK_PRESENT_MODE_FIFO_KHR"; + case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR: + return "VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR"; + case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR: + return "VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR"; + case VK_PRESENT_MODE_MAILBOX_KHR: + return "VK_PRESENT_MODE_MAILBOX_KHR"; + case VK_PRESENT_MODE_IMMEDIATE_KHR: + return "VK_PRESENT_MODE_IMMEDIATE_KHR"; + case VK_PRESENT_MODE_FIFO_RELAXED_KHR: + return "VK_PRESENT_MODE_FIFO_RELAXED_KHR"; + default: + return "Unhandled VkPresentModeKHR"; + } +} + +static inline const char* string_VkSwapchainCreateFlagBitsKHR(VkSwapchainCreateFlagBitsKHR input_value) +{ + switch ((VkSwapchainCreateFlagBitsKHR)input_value) + { + case VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR: + return "VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR"; + case VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR: + return "VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR"; + default: + return "Unhandled VkSwapchainCreateFlagBitsKHR"; + } +} + +static inline const char* string_VkDeviceGroupPresentModeFlagBitsKHR(VkDeviceGroupPresentModeFlagBitsKHR input_value) +{ + switch ((VkDeviceGroupPresentModeFlagBitsKHR)input_value) + { + case VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHR: + return "VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHR"; + case VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHR: + return "VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHR"; + case VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR: + return "VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR"; + case VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR: + return "VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR"; + default: + return "Unhandled VkDeviceGroupPresentModeFlagBitsKHR"; + } +} + +static inline const char* string_VkDisplayPlaneAlphaFlagBitsKHR(VkDisplayPlaneAlphaFlagBitsKHR input_value) +{ + switch ((VkDisplayPlaneAlphaFlagBitsKHR)input_value) + { + case VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR: + return "VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR"; + case VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR: + return "VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR"; + case VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR: + return "VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR"; + case VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR: + return "VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR"; + default: + return "Unhandled VkDisplayPlaneAlphaFlagBitsKHR"; + } +} + +static inline const char* string_VkPeerMemoryFeatureFlagBitsKHR(VkPeerMemoryFeatureFlagBitsKHR input_value) +{ + switch ((VkPeerMemoryFeatureFlagBitsKHR)input_value) + { + case VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT: + return "VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT"; + case VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT: + return "VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT"; + case VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT: + return "VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT"; + case VK_PEER_MEMORY_FEATURE_COPY_DST_BIT: + return "VK_PEER_MEMORY_FEATURE_COPY_DST_BIT"; + default: + return "Unhandled VkPeerMemoryFeatureFlagBitsKHR"; + } +} + +static inline const char* string_VkMemoryAllocateFlagBitsKHR(VkMemoryAllocateFlagBitsKHR input_value) +{ + switch ((VkMemoryAllocateFlagBitsKHR)input_value) + { + case VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT: + return "VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT"; + default: + return "Unhandled VkMemoryAllocateFlagBitsKHR"; + } +} + +static inline const char* string_VkExternalMemoryHandleTypeFlagBitsKHR(VkExternalMemoryHandleTypeFlagBitsKHR input_value) +{ + switch ((VkExternalMemoryHandleTypeFlagBitsKHR)input_value) + { + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT"; + default: + return "Unhandled VkExternalMemoryHandleTypeFlagBitsKHR"; + } +} + +static inline const char* string_VkExternalMemoryFeatureFlagBitsKHR(VkExternalMemoryFeatureFlagBitsKHR input_value) +{ + switch ((VkExternalMemoryFeatureFlagBitsKHR)input_value) + { + case VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT: + return "VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT"; + case VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT: + return "VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT"; + case VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT: + return "VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT"; + default: + return "Unhandled VkExternalMemoryFeatureFlagBitsKHR"; + } +} + +static inline const char* string_VkExternalSemaphoreHandleTypeFlagBitsKHR(VkExternalSemaphoreHandleTypeFlagBitsKHR input_value) +{ + switch ((VkExternalSemaphoreHandleTypeFlagBitsKHR)input_value) + { + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT"; + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT"; + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT"; + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT"; + case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT: + return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT"; + default: + return "Unhandled VkExternalSemaphoreHandleTypeFlagBitsKHR"; + } +} + +static inline const char* string_VkExternalSemaphoreFeatureFlagBitsKHR(VkExternalSemaphoreFeatureFlagBitsKHR input_value) +{ + switch ((VkExternalSemaphoreFeatureFlagBitsKHR)input_value) + { + case VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT: + return "VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT"; + case VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT: + return "VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT"; + default: + return "Unhandled VkExternalSemaphoreFeatureFlagBitsKHR"; + } +} + +static inline const char* string_VkSemaphoreImportFlagBitsKHR(VkSemaphoreImportFlagBitsKHR input_value) +{ + switch ((VkSemaphoreImportFlagBitsKHR)input_value) + { + case VK_SEMAPHORE_IMPORT_TEMPORARY_BIT: + return "VK_SEMAPHORE_IMPORT_TEMPORARY_BIT"; + default: + return "Unhandled VkSemaphoreImportFlagBitsKHR"; + } +} + +static inline const char* string_VkDescriptorUpdateTemplateTypeKHR(VkDescriptorUpdateTemplateTypeKHR input_value) +{ + switch ((VkDescriptorUpdateTemplateTypeKHR)input_value) + { + case VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR: + return "VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR"; + case VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET: + return "VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET"; + default: + return "Unhandled VkDescriptorUpdateTemplateTypeKHR"; + } +} + +static inline const char* string_VkExternalFenceHandleTypeFlagBitsKHR(VkExternalFenceHandleTypeFlagBitsKHR input_value) +{ + switch ((VkExternalFenceHandleTypeFlagBitsKHR)input_value) + { + case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT: + return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT"; + case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: + return "VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT"; + case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: + return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT"; + case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT: + return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT"; + default: + return "Unhandled VkExternalFenceHandleTypeFlagBitsKHR"; + } +} + +static inline const char* string_VkExternalFenceFeatureFlagBitsKHR(VkExternalFenceFeatureFlagBitsKHR input_value) +{ + switch ((VkExternalFenceFeatureFlagBitsKHR)input_value) + { + case VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT: + return "VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT"; + case VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT: + return "VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT"; + default: + return "Unhandled VkExternalFenceFeatureFlagBitsKHR"; + } +} + +static inline const char* string_VkFenceImportFlagBitsKHR(VkFenceImportFlagBitsKHR input_value) +{ + switch ((VkFenceImportFlagBitsKHR)input_value) + { + case VK_FENCE_IMPORT_TEMPORARY_BIT: + return "VK_FENCE_IMPORT_TEMPORARY_BIT"; + default: + return "Unhandled VkFenceImportFlagBitsKHR"; + } +} + +static inline const char* string_VkPointClippingBehaviorKHR(VkPointClippingBehaviorKHR input_value) +{ + switch ((VkPointClippingBehaviorKHR)input_value) + { + case VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES: + return "VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES"; + case VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY: + return "VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY"; + default: + return "Unhandled VkPointClippingBehaviorKHR"; + } +} + +static inline const char* string_VkTessellationDomainOriginKHR(VkTessellationDomainOriginKHR input_value) +{ + switch ((VkTessellationDomainOriginKHR)input_value) + { + case VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT: + return "VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT"; + case VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT: + return "VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT"; + default: + return "Unhandled VkTessellationDomainOriginKHR"; + } +} + +static inline const char* string_VkSamplerYcbcrModelConversionKHR(VkSamplerYcbcrModelConversionKHR input_value) +{ + switch ((VkSamplerYcbcrModelConversionKHR)input_value) + { + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020"; + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY"; + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY"; + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709"; + case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601: + return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601"; + default: + return "Unhandled VkSamplerYcbcrModelConversionKHR"; + } +} + +static inline const char* string_VkSamplerYcbcrRangeKHR(VkSamplerYcbcrRangeKHR input_value) +{ + switch ((VkSamplerYcbcrRangeKHR)input_value) + { + case VK_SAMPLER_YCBCR_RANGE_ITU_FULL: + return "VK_SAMPLER_YCBCR_RANGE_ITU_FULL"; + case VK_SAMPLER_YCBCR_RANGE_ITU_NARROW: + return "VK_SAMPLER_YCBCR_RANGE_ITU_NARROW"; + default: + return "Unhandled VkSamplerYcbcrRangeKHR"; + } +} + +static inline const char* string_VkChromaLocationKHR(VkChromaLocationKHR input_value) +{ + switch ((VkChromaLocationKHR)input_value) + { + case VK_CHROMA_LOCATION_COSITED_EVEN: + return "VK_CHROMA_LOCATION_COSITED_EVEN"; + case VK_CHROMA_LOCATION_MIDPOINT: + return "VK_CHROMA_LOCATION_MIDPOINT"; + default: + return "Unhandled VkChromaLocationKHR"; + } +} + +static inline const char* string_VkDebugReportObjectTypeEXT(VkDebugReportObjectTypeEXT input_value) +{ + switch ((VkDebugReportObjectTypeEXT)input_value) + { + case VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_OBJECT_TABLE_NVX_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_OBJECT_TABLE_NVX_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_KHR_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_KHR_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_MODE_KHR_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_MODE_KHR_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_VALIDATION_CACHE_EXT_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_VALIDATION_CACHE_EXT_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT"; + case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_EXT: + return "VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_EXT"; + default: + return "Unhandled VkDebugReportObjectTypeEXT"; + } +} + +static inline const char* string_VkDebugReportFlagBitsEXT(VkDebugReportFlagBitsEXT input_value) +{ + switch ((VkDebugReportFlagBitsEXT)input_value) + { + case VK_DEBUG_REPORT_DEBUG_BIT_EXT: + return "VK_DEBUG_REPORT_DEBUG_BIT_EXT"; + case VK_DEBUG_REPORT_ERROR_BIT_EXT: + return "VK_DEBUG_REPORT_ERROR_BIT_EXT"; + case VK_DEBUG_REPORT_INFORMATION_BIT_EXT: + return "VK_DEBUG_REPORT_INFORMATION_BIT_EXT"; + case VK_DEBUG_REPORT_WARNING_BIT_EXT: + return "VK_DEBUG_REPORT_WARNING_BIT_EXT"; + case VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT: + return "VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT"; + default: + return "Unhandled VkDebugReportFlagBitsEXT"; + } +} + +static inline const char* string_VkRasterizationOrderAMD(VkRasterizationOrderAMD input_value) +{ + switch ((VkRasterizationOrderAMD)input_value) + { + case VK_RASTERIZATION_ORDER_STRICT_AMD: + return "VK_RASTERIZATION_ORDER_STRICT_AMD"; + case VK_RASTERIZATION_ORDER_RELAXED_AMD: + return "VK_RASTERIZATION_ORDER_RELAXED_AMD"; + default: + return "Unhandled VkRasterizationOrderAMD"; + } +} + +static inline const char* string_VkShaderInfoTypeAMD(VkShaderInfoTypeAMD input_value) +{ + switch ((VkShaderInfoTypeAMD)input_value) + { + case VK_SHADER_INFO_TYPE_STATISTICS_AMD: + return "VK_SHADER_INFO_TYPE_STATISTICS_AMD"; + case VK_SHADER_INFO_TYPE_BINARY_AMD: + return "VK_SHADER_INFO_TYPE_BINARY_AMD"; + case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD: + return "VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD"; + default: + return "Unhandled VkShaderInfoTypeAMD"; + } +} + +static inline const char* string_VkExternalMemoryHandleTypeFlagBitsNV(VkExternalMemoryHandleTypeFlagBitsNV input_value) +{ + switch ((VkExternalMemoryHandleTypeFlagBitsNV)input_value) + { + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_KMT_BIT_NV: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_KMT_BIT_NV"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV"; + case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV: + return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV"; + default: + return "Unhandled VkExternalMemoryHandleTypeFlagBitsNV"; + } +} + +static inline const char* string_VkExternalMemoryFeatureFlagBitsNV(VkExternalMemoryFeatureFlagBitsNV input_value) +{ + switch ((VkExternalMemoryFeatureFlagBitsNV)input_value) + { + case VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV: + return "VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV"; + case VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV: + return "VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV"; + case VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV: + return "VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV"; + default: + return "Unhandled VkExternalMemoryFeatureFlagBitsNV"; + } +} + +static inline const char* string_VkValidationCheckEXT(VkValidationCheckEXT input_value) +{ + switch ((VkValidationCheckEXT)input_value) + { + case VK_VALIDATION_CHECK_SHADERS_EXT: + return "VK_VALIDATION_CHECK_SHADERS_EXT"; + case VK_VALIDATION_CHECK_ALL_EXT: + return "VK_VALIDATION_CHECK_ALL_EXT"; + default: + return "Unhandled VkValidationCheckEXT"; + } +} + +static inline const char* string_VkIndirectCommandsLayoutUsageFlagBitsNVX(VkIndirectCommandsLayoutUsageFlagBitsNVX input_value) +{ + switch ((VkIndirectCommandsLayoutUsageFlagBitsNVX)input_value) + { + case VK_INDIRECT_COMMANDS_LAYOUT_USAGE_SPARSE_SEQUENCES_BIT_NVX: + return "VK_INDIRECT_COMMANDS_LAYOUT_USAGE_SPARSE_SEQUENCES_BIT_NVX"; + case VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NVX: + return "VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NVX"; + case VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NVX: + return "VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NVX"; + case VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EMPTY_EXECUTIONS_BIT_NVX: + return "VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EMPTY_EXECUTIONS_BIT_NVX"; + default: + return "Unhandled VkIndirectCommandsLayoutUsageFlagBitsNVX"; + } +} + +static inline const char* string_VkObjectEntryUsageFlagBitsNVX(VkObjectEntryUsageFlagBitsNVX input_value) +{ + switch ((VkObjectEntryUsageFlagBitsNVX)input_value) + { + case VK_OBJECT_ENTRY_USAGE_GRAPHICS_BIT_NVX: + return "VK_OBJECT_ENTRY_USAGE_GRAPHICS_BIT_NVX"; + case VK_OBJECT_ENTRY_USAGE_COMPUTE_BIT_NVX: + return "VK_OBJECT_ENTRY_USAGE_COMPUTE_BIT_NVX"; + default: + return "Unhandled VkObjectEntryUsageFlagBitsNVX"; + } +} + +static inline const char* string_VkIndirectCommandsTokenTypeNVX(VkIndirectCommandsTokenTypeNVX input_value) +{ + switch ((VkIndirectCommandsTokenTypeNVX)input_value) + { + case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NVX: + return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NVX"; + case VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NVX: + return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NVX"; + case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DESCRIPTOR_SET_NVX: + return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_DESCRIPTOR_SET_NVX"; + case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NVX: + return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NVX"; + case VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NVX: + return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NVX"; + case VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NVX: + return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NVX"; + case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NVX: + return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NVX"; + case VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NVX: + return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NVX"; + default: + return "Unhandled VkIndirectCommandsTokenTypeNVX"; + } +} + +static inline const char* string_VkObjectEntryTypeNVX(VkObjectEntryTypeNVX input_value) +{ + switch ((VkObjectEntryTypeNVX)input_value) + { + case VK_OBJECT_ENTRY_TYPE_INDEX_BUFFER_NVX: + return "VK_OBJECT_ENTRY_TYPE_INDEX_BUFFER_NVX"; + case VK_OBJECT_ENTRY_TYPE_DESCRIPTOR_SET_NVX: + return "VK_OBJECT_ENTRY_TYPE_DESCRIPTOR_SET_NVX"; + case VK_OBJECT_ENTRY_TYPE_VERTEX_BUFFER_NVX: + return "VK_OBJECT_ENTRY_TYPE_VERTEX_BUFFER_NVX"; + case VK_OBJECT_ENTRY_TYPE_PIPELINE_NVX: + return "VK_OBJECT_ENTRY_TYPE_PIPELINE_NVX"; + case VK_OBJECT_ENTRY_TYPE_PUSH_CONSTANT_NVX: + return "VK_OBJECT_ENTRY_TYPE_PUSH_CONSTANT_NVX"; + default: + return "Unhandled VkObjectEntryTypeNVX"; + } +} + +static inline const char* string_VkSurfaceCounterFlagBitsEXT(VkSurfaceCounterFlagBitsEXT input_value) +{ + switch ((VkSurfaceCounterFlagBitsEXT)input_value) + { + case VK_SURFACE_COUNTER_VBLANK_EXT: + return "VK_SURFACE_COUNTER_VBLANK_EXT"; + default: + return "Unhandled VkSurfaceCounterFlagBitsEXT"; + } +} + +static inline const char* string_VkDisplayPowerStateEXT(VkDisplayPowerStateEXT input_value) +{ + switch ((VkDisplayPowerStateEXT)input_value) + { + case VK_DISPLAY_POWER_STATE_SUSPEND_EXT: + return "VK_DISPLAY_POWER_STATE_SUSPEND_EXT"; + case VK_DISPLAY_POWER_STATE_ON_EXT: + return "VK_DISPLAY_POWER_STATE_ON_EXT"; + case VK_DISPLAY_POWER_STATE_OFF_EXT: + return "VK_DISPLAY_POWER_STATE_OFF_EXT"; + default: + return "Unhandled VkDisplayPowerStateEXT"; + } +} + +static inline const char* string_VkDeviceEventTypeEXT(VkDeviceEventTypeEXT input_value) +{ + switch ((VkDeviceEventTypeEXT)input_value) + { + case VK_DEVICE_EVENT_TYPE_DISPLAY_HOTPLUG_EXT: + return "VK_DEVICE_EVENT_TYPE_DISPLAY_HOTPLUG_EXT"; + default: + return "Unhandled VkDeviceEventTypeEXT"; + } +} + +static inline const char* string_VkDisplayEventTypeEXT(VkDisplayEventTypeEXT input_value) +{ + switch ((VkDisplayEventTypeEXT)input_value) + { + case VK_DISPLAY_EVENT_TYPE_FIRST_PIXEL_OUT_EXT: + return "VK_DISPLAY_EVENT_TYPE_FIRST_PIXEL_OUT_EXT"; + default: + return "Unhandled VkDisplayEventTypeEXT"; + } +} + +static inline const char* string_VkViewportCoordinateSwizzleNV(VkViewportCoordinateSwizzleNV input_value) +{ + switch ((VkViewportCoordinateSwizzleNV)input_value) + { + case VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV: + return "VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV"; + case VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV: + return "VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV"; + case VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV: + return "VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV"; + case VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV: + return "VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV"; + case VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV: + return "VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV"; + case VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV: + return "VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV"; + case VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV: + return "VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV"; + case VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV: + return "VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV"; + default: + return "Unhandled VkViewportCoordinateSwizzleNV"; + } +} + +static inline const char* string_VkDiscardRectangleModeEXT(VkDiscardRectangleModeEXT input_value) +{ + switch ((VkDiscardRectangleModeEXT)input_value) + { + case VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT: + return "VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT"; + case VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT: + return "VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT"; + default: + return "Unhandled VkDiscardRectangleModeEXT"; + } +} + +static inline const char* string_VkConservativeRasterizationModeEXT(VkConservativeRasterizationModeEXT input_value) +{ + switch ((VkConservativeRasterizationModeEXT)input_value) + { + case VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT: + return "VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT"; + case VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT: + return "VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT"; + case VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT: + return "VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT"; + default: + return "Unhandled VkConservativeRasterizationModeEXT"; + } +} + +static inline const char* string_VkDebugUtilsMessageSeverityFlagBitsEXT(VkDebugUtilsMessageSeverityFlagBitsEXT input_value) +{ + switch ((VkDebugUtilsMessageSeverityFlagBitsEXT)input_value) + { + case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT: + return "VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT"; + case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT: + return "VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT"; + case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT: + return "VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT"; + case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT: + return "VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT"; + default: + return "Unhandled VkDebugUtilsMessageSeverityFlagBitsEXT"; + } +} + +static inline const char* string_VkDebugUtilsMessageTypeFlagBitsEXT(VkDebugUtilsMessageTypeFlagBitsEXT input_value) +{ + switch ((VkDebugUtilsMessageTypeFlagBitsEXT)input_value) + { + case VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT: + return "VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT"; + case VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT: + return "VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT"; + case VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT: + return "VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT"; + default: + return "Unhandled VkDebugUtilsMessageTypeFlagBitsEXT"; + } +} + +static inline const char* string_VkSamplerReductionModeEXT(VkSamplerReductionModeEXT input_value) +{ + switch ((VkSamplerReductionModeEXT)input_value) + { + case VK_SAMPLER_REDUCTION_MODE_MAX_EXT: + return "VK_SAMPLER_REDUCTION_MODE_MAX_EXT"; + case VK_SAMPLER_REDUCTION_MODE_MIN_EXT: + return "VK_SAMPLER_REDUCTION_MODE_MIN_EXT"; + case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT: + return "VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT"; + default: + return "Unhandled VkSamplerReductionModeEXT"; + } +} + +static inline const char* string_VkBlendOverlapEXT(VkBlendOverlapEXT input_value) +{ + switch ((VkBlendOverlapEXT)input_value) + { + case VK_BLEND_OVERLAP_DISJOINT_EXT: + return "VK_BLEND_OVERLAP_DISJOINT_EXT"; + case VK_BLEND_OVERLAP_UNCORRELATED_EXT: + return "VK_BLEND_OVERLAP_UNCORRELATED_EXT"; + case VK_BLEND_OVERLAP_CONJOINT_EXT: + return "VK_BLEND_OVERLAP_CONJOINT_EXT"; + default: + return "Unhandled VkBlendOverlapEXT"; + } +} + +static inline const char* string_VkCoverageModulationModeNV(VkCoverageModulationModeNV input_value) +{ + switch ((VkCoverageModulationModeNV)input_value) + { + case VK_COVERAGE_MODULATION_MODE_RGBA_NV: + return "VK_COVERAGE_MODULATION_MODE_RGBA_NV"; + case VK_COVERAGE_MODULATION_MODE_ALPHA_NV: + return "VK_COVERAGE_MODULATION_MODE_ALPHA_NV"; + case VK_COVERAGE_MODULATION_MODE_RGB_NV: + return "VK_COVERAGE_MODULATION_MODE_RGB_NV"; + case VK_COVERAGE_MODULATION_MODE_NONE_NV: + return "VK_COVERAGE_MODULATION_MODE_NONE_NV"; + default: + return "Unhandled VkCoverageModulationModeNV"; + } +} + +static inline const char* string_VkValidationCacheHeaderVersionEXT(VkValidationCacheHeaderVersionEXT input_value) +{ + switch ((VkValidationCacheHeaderVersionEXT)input_value) + { + case VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT: + return "VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT"; + default: + return "Unhandled VkValidationCacheHeaderVersionEXT"; + } +} + +static inline const char* string_VkDescriptorBindingFlagBitsEXT(VkDescriptorBindingFlagBitsEXT input_value) +{ + switch ((VkDescriptorBindingFlagBitsEXT)input_value) + { + case VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT: + return "VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT"; + case VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT: + return "VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT"; + case VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT: + return "VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT"; + case VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT: + return "VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT"; + default: + return "Unhandled VkDescriptorBindingFlagBitsEXT"; + } +} + +static inline const char* string_VkQueueGlobalPriorityEXT(VkQueueGlobalPriorityEXT input_value) +{ + switch ((VkQueueGlobalPriorityEXT)input_value) + { + case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT: + return "VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT"; + case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT: + return "VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT"; + case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT: + return "VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT"; + case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT: + return "VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT"; + default: + return "Unhandled VkQueueGlobalPriorityEXT"; + } +} + +static inline const char * GetPhysDevFeatureString(uint32_t index) { + const char * IndexToPhysDevFeatureString[] = { + "robustBufferAccess", + "fullDrawIndexUint32", + "imageCubeArray", + "independentBlend", + "geometryShader", + "tessellationShader", + "sampleRateShading", + "dualSrcBlend", + "logicOp", + "multiDrawIndirect", + "drawIndirectFirstInstance", + "depthClamp", + "depthBiasClamp", + "fillModeNonSolid", + "depthBounds", + "wideLines", + "largePoints", + "alphaToOne", + "multiViewport", + "samplerAnisotropy", + "textureCompressionETC2", + "textureCompressionASTC_LDR", + "textureCompressionBC", + "occlusionQueryPrecise", + "pipelineStatisticsQuery", + "vertexPipelineStoresAndAtomics", + "fragmentStoresAndAtomics", + "shaderTessellationAndGeometryPointSize", + "shaderImageGatherExtended", + "shaderStorageImageExtendedFormats", + "shaderStorageImageMultisample", + "shaderStorageImageReadWithoutFormat", + "shaderStorageImageWriteWithoutFormat", + "shaderUniformBufferArrayDynamicIndexing", + "shaderSampledImageArrayDynamicIndexing", + "shaderStorageBufferArrayDynamicIndexing", + "shaderStorageImageArrayDynamicIndexing", + "shaderClipDistance", + "shaderCullDistance", + "shaderFloat64", + "shaderInt64", + "shaderInt16", + "shaderResourceResidency", + "shaderResourceMinLod", + "sparseBinding", + "sparseResidencyBuffer", + "sparseResidencyImage2D", + "sparseResidencyImage3D", + "sparseResidency2Samples", + "sparseResidency4Samples", + "sparseResidency8Samples", + "sparseResidency16Samples", + "sparseResidencyAliased", + "variableMultisampleRate", + "inheritedQueries", + }; + + return IndexToPhysDevFeatureString[index]; +} diff --git a/thirdparty/vulkan/vk_mem_alloc.cpp b/thirdparty/vulkan/vk_mem_alloc.cpp new file mode 100644 index 0000000000..529f5b5d5c --- /dev/null +++ b/thirdparty/vulkan/vk_mem_alloc.cpp @@ -0,0 +1,7 @@ +#define VMA_IMPLEMENTATION +#ifdef DEBUG_ENABLED +#ifndef _MSC_VER +#define _DEBUG +#endif +#endif +#include "vk_mem_alloc.h" diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h new file mode 100644 index 0000000000..862ea312a6 --- /dev/null +++ b/thirdparty/vulkan/vk_mem_alloc.h @@ -0,0 +1,15448 @@ +// +// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. +// + +#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H +#define AMD_VULKAN_MEMORY_ALLOCATOR_H + +#ifdef __cplusplus +extern "C" { +#endif + +/** \mainpage Vulkan Memory Allocator + +<b>Version 2.3.0-development</b> (2019-03-05) + +Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved. \n +License: MIT + +Documentation of all members: vk_mem_alloc.h + +\section main_table_of_contents Table of contents + +- <b>User guide</b> + - \subpage quick_start + - [Project setup](@ref quick_start_project_setup) + - [Initialization](@ref quick_start_initialization) + - [Resource allocation](@ref quick_start_resource_allocation) + - \subpage choosing_memory_type + - [Usage](@ref choosing_memory_type_usage) + - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) + - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) + - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) + - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations) + - \subpage memory_mapping + - [Mapping functions](@ref memory_mapping_mapping_functions) + - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) + - [Cache control](@ref memory_mapping_cache_control) + - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable) + - \subpage custom_memory_pools + - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) + - [Linear allocation algorithm](@ref linear_algorithm) + - [Free-at-once](@ref linear_algorithm_free_at_once) + - [Stack](@ref linear_algorithm_stack) + - [Double stack](@ref linear_algorithm_double_stack) + - [Ring buffer](@ref linear_algorithm_ring_buffer) + - [Buddy allocation algorithm](@ref buddy_algorithm) + - \subpage defragmentation + - [Defragmenting CPU memory](@ref defragmentation_cpu) + - [Defragmenting GPU memory](@ref defragmentation_gpu) + - [Additional notes](@ref defragmentation_additional_notes) + - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm) + - \subpage lost_allocations + - \subpage statistics + - [Numeric statistics](@ref statistics_numeric_statistics) + - [JSON dump](@ref statistics_json_dump) + - \subpage allocation_annotation + - [Allocation user data](@ref allocation_user_data) + - [Allocation names](@ref allocation_names) + - \subpage debugging_memory_usage + - [Memory initialization](@ref debugging_memory_usage_initialization) + - [Margins](@ref debugging_memory_usage_margins) + - [Corruption detection](@ref debugging_memory_usage_corruption_detection) + - \subpage record_and_replay +- \subpage usage_patterns + - [Simple patterns](@ref usage_patterns_simple) + - [Advanced patterns](@ref usage_patterns_advanced) +- \subpage configuration + - [Pointers to Vulkan functions](@ref config_Vulkan_functions) + - [Custom host memory allocator](@ref custom_memory_allocator) + - [Device memory allocation callbacks](@ref allocation_callbacks) + - [Device heap memory limit](@ref heap_memory_limit) + - \subpage vk_khr_dedicated_allocation +- \subpage general_considerations + - [Thread safety](@ref general_considerations_thread_safety) + - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) + - [Allocation algorithm](@ref general_considerations_allocation_algorithm) + - [Features not supported](@ref general_considerations_features_not_supported) + +\section main_see_also See also + +- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) +- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) + + + + +\page quick_start Quick start + +\section quick_start_project_setup Project setup + +Vulkan Memory Allocator comes in form of a "stb-style" single header file. +You don't need to build it as a separate library project. +You can add this file directly to your project and submit it to code repository next to your other source files. + +"Single header" doesn't mean that everything is contained in C/C++ declarations, +like it tends to be in case of inline functions or C++ templates. +It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. +If you don't do it properly, you will get linker errors. + +To do it properly: + +-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. + This includes declarations of all members of the library. +-# In exacly one CPP file define following macro before this include. + It enables also internal definitions. + +\code +#define VMA_IMPLEMENTATION +#include "vk_mem_alloc.h" +\endcode + +It may be a good idea to create dedicated CPP file just for this purpose. + +Note on language: This library is written in C++, but has C-compatible interface. +Thus you can include and use vk_mem_alloc.h in C or C++ code, but full +implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. + +Please note that this library includes header `<vulkan/vulkan.h>`, which in turn +includes `<windows.h>` on Windows. If you need some specific macros defined +before including these headers (like `WIN32_LEAN_AND_MEAN` or +`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define +them before every `#include` of this library. + + +\section quick_start_initialization Initialization + +At program startup: + +-# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object. +-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by + calling vmaCreateAllocator(). + +\code +VmaAllocatorCreateInfo allocatorInfo = {}; +allocatorInfo.physicalDevice = physicalDevice; +allocatorInfo.device = device; + +VmaAllocator allocator; +vmaCreateAllocator(&allocatorInfo, &allocator); +\endcode + +\section quick_start_resource_allocation Resource allocation + +When you want to create a buffer or image: + +-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. +-# Fill VmaAllocationCreateInfo structure. +-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory + already allocated and bound to it. + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +Don't forget to destroy your objects when no longer needed: + +\code +vmaDestroyBuffer(allocator, buffer, allocation); +vmaDestroyAllocator(allocator); +\endcode + + +\page choosing_memory_type Choosing memory type + +Physical devices in Vulkan support various combinations of memory heaps and +types. Help with choosing correct and optimal memory type for your specific +resource is one of the key features of this library. You can use it by filling +appropriate members of VmaAllocationCreateInfo structure, as described below. +You can also combine multiple methods. + +-# If you just want to find memory type index that meets your requirements, you + can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(), + vmaFindMemoryTypeIndexForImageInfo(). +-# If you want to allocate a region of device memory without association with any + specific image or buffer, you can use function vmaAllocateMemory(). Usage of + this function is not recommended and usually not needed. + vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, + which may be useful for sparse binding. +-# If you already have a buffer or an image created, you want to allocate memory + for it and then you will bind it yourself, you can use function + vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). + For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory(). +-# If you want to create a buffer or an image, allocate memory for it and bind + them together, all in one call, you can use function vmaCreateBuffer(), + vmaCreateImage(). This is the easiest and recommended way to use this library. + +When using 3. or 4., the library internally queries Vulkan for memory types +supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) +and uses only one of these types. + +If no memory type can be found that meets all the requirements, these functions +return `VK_ERROR_FEATURE_NOT_PRESENT`. + +You can leave VmaAllocationCreateInfo structure completely filled with zeros. +It means no requirements are specified for memory type. +It is valid, although not very useful. + +\section choosing_memory_type_usage Usage + +The easiest way to specify memory requirements is to fill member +VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. +It defines high level, common usage types. +For more details, see description of this enum. + +For example, if you want to create a uniform buffer that will be filled using +transfer only once or infrequently and used for rendering every frame, you can +do it using following code: + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +\section choosing_memory_type_required_preferred_flags Required and preferred flags + +You can specify more detailed requirements by filling members +VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags +with a combination of bits from enum `VkMemoryPropertyFlags`. For example, +if you want to create a buffer that will be persistently mapped on host (so it +must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, +use following code: + +\code +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; +allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; +allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +A memory type is chosen that has all the required flags and as many preferred +flags set as possible. + +If you use VmaAllocationCreateInfo::usage, it is just internally converted to +a set of required and preferred flags. + +\section choosing_memory_type_explicit_memory_types Explicit memory types + +If you inspected memory types available on the physical device and you have +a preference for memory types that you want to use, you can fill member +VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set +means that a memory type with that index is allowed to be used for the +allocation. Special value 0, just like `UINT32_MAX`, means there are no +restrictions to memory type index. + +Please note that this member is NOT just a memory type index. +Still you can use it to choose just one, specific memory type. +For example, if you already determined that your buffer should be created in +memory type 2, use following code: + +\code +uint32_t memoryTypeIndex = 2; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.memoryTypeBits = 1u << memoryTypeIndex; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +\section choosing_memory_type_custom_memory_pools Custom memory pools + +If you allocate from custom memory pool, all the ways of specifying memory +requirements described above are not applicable and the aforementioned members +of VmaAllocationCreateInfo structure are ignored. Memory type is selected +explicitly when creating the pool and then used to make all the allocations from +that pool. For further details, see \ref custom_memory_pools. + +\section choosing_memory_type_dedicated_allocations Dedicated allocations + +Memory for allocations is reserved out of larger block of `VkDeviceMemory` +allocated from Vulkan internally. That's the main feature of this whole library. +You can still request a separate memory block to be created for an allocation, +just like you would do in a trivial solution without using any allocator. +In that case, a buffer or image is always bound to that memory at offset 0. +This is called a "dedicated allocation". +You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +The library can also internally decide to use dedicated allocation in some cases, e.g.: + +- When the size of the allocation is large. +- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled + and it reports that dedicated allocation is required or recommended for the resource. +- When allocation of next big memory block fails due to not enough device memory, + but allocation with the exact requested size succeeds. + + +\page memory_mapping Memory mapping + +To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, +to be able to read from it or write to it in CPU code. +Mapping is possible only of memory allocated from a memory type that has +`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. +Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. +You can use them directly with memory allocated by this library, +but it is not recommended because of following issue: +Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. +This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. +Because of this, Vulkan Memory Allocator provides following facilities: + +\section memory_mapping_mapping_functions Mapping functions + +The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). +They are safer and more convenient to use than standard Vulkan functions. +You can map an allocation multiple times simultaneously - mapping is reference-counted internally. +You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. +The way it's implemented is that the library always maps entire memory block, not just region of the allocation. +For further details, see description of vmaMapMemory() function. +Example: + +\code +// Having these objects initialized: + +struct ConstantBuffer +{ + ... +}; +ConstantBuffer constantBufferData; + +VmaAllocator allocator; +VkBuffer constantBuffer; +VmaAllocation constantBufferAllocation; + +// You can map and fill your buffer using following code: + +void* mappedData; +vmaMapMemory(allocator, constantBufferAllocation, &mappedData); +memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); +vmaUnmapMemory(allocator, constantBufferAllocation); +\endcode + +When mapping, you may see a warning from Vulkan validation layer similar to this one: + +<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i> + +It happens because the library maps entire `VkDeviceMemory` block, where different +types of images and buffers may end up together, especially on GPUs with unified memory like Intel. +You can safely ignore it if you are sure you access only memory of the intended +object that you wanted to map. + + +\section memory_mapping_persistently_mapped_memory Persistently mapped memory + +Kepping your memory persistently mapped is generally OK in Vulkan. +You don't need to unmap it before using its data on the GPU. +The library provides a special feature designed for that: +Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in +VmaAllocationCreateInfo::flags stay mapped all the time, +so you can just access CPU pointer to it any time +without a need to call any "map" or "unmap" function. +Example: + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +// Buffer is already mapped. You can access its memory. +memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); +\endcode + +There are some exceptions though, when you should consider mapping memory only for a short period of time: + +- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2), + device is discrete AMD GPU, + and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory + (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU), + then whenever a memory block allocated from this memory type stays mapped + for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this + block is migrated by WDDM to system RAM, which degrades performance. It doesn't + matter if that particular memory block is actually used by the command buffer + being submitted. +- On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175) + which requires unmapping before GPU can see updated texture. +- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools. + +\section memory_mapping_cache_control Cache control + +Memory in Vulkan doesn't need to be unmapped before using it on GPU, +but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, +you need to manually invalidate cache before reading of mapped pointer +and flush cache after writing to mapped pointer. +Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, +`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient +functions that refer to given allocation object: vmaFlushAllocation(), +vmaInvalidateAllocation(). + +Regions of memory specified for flush/invalidate must be aligned to +`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. +In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations +within blocks are aligned to this value, so their offsets are always multiply of +`nonCoherentAtomSize` and two different allocations never share same "line" of this size. + +Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`. + +Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA) +currently provide `HOST_COHERENT` flag on all memory types that are +`HOST_VISIBLE`, so on this platform you may not need to bother. + +\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable + +It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping) +despite it wasn't explicitly requested. +For example, application may work on integrated graphics with unified memory (like Intel) or +allocation from video memory might have failed, so the library chose system memory as fallback. + +You can detect this case and map such allocation to access its memory on CPU directly, +instead of launching a transfer operation. +In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(), +and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +VkMemoryPropertyFlags memFlags; +vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags); +if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) +{ + // Allocation ended up in mappable memory. You can map it and access it directly. + void* mappedData; + vmaMapMemory(allocator, alloc, &mappedData); + memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); + vmaUnmapMemory(allocator, alloc); +} +else +{ + // Allocation ended up in non-mappable memory. + // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. +} +\endcode + +You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations +that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY). +If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly. +If not, the flag is just ignored. +Example: + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +if(allocInfo.pUserData != nullptr) +{ + // Allocation ended up in mappable memory. + // It's persistently mapped. You can access it directly. + memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); +} +else +{ + // Allocation ended up in non-mappable memory. + // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. +} +\endcode + + +\page custom_memory_pools Custom memory pools + +A memory pool contains a number of `VkDeviceMemory` blocks. +The library automatically creates and manages default pool for each memory type available on the device. +Default memory pool automatically grows in size. +Size of allocated blocks is also variable and managed automatically. + +You can create custom pool and allocate memory out of it. +It can be useful if you want to: + +- Keep certain kind of allocations separate from others. +- Enforce particular, fixed size of Vulkan memory blocks. +- Limit maximum amount of Vulkan memory allocated for that pool. +- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. + +To use custom memory pools: + +-# Fill VmaPoolCreateInfo structure. +-# Call vmaCreatePool() to obtain #VmaPool handle. +-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. + You don't need to specify any other parameters of this structure, like `usage`. + +Example: + +\code +// Create a pool that can have at most 2 blocks, 128 MiB each. +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = ... +poolCreateInfo.blockSize = 128ull * 1024 * 1024; +poolCreateInfo.maxBlockCount = 2; + +VmaPool pool; +vmaCreatePool(allocator, &poolCreateInfo, &pool); + +// Allocate a buffer out of it. +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 1024; +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.pool = pool; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); +\endcode + +You have to free all allocations made from this pool before destroying it. + +\code +vmaDestroyBuffer(allocator, buf, alloc); +vmaDestroyPool(allocator, pool); +\endcode + +\section custom_memory_pools_MemTypeIndex Choosing memory type index + +When creating a pool, you must explicitly specify memory type index. +To find the one suitable for your buffers or images, you can use helper functions +vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). +You need to provide structures with example parameters of buffers or images +that you are going to create in that pool. + +\code +VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +exampleBufCreateInfo.size = 1024; // Whatever. +exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed. + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed. + +uint32_t memTypeIndex; +vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); + +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = memTypeIndex; +// ... +\endcode + +When creating buffers/images allocated in that pool, provide following parameters: + +- `VkBufferCreateInfo`: Prefer to pass same parameters as above. + Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. + Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers + or the other way around. +- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. + Other members are ignored anyway. + +\section linear_algorithm Linear allocation algorithm + +Each Vulkan memory block managed by this library has accompanying metadata that +keeps track of used and unused regions. By default, the metadata structure and +algorithm tries to find best place for new allocations among free regions to +optimize memory usage. This way you can allocate and free objects in any order. + +![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) + +Sometimes there is a need to use simpler, linear allocation algorithm. You can +create custom pool that uses such algorithm by adding flag +#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating +#VmaPool object. Then an alternative metadata management is used. It always +creates new allocations after last one and doesn't reuse free regions after +allocations freed in the middle. It results in better allocation performance and +less memory consumed by metadata. + +![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) + +With this one flag, you can create a custom pool that can be used in many ways: +free-at-once, stack, double stack, and ring buffer. See below for details. + +\subsection linear_algorithm_free_at_once Free-at-once + +In a pool that uses linear algorithm, you still need to free all the allocations +individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free +them in any order. New allocations are always made after last one - free space +in the middle is not reused. However, when you release all the allocation and +the pool becomes empty, allocation starts from the beginning again. This way you +can use linear algorithm to speed up creation of allocations that you are going +to release all at once. + +![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) + +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. + +\subsection linear_algorithm_stack Stack + +When you free an allocation that was created last, its space can be reused. +Thanks to this, if you always release allocations in the order opposite to their +creation (LIFO - Last In First Out), you can achieve behavior of a stack. + +![Stack](../gfx/Linear_allocator_4_stack.png) + +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. + +\subsection linear_algorithm_double_stack Double stack + +The space reserved by a custom pool with linear algorithm may be used by two +stacks: + +- First, default one, growing up from offset 0. +- Second, "upper" one, growing down from the end towards lower offsets. + +To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT +to VmaAllocationCreateInfo::flags. + +![Double stack](../gfx/Linear_allocator_7_double_stack.png) + +Double stack is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + +When the two stacks' ends meet so there is not enough space between them for a +new allocation, such allocation fails with usual +`VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + +\subsection linear_algorithm_ring_buffer Ring buffer + +When you free some allocations from the beginning and there is not enough free space +for a new one at the end of a pool, allocator's "cursor" wraps around to the +beginning and starts allocation there. Thanks to this, if you always release +allocations in the same order as you created them (FIFO - First In First Out), +you can achieve behavior of a ring buffer / queue. + +![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) + +Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer. +If there is not enough free space for a new allocation, but existing allocations +from the front of the queue can become lost, they become lost and the allocation +succeeds. + +![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png) + +Ring buffer is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + +\section buddy_algorithm Buddy allocation algorithm + +There is another allocation algorithm that can be used with custom pools, called +"buddy". Its internal data structure is based on a tree of blocks, each having +size that is a power of two and a half of its parent's size. When you want to +allocate memory of certain size, a free node in the tree is located. If it's too +large, it is recursively split into two halves (called "buddies"). However, if +requested allocation size is not a power of two, the size of a tree node is +aligned up to the nearest power of two and the remaining space is wasted. When +two buddy nodes become free, they are merged back into one larger node. + +![Buddy allocator](../gfx/Buddy_allocator.png) + +The advantage of buddy allocation algorithm over default algorithm is faster +allocation and deallocation, as well as smaller external fragmentation. The +disadvantage is more wasted space (internal fragmentation). + +For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation) +or other sources that describe this concept in general. + +To use buddy allocation algorithm with a custom pool, add flag +#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating +#VmaPool object. + +Several limitations apply to pools that use buddy algorithm: + +- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two. + Otherwise, only largest power of two smaller than the size is used for + allocations. The remaining space always stays unused. +- [Margins](@ref debugging_memory_usage_margins) and + [corruption detection](@ref debugging_memory_usage_corruption_detection) + don't work in such pools. +- [Lost allocations](@ref lost_allocations) don't work in such pools. You can + use them, but they never become lost. Support may be added in the future. +- [Defragmentation](@ref defragmentation) doesn't work with allocations made from + such pool. + +\page defragmentation Defragmentation + +Interleaved allocations and deallocations of many objects of varying size can +cause fragmentation over time, which can lead to a situation where the library is unable +to find a continuous range of free memory for a new allocation despite there is +enough free space, just scattered across many small free ranges between existing +allocations. + +To mitigate this problem, you can use defragmentation feature: +structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd(). +Given set of allocations, +this function can move them to compact used memory, ensure more continuous free +space and possibly also free some `VkDeviceMemory` blocks. + +What the defragmentation does is: + +- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset. + After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or + VmaAllocationInfo::offset changes. You must query them again using + vmaGetAllocationInfo() if you need them. +- Moves actual data in memory. + +What it doesn't do, so you need to do it yourself: + +- Recreate buffers and images that were bound to allocations that were defragmented and + bind them with their new places in memory. + You must use `vkDestroyBuffer()`, `vkDestroyImage()`, + `vkCreateBuffer()`, `vkCreateImage()` for that purpose and NOT vmaDestroyBuffer(), + vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to + destroy or create allocation objects! +- Recreate views and update descriptors that point to these buffers and images. + +\section defragmentation_cpu Defragmenting CPU memory + +Following example demonstrates how you can run defragmentation on CPU. +Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented. +Others are ignored. + +The way it works is: + +- It temporarily maps entire memory blocks when necessary. +- It moves data using `memmove()` function. + +\code +// Given following variables already initialized: +VkDevice device; +VmaAllocator allocator; +std::vector<VkBuffer> buffers; +std::vector<VmaAllocation> allocations; + + +const uint32_t allocCount = (uint32_t)allocations.size(); +std::vector<VkBool32> allocationsChanged(allocCount); + +VmaDefragmentationInfo2 defragInfo = {}; +defragInfo.allocationCount = allocCount; +defragInfo.pAllocations = allocations.data(); +defragInfo.pAllocationsChanged = allocationsChanged.data(); +defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit. +defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit. + +VmaDefragmentationContext defragCtx; +vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); +vmaDefragmentationEnd(allocator, defragCtx); + +for(uint32_t i = 0; i < allocCount; ++i) +{ + if(allocationsChanged[i]) + { + // Destroy buffer that is immutably bound to memory region which is no longer valid. + vkDestroyBuffer(device, buffers[i], nullptr); + + // Create new buffer with same parameters. + VkBufferCreateInfo bufferInfo = ...; + vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); + + // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. + + // Bind new buffer to new memory region. Data contained in it is already moved. + VmaAllocationInfo allocInfo; + vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); + vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset); + } +} +\endcode + +Setting VmaDefragmentationInfo2::pAllocationsChanged is optional. +This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index +has been modified during defragmentation. +You can pass null, but you then need to query every allocation passed to defragmentation +for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it. + +If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools), +you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools +instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations +to defragment all allocations in given pools. +You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case. +You can also combine both methods. + +\section defragmentation_gpu Defragmenting GPU memory + +It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`. +To do that, you need to pass a command buffer that meets requirements as described in +VmaDefragmentationInfo2::commandBuffer. The way it works is: + +- It creates temporary buffers and binds them to entire memory blocks when necessary. +- It issues `vkCmdCopyBuffer()` to passed command buffer. + +Example: + +\code +// Given following variables already initialized: +VkDevice device; +VmaAllocator allocator; +VkCommandBuffer commandBuffer; +std::vector<VkBuffer> buffers; +std::vector<VmaAllocation> allocations; + + +const uint32_t allocCount = (uint32_t)allocations.size(); +std::vector<VkBool32> allocationsChanged(allocCount); + +VkCommandBufferBeginInfo cmdBufBeginInfo = ...; +vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo); + +VmaDefragmentationInfo2 defragInfo = {}; +defragInfo.allocationCount = allocCount; +defragInfo.pAllocations = allocations.data(); +defragInfo.pAllocationsChanged = allocationsChanged.data(); +defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time. +defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time. +defragInfo.commandBuffer = commandBuffer; + +VmaDefragmentationContext defragCtx; +vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); + +vkEndCommandBuffer(commandBuffer); + +// Submit commandBuffer. +// Wait for a fence that ensures commandBuffer execution finished. + +vmaDefragmentationEnd(allocator, defragCtx); + +for(uint32_t i = 0; i < allocCount; ++i) +{ + if(allocationsChanged[i]) + { + // Destroy buffer that is immutably bound to memory region which is no longer valid. + vkDestroyBuffer(device, buffers[i], nullptr); + + // Create new buffer with same parameters. + VkBufferCreateInfo bufferInfo = ...; + vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); + + // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. + + // Bind new buffer to new memory region. Data contained in it is already moved. + VmaAllocationInfo allocInfo; + vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); + vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset); + } +} +\endcode + +You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters. +The library automatically chooses best method to defragment each memory pool. + +You may try not to block your entire program to wait until defragmentation finishes, +but do it in the background, as long as you carefully fullfill requirements described +in function vmaDefragmentationBegin(). + +\section defragmentation_additional_notes Additional notes + +It is only legal to defragment allocations bound to: + +- buffers +- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and + being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`. + +Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other +layout may give undefined results. + +If you defragment allocations bound to images, new images to be bound to new +memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED` +and then transitioned to their original layout from before defragmentation if +needed using an image memory barrier. + +While using defragmentation, you may experience validation layer warnings, which you just need to ignore. +See [Validation layer warnings](@ref general_considerations_validation_layer_warnings). + +Please don't expect memory to be fully compacted after defragmentation. +Algorithms inside are based on some heuristics that try to maximize number of Vulkan +memory blocks to make totally empty to release them, as well as to maximimze continuous +empty space inside remaining blocks, while minimizing the number and size of allocations that +need to be moved. Some fragmentation may still remain - this is normal. + +\section defragmentation_custom_algorithm Writing custom defragmentation algorithm + +If you want to implement your own, custom defragmentation algorithm, +there is infrastructure prepared for that, +but it is not exposed through the library API - you need to hack its source code. +Here are steps needed to do this: + +-# Main thing you need to do is to define your own class derived from base abstract + class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods. + See definition and comments of this class for details. +-# Your code needs to interact with device memory block metadata. + If you need more access to its data than it's provided by its public interface, + declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`. +-# If you want to create a flag that would enable your algorithm or pass some additional + flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in + VmaDefragmentationInfo2::flags. +-# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object + of your new class whenever needed. + + +\page lost_allocations Lost allocations + +If your game oversubscribes video memory, if may work OK in previous-generation +graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically +paged to system RAM. In Vulkan you can't do it because when you run out of +memory, an allocation just fails. If you have more data (e.g. textures) that can +fit into VRAM and you don't need it all at once, you may want to upload them to +GPU on demand and "push out" ones that are not used for a long time to make room +for the new ones, effectively using VRAM (or a cartain memory pool) as a form of +cache. Vulkan Memory Allocator can help you with that by supporting a concept of +"lost allocations". + +To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT +flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to +such allocation in every new frame, you need to query it if it's not lost. +To check it, call vmaTouchAllocation(). +If the allocation is lost, you should not use it or buffer/image bound to it. +You mustn't forget to destroy this allocation and this buffer/image. +vmaGetAllocationInfo() can also be used for checking status of the allocation. +Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`. + +To create an allocation that can make some other allocations lost to make room +for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will +usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and +#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time. + +Warning! Current implementation uses quite naive, brute force algorithm, +which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT +flag quite slow. A new, more optimal algorithm and data structure to speed this +up is planned for the future. + +<b>Q: When interleaving creation of new allocations with usage of existing ones, +how do you make sure that an allocation won't become lost while it's used in the +current frame?</b> + +It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation +status/parameters and checks whether it's not lost, but when it's not, it also +atomically marks it as used in the current frame, which makes it impossible to +become lost in that frame. It uses lockless algorithm, so it works fast and +doesn't involve locking any internal mutex. + +<b>Q: What if my allocation may still be in use by the GPU when it's rendering a +previous frame while I already submit new frame on the CPU?</b> + +You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not +become lost for a number of additional frames back from the current one by +specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default +memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool). + +<b>Q: How do you inform the library when new frame starts?</b> + +You need to call function vmaSetCurrentFrameIndex(). + +Example code: + +\code +struct MyBuffer +{ + VkBuffer m_Buf = nullptr; + VmaAllocation m_Alloc = nullptr; + + // Called when the buffer is really needed in the current frame. + void EnsureBuffer(); +}; + +void MyBuffer::EnsureBuffer() +{ + // Buffer has been created. + if(m_Buf != VK_NULL_HANDLE) + { + // Check if its allocation is not lost + mark it as used in current frame. + if(vmaTouchAllocation(allocator, m_Alloc)) + { + // It's all OK - safe to use m_Buf. + return; + } + } + + // Buffer not yet exists or lost - destroy and recreate it. + + vmaDestroyBuffer(allocator, m_Buf, m_Alloc); + + VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; + bufCreateInfo.size = 1024; + bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + + VmaAllocationCreateInfo allocCreateInfo = {}; + allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT | + VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; + + vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr); +} +\endcode + +When using lost allocations, you may see some Vulkan validation layer warnings +about overlapping regions of memory bound to different kinds of buffers and +images. This is still valid as long as you implement proper handling of lost +allocations (like in the example above) and don't use them. + +You can create an allocation that is already in lost state from the beginning using function +vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null. + +You can call function vmaMakePoolAllocationsLost() to set all eligible allocations +in a specified custom pool to lost state. +Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back +cannot become lost. + +<b>Q: Can I touch allocation that cannot become lost?</b> + +Yes, although it has no visible effect. +Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index +also for allocations that cannot become lost, but the only way to observe it is to dump +internal allocator state using vmaBuildStatsString(). +You can use this feature for debugging purposes to explicitly mark allocations that you use +in current frame and then analyze JSON dump to see for how long each allocation stays unused. + + +\page statistics Statistics + +This library contains functions that return information about its internal state, +especially the amount of memory allocated from Vulkan. +Please keep in mind that these functions need to traverse all internal data structures +to gather these information, so they may be quite time-consuming. +Don't call them too often. + +\section statistics_numeric_statistics Numeric statistics + +You can query for overall statistics of the allocator using function vmaCalculateStats(). +Information are returned using structure #VmaStats. +It contains #VmaStatInfo - number of allocated blocks, number of allocations +(occupied ranges in these blocks), number of unused (free) ranges in these blocks, +number of bytes used and unused (but still allocated from Vulkan) and other information. +They are summed across memory heaps, memory types and total for whole allocator. + +You can query for statistics of a custom pool using function vmaGetPoolStats(). +Information are returned using structure #VmaPoolStats. + +You can query for information about specific allocation using function vmaGetAllocationInfo(). +It fill structure #VmaAllocationInfo. + +\section statistics_json_dump JSON dump + +You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). +The result is guaranteed to be correct JSON. +It uses ANSI encoding. +Any strings provided by user (see [Allocation names](@ref allocation_names)) +are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, +this JSON string can be treated as using this encoding. +It must be freed using function vmaFreeStatsString(). + +The format of this JSON string is not part of official documentation of the library, +but it will not change in backward-incompatible way without increasing library major version number +and appropriate mention in changelog. + +The JSON string contains all the data that can be obtained using vmaCalculateStats(). +It can also contain detailed map of allocated memory blocks and their regions - +free and occupied by allocations. +This allows e.g. to visualize the memory or assess fragmentation. + + +\page allocation_annotation Allocation names and user data + +\section allocation_user_data Allocation user data + +You can annotate allocations with your own information, e.g. for debugging purposes. +To do that, fill VmaAllocationCreateInfo::pUserData field when creating +an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer, +some handle, index, key, ordinal number or any other value that would associate +the allocation with your custom metadata. + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +// Fill bufferInfo... + +MyBufferMetadata* pMetadata = CreateBufferMetadata(); + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.pUserData = pMetadata; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr); +\endcode + +The pointer may be later retrieved as VmaAllocationInfo::pUserData: + +\code +VmaAllocationInfo allocInfo; +vmaGetAllocationInfo(allocator, allocation, &allocInfo); +MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; +\endcode + +It can also be changed using function vmaSetAllocationUserData(). + +Values of (non-zero) allocations' `pUserData` are printed in JSON report created by +vmaBuildStatsString(), in hexadecimal form. + +\section allocation_names Allocation names + +There is alternative mode available where `pUserData` pointer is used to point to +a null-terminated string, giving a name to the allocation. To use this mode, +set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags. +Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to +vmaSetAllocationUserData() must be either null or pointer to a null-terminated string. +The library creates internal copy of the string, so the pointer you pass doesn't need +to be valid for whole lifetime of the allocation. You can free it after the call. + +\code +VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +// Fill imageInfo... + +std::string imageName = "Texture: "; +imageName += fileName; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT; +allocCreateInfo.pUserData = imageName.c_str(); + +VkImage image; +VmaAllocation allocation; +vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr); +\endcode + +The value of `pUserData` pointer of the allocation will be different than the one +you passed when setting allocation's name - pointing to a buffer managed +internally that holds copy of the string. + +\code +VmaAllocationInfo allocInfo; +vmaGetAllocationInfo(allocator, allocation, &allocInfo); +const char* imageName = (const char*)allocInfo.pUserData; +printf("Image name: %s\n", imageName); +\endcode + +That string is also printed in JSON report created by vmaBuildStatsString(). + + +\page debugging_memory_usage Debugging incorrect memory usage + +If you suspect a bug with memory usage, like usage of uninitialized memory or +memory being overwritten out of bounds of an allocation, +you can use debug features of this library to verify this. + +\section debugging_memory_usage_initialization Memory initialization + +If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, +you can enable automatic memory initialization to verify this. +To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. + +\code +#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 +#include "vk_mem_alloc.h" +\endcode + +It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`. +Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. +Memory is automatically mapped and unmapped if necessary. + +If you find these values while debugging your program, good chances are that you incorrectly +read Vulkan memory that is allocated but not initialized, or already freed, respectively. + +Memory initialization works only with memory types that are `HOST_VISIBLE`. +It works also with dedicated allocations. +It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, +as they cannot be mapped. + +\section debugging_memory_usage_margins Margins + +By default, allocations are laid out in memory blocks next to each other if possible +(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). + +![Allocations without margin](../gfx/Margins_1.png) + +Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified +number of bytes as a margin before and after every allocation. + +\code +#define VMA_DEBUG_MARGIN 16 +#include "vk_mem_alloc.h" +\endcode + +![Allocations with margin](../gfx/Margins_2.png) + +If your bug goes away after enabling margins, it means it may be caused by memory +being overwritten outside of allocation boundaries. It is not 100% certain though. +Change in application behavior may also be caused by different order and distribution +of allocations across memory blocks after margins are applied. + +The margin is applied also before first and after last allocation in a block. +It may occur only once between two adjacent allocations. + +Margins work with all types of memory. + +Margin is applied only to allocations made out of memory blocks and not to dedicated +allocations, which have their own memory block of specific size. +It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag +or those automatically decided to put into dedicated allocations, e.g. due to its +large size or recommended by VK_KHR_dedicated_allocation extension. +Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag. + +Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. + +Note that enabling margins increases memory usage and fragmentation. + +\section debugging_memory_usage_corruption_detection Corruption detection + +You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation +of contents of the margins. + +\code +#define VMA_DEBUG_MARGIN 16 +#define VMA_DEBUG_DETECT_CORRUPTION 1 +#include "vk_mem_alloc.h" +\endcode + +When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` +(it must be multiply of 4) before and after every allocation is filled with a magic number. +This idea is also know as "canary". +Memory is automatically mapped and unmapped if necessary. + +This number is validated automatically when the allocation is destroyed. +If it's not equal to the expected value, `VMA_ASSERT()` is executed. +It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, +which indicates a serious bug. + +You can also explicitly request checking margins of all allocations in all memory blocks +that belong to specified memory types by using function vmaCheckCorruption(), +or in memory blocks that belong to specified custom pool, by using function +vmaCheckPoolCorruption(). + +Margin validation (corruption detection) works only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. + + +\page record_and_replay Record and replay + +\section record_and_replay_introduction Introduction + +While using the library, sequence of calls to its functions together with their +parameters can be recorded to a file and later replayed using standalone player +application. It can be useful to: + +- Test correctness - check if same sequence of calls will not cause crash or + failures on a target platform. +- Gather statistics - see number of allocations, peak memory usage, number of + calls etc. +- Benchmark performance - see how much time it takes to replay the whole + sequence. + +\section record_and_replay_usage Usage + +<b>To record sequence of calls to a file:</b> Fill in +VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator +object. File is opened and written during whole lifetime of the allocator. + +<b>To replay file:</b> Use VmaReplay - standalone command-line program. +Precompiled binary can be found in "bin" directory. +Its source can be found in "src/VmaReplay" directory. +Its project is generated by Premake. +Command line syntax is printed when the program is launched without parameters. +Basic usage: + + VmaReplay.exe MyRecording.csv + +<b>Documentation of file format</b> can be found in file: "docs/Recording file format.md". +It's a human-readable, text file in CSV format (Comma Separated Values). + +\section record_and_replay_additional_considerations Additional considerations + +- Replaying file that was recorded on a different GPU (with different parameters + like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different + set of memory heaps and types) may give different performance and memory usage + results, as well as issue some warnings and errors. +- Current implementation of recording in VMA, as well as VmaReplay application, is + coded and tested only on Windows. Inclusion of recording code is driven by + `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to + add. Contributions are welcomed. +- Currently calls to vmaDefragment() function are not recorded. + + +\page usage_patterns Recommended usage patterns + +See also slides from talk: +[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) + + +\section usage_patterns_simple Simple patterns + +\subsection usage_patterns_simple_render_targets Render targets + +<b>When:</b> +Any resources that you frequently write and read on GPU, +e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, +images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). + +<b>What to do:</b> +Create them in video memory that is fastest to access from GPU using +#VMA_MEMORY_USAGE_GPU_ONLY. + +Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension +and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, +especially if they are large or if you plan to destroy and recreate them e.g. when +display resolution changes. +Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. + +\subsection usage_patterns_simple_immutable_resources Immutable resources + +<b>When:</b> +Any resources that you fill on CPU only once (aka "immutable") or infrequently +and then read frequently on GPU, +e.g. textures, vertex and index buffers, constant buffers that don't change often. + +<b>What to do:</b> +Create them in video memory that is fastest to access from GPU using +#VMA_MEMORY_USAGE_GPU_ONLY. + +To initialize content of such resource, create a CPU-side (aka "staging") copy of it +in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it, +and submit a transfer from it to the GPU resource. +You can keep the staging copy if you need it for another upload transfer in the future. +If you don't, you can destroy it or reuse this buffer for uploading different resource +after the transfer finishes. + +Prefer to create just buffers in system memory rather than images, even for uploading textures. +Use `vkCmdCopyBufferToImage()`. +Dont use images with `VK_IMAGE_TILING_LINEAR`. + +\subsection usage_patterns_dynamic_resources Dynamic resources + +<b>When:</b> +Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call, +written on CPU, read on GPU. + +<b>What to do:</b> +Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU. +You can map it and write to it directly on CPU, as well as read from it on GPU. + +This is a more complex situation. Different solutions are possible, +and the best one depends on specific GPU type, but you can use this simple approach for the start. +Prefer to write to such resource sequentially (e.g. using `memcpy`). +Don't perform random access or any reads from it on CPU, as it may be very slow. + +\subsection usage_patterns_readback Readback + +<b>When:</b> +Resources that contain data written by GPU that you want to read back on CPU, +e.g. results of some computations. + +<b>What to do:</b> +Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU. +You can write to them directly on GPU, as well as map and read them on CPU. + +\section usage_patterns_advanced Advanced patterns + +\subsection usage_patterns_integrated_graphics Detecting integrated graphics + +You can support integrated graphics (like Intel HD Graphics, AMD APU) better +by detecting it in Vulkan. +To do it, call `vkGetPhysicalDeviceProperties()`, inspect +`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`. +When you find it, you can assume that memory is unified and all memory types are comparably fast +to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + +You can then sum up sizes of all available memory heaps and treat them as useful for +your GPU resources, instead of only `DEVICE_LOCAL` ones. +You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them +directly instead of submitting explicit transfer (see below). + +\subsection usage_patterns_direct_vs_transfer Direct access versus transfer + +For resources that you frequently write on CPU and read on GPU, many solutions are possible: + +-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, + second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time. +-# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU, + read it directly on GPU. +-# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU, + read it directly on GPU. + +Which solution is the most efficient depends on your resource and especially on the GPU. +It is best to measure it and then make the decision. +Some general recommendations: + +- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead + related to using a second copy and making transfer. +- For small resources (e.g. constant buffers) use (2). + Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable. + Even if the resource ends up in system memory, its data may be cached on GPU after first + fetch over PCIe bus. +- For larger resources (e.g. textures), decide between (1) and (2). + You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is + both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1). + +Similarly, for resources that you frequently write on GPU and read on CPU, multiple +solutions are possible: + +-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, + second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time. +-# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU, + map it and read it on CPU. + +You should take some measurements to decide which option is faster in case of your specific +resource. + +If you don't want to specialize your code for specific types of GPUs, you can still make +an simple optimization for cases when your resource ends up in mappable memory to use it +directly in this case instead of creating CPU-side staging copy. +For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable). + + +\page configuration Configuration + +Please check "CONFIGURATION SECTION" in the code to find macros that you can define +before each include of this file or change directly in this file to provide +your own implementation of basic facilities like assert, `min()` and `max()` functions, +mutex, atomic etc. +The library uses its own implementation of containers by default, but you can switch to using +STL containers instead. + +\section config_Vulkan_functions Pointers to Vulkan functions + +The library uses Vulkan functions straight from the `vulkan.h` header by default. +If you want to provide your own pointers to these functions, e.g. fetched using +`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`: + +-# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`. +-# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions. + +\section custom_memory_allocator Custom host memory allocator + +If you use custom allocator for CPU memory rather than default operator `new` +and `delete` from C++, you can make this library using your allocator as well +by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These +functions will be passed to Vulkan, as well as used by the library itself to +make any CPU-side allocations. + +\section allocation_callbacks Device memory allocation callbacks + +The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. +You can setup callbacks to be informed about these calls, e.g. for the purpose +of gathering some statistics. To do it, fill optional member +VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. + +\section heap_memory_limit Device heap memory limit + +When device memory of certain heap runs out of free space, new allocations may +fail (returning error code) or they may succeed, silently pushing some existing +memory blocks from GPU VRAM to system RAM (which degrades performance). This +behavior is implementation-dependant - it depends on GPU vendor and graphics +driver. + +On AMD cards it can be controlled while creating Vulkan device object by using +VK_AMD_memory_allocation_behavior extension, if available. + +Alternatively, if you want to test how your program behaves with limited amount of Vulkan device +memory available without switching your graphics card to one that really has +smaller VRAM, you can use a feature of this library intended for this purpose. +To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. + + + +\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation + +VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve +performance on some GPUs. It augments Vulkan API with possibility to query +driver whether it prefers particular buffer or image to have its own, dedicated +allocation (separate `VkDeviceMemory` block) for better efficiency - to be able +to do some internal optimizations. + +The extension is supported by this library. It will be used automatically when +enabled. To enable it: + +1 . When creating Vulkan device, check if following 2 device extensions are +supported (call `vkEnumerateDeviceExtensionProperties()`). +If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). + +- VK_KHR_get_memory_requirements2 +- VK_KHR_dedicated_allocation + +If you enabled these extensions: + +2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating +your #VmaAllocator`to inform the library that you enabled required extensions +and you want the library to use them. + +\code +allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; + +vmaCreateAllocator(&allocatorInfo, &allocator); +\endcode + +That's all. The extension will be automatically used whenever you create a +buffer using vmaCreateBuffer() or image using vmaCreateImage(). + +When using the extension together with Vulkan Validation Layer, you will receive +warnings like this: + + vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer. + +It is OK, you should just ignore it. It happens because you use function +`vkGetBufferMemoryRequirements2KHR()` instead of standard +`vkGetBufferMemoryRequirements()`, while the validation layer seems to be +unaware of it. + +To learn more about this extension, see: + +- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation) +- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) + + + +\page general_considerations General considerations + +\section general_considerations_thread_safety Thread safety + +- The library has no global state, so separate #VmaAllocator objects can be used + independently. + There should be no need to create multiple such objects though - one per `VkDevice` is enough. +- By default, all calls to functions that take #VmaAllocator as first parameter + are safe to call from multiple threads simultaneously because they are + synchronized internally when needed. +- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT + flag, calls to functions that take such #VmaAllocator object must be + synchronized externally. +- Access to a #VmaAllocation object must be externally synchronized. For example, + you must not call vmaGetAllocationInfo() and vmaMapMemory() from different + threads at the same time if you pass the same #VmaAllocation object to these + functions. + +\section general_considerations_validation_layer_warnings Validation layer warnings + +When using this library, you can meet following types of warnings issued by +Vulkan validation layer. They don't necessarily indicate a bug, so you may need +to just ignore them. + +- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* + - It happens when VK_KHR_dedicated_allocation extension is enabled. + `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. +- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* + - It happens when you map a buffer or image, because the library maps entire + `VkDeviceMemory` block, where different types of images and buffers may end + up together, especially on GPUs with unified memory like Intel. +- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* + - It happens when you use lost allocations, and a new image or buffer is + created in place of an existing object that bacame lost. + - It may happen also when you use [defragmentation](@ref defragmentation). + +\section general_considerations_allocation_algorithm Allocation algorithm + +The library uses following algorithm for allocation, in order: + +-# Try to find free range of memory in existing blocks. +-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. +-# If failed, try to create such block with size/2, size/4, size/8. +-# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was + specified, try to find space in existing blocks, possilby making some other + allocations lost. +-# If failed, try to allocate separate `VkDeviceMemory` for this allocation, + just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +-# If failed, choose other memory type that meets the requirements specified in + VmaAllocationCreateInfo and go to point 1. +-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + +\section general_considerations_features_not_supported Features not supported + +Features deliberately excluded from the scope of this library: + +- Data transfer. Uploading (straming) and downloading data of buffers and images + between CPU and GPU memory and related synchronization is responsibility of the user. + Defining some "texture" object that would automatically stream its data from a + staging copy in CPU memory to GPU memory would rather be a feature of another, + higher-level library implemented on top of VMA. +- Allocations for imported/exported external memory. They tend to require + explicit memory type index and dedicated allocation anyway, so they don't + interact with main features of this library. Such special purpose allocations + should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`. +- Recreation of buffers and images. Although the library has functions for + buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to + recreate these objects yourself after defragmentation. That's because the big + structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in + #VmaAllocation object. +- Handling CPU memory allocation failures. When dynamically creating small C++ + objects in CPU memory (not Vulkan memory), allocation failures are not checked + and handled gracefully, because that would complicate code significantly and + is usually not needed in desktop PC applications anyway. +- Code free of any compiler warnings. Maintaining the library to compile and + work correctly on so many different platforms is hard enough. Being free of + any warnings, on any version of any compiler, is simply not feasible. +- This is a C++ library with C interface. + Bindings or ports to any other programming languages are welcomed as external projects and + are not going to be included into this repository. + +*/ + +/* +Define this macro to 0/1 to disable/enable support for recording functionality, +available through VmaAllocatorCreateInfo::pRecordSettings. +*/ +#ifndef VMA_RECORDING_ENABLED +#ifdef _WIN32 +#define VMA_RECORDING_ENABLED 1 +#else +#define VMA_RECORDING_ENABLED 0 +#endif +#endif + +#ifndef NOMINMAX +#define NOMINMAX // For windows.h +#endif + +#ifndef VULKAN_H_ +#include <vulkan/vulkan.h> +#endif + +#if VMA_RECORDING_ENABLED +#include <windows.h> +#endif + +#if !defined(VMA_DEDICATED_ALLOCATION) +#if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation +#define VMA_DEDICATED_ALLOCATION 1 +#else +#define VMA_DEDICATED_ALLOCATION 0 +#endif +#endif + +/** \struct VmaAllocator +\brief Represents main object of this library initialized. + +Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. +Call function vmaDestroyAllocator() to destroy it. + +It is recommended to create just one object of this type per `VkDevice` object, +right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. +*/ +VK_DEFINE_HANDLE(VmaAllocator) + +/// Callback function called after successful vkAllocateMemory. +typedef void(VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)( + VmaAllocator allocator, + uint32_t memoryType, + VkDeviceMemory memory, + VkDeviceSize size); +/// Callback function called before vkFreeMemory. +typedef void(VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)( + VmaAllocator allocator, + uint32_t memoryType, + VkDeviceMemory memory, + VkDeviceSize size); + +/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. + +Provided for informative purpose, e.g. to gather statistics about number of +allocations or total amount of memory allocated in Vulkan. + +Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. +*/ +typedef struct VmaDeviceMemoryCallbacks { + /// Optional, can be null. + PFN_vmaAllocateDeviceMemoryFunction pfnAllocate; + /// Optional, can be null. + PFN_vmaFreeDeviceMemoryFunction pfnFree; +} VmaDeviceMemoryCallbacks; + +/// Flags for created #VmaAllocator. +typedef enum VmaAllocatorCreateFlagBits { + /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. + + Using this flag may increase performance because internal mutexes are not used. + */ + VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, + /** \brief Enables usage of VK_KHR_dedicated_allocation extension. + + Using this extenion will automatically allocate dedicated blocks of memory for + some buffers and images instead of suballocating place for them out of bigger + memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT + flag) when it is recommended by the driver. It may improve performance on some + GPUs. + + You may set this flag only if you found out that following device extensions are + supported, you enabled them while creating Vulkan device passed as + VmaAllocatorCreateInfo::device, and you want them to be used internally by this + library: + + - VK_KHR_get_memory_requirements2 + - VK_KHR_dedicated_allocation + +When this flag is set, you can experience following warnings reported by Vulkan +validation layer. You can ignore them. + +> vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. + */ + VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, + + VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocatorCreateFlagBits; +typedef VkFlags VmaAllocatorCreateFlags; + +/** \brief Pointers to some Vulkan functions - a subset used by the library. + +Used in VmaAllocatorCreateInfo::pVulkanFunctions. +*/ +typedef struct VmaVulkanFunctions { + PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; + PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; + PFN_vkAllocateMemory vkAllocateMemory; + PFN_vkFreeMemory vkFreeMemory; + PFN_vkMapMemory vkMapMemory; + PFN_vkUnmapMemory vkUnmapMemory; + PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; + PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; + PFN_vkBindBufferMemory vkBindBufferMemory; + PFN_vkBindImageMemory vkBindImageMemory; + PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; + PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; + PFN_vkCreateBuffer vkCreateBuffer; + PFN_vkDestroyBuffer vkDestroyBuffer; + PFN_vkCreateImage vkCreateImage; + PFN_vkDestroyImage vkDestroyImage; + PFN_vkCmdCopyBuffer vkCmdCopyBuffer; +#if VMA_DEDICATED_ALLOCATION + PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR; + PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR; +#endif +} VmaVulkanFunctions; + +/// Flags to be used in VmaRecordSettings::flags. +typedef enum VmaRecordFlagBits { + /** \brief Enables flush after recording every function call. + + Enable it if you expect your application to crash, which may leave recording file truncated. + It may degrade performance though. + */ + VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001, + + VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaRecordFlagBits; +typedef VkFlags VmaRecordFlags; + +/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings. +typedef struct VmaRecordSettings { + /// Flags for recording. Use #VmaRecordFlagBits enum. + VmaRecordFlags flags; + /** \brief Path to the file that should be written by the recording. + + Suggested extension: "csv". + If the file already exists, it will be overwritten. + It will be opened for the whole time #VmaAllocator object is alive. + If opening this file fails, creation of the whole allocator object fails. + */ + const char *pFilePath; +} VmaRecordSettings; + +/// Description of a Allocator to be created. +typedef struct VmaAllocatorCreateInfo { + /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. + VmaAllocatorCreateFlags flags; + /// Vulkan physical device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkPhysicalDevice physicalDevice; + /// Vulkan device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkDevice device; + /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. + /** Set to 0 to use default, which is currently 256 MiB. */ + VkDeviceSize preferredLargeHeapBlockSize; + /// Custom CPU memory allocation callbacks. Optional. + /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ + const VkAllocationCallbacks *pAllocationCallbacks; + /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. + /** Optional, can be null. */ + const VmaDeviceMemoryCallbacks *pDeviceMemoryCallbacks; + /** \brief Maximum number of additional frames that are in use at the same time as current frame. + + This value is used only when you make allocations with + VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become + lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. + + For example, if you double-buffer your command buffers, so resources used for + rendering in previous frame may still be in use by the GPU at the moment you + allocate resources needed for the current frame, set this value to 1. + + If you want to allow any allocations other than used in the current frame to + become lost, set this value to 0. + */ + uint32_t frameInUseCount; + /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. + + If not NULL, it must be a pointer to an array of + `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on + maximum number of bytes that can be allocated out of particular Vulkan memory + heap. + + Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that + heap. This is also the default in case of `pHeapSizeLimit` = NULL. + + If there is a limit defined for a heap: + + - If user tries to allocate more memory from that heap using this allocator, + the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the + value of this limit will be reported instead when using vmaGetMemoryProperties(). + + Warning! Using this feature may not be equivalent to installing a GPU with + smaller amount of memory, because graphics driver doesn't necessary fail new + allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is + exceeded. It may return success and just silently migrate some device memory + blocks to system RAM. This driver behavior can also be controlled using + VK_AMD_memory_overallocation_behavior extension. + */ + const VkDeviceSize *pHeapSizeLimit; + /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`. + + If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section, + you can pass null as this member, because the library will fetch pointers to + Vulkan functions internally in a static way, like: + + vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; + + Fill this member if you want to provide your own pointers to Vulkan functions, + e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`. + */ + const VmaVulkanFunctions *pVulkanFunctions; + /** \brief Parameters for recording of VMA calls. Can be null. + + If not null, it enables recording of calls to VMA functions to a file. + If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro, + creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`. + */ + const VmaRecordSettings *pRecordSettings; +} VmaAllocatorCreateInfo; + +/// Creates Allocator object. +VkResult vmaCreateAllocator( + const VmaAllocatorCreateInfo *pCreateInfo, + VmaAllocator *pAllocator); + +/// Destroys allocator object. +void vmaDestroyAllocator( + VmaAllocator allocator); + +/** +PhysicalDeviceProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +void vmaGetPhysicalDeviceProperties( + VmaAllocator allocator, + const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties); + +/** +PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +void vmaGetMemoryProperties( + VmaAllocator allocator, + const VkPhysicalDeviceMemoryProperties **ppPhysicalDeviceMemoryProperties); + +/** +\brief Given Memory Type Index, returns Property Flags of this memory type. + +This is just a convenience function. Same information can be obtained using +vmaGetMemoryProperties(). +*/ +void vmaGetMemoryTypeProperties( + VmaAllocator allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags *pFlags); + +/** \brief Sets index of the current frame. + +This function must be used if you make allocations with +#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and +#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator +when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot +become lost in the current frame. +*/ +void vmaSetCurrentFrameIndex( + VmaAllocator allocator, + uint32_t frameIndex); + +/** \brief Calculated statistics of memory usage in entire allocator. +*/ +typedef struct VmaStatInfo { + /// Number of `VkDeviceMemory` Vulkan memory blocks allocated. + uint32_t blockCount; + /// Number of #VmaAllocation allocation objects allocated. + uint32_t allocationCount; + /// Number of free ranges of memory between allocations. + uint32_t unusedRangeCount; + /// Total number of bytes occupied by all allocations. + VkDeviceSize usedBytes; + /// Total number of bytes occupied by unused ranges. + VkDeviceSize unusedBytes; + VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax; + VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax; +} VmaStatInfo; + +/// General statistics from current state of Allocator. +typedef struct VmaStats { + VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]; + VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]; + VmaStatInfo total; +} VmaStats; + +/// Retrieves statistics from current state of the Allocator. +void vmaCalculateStats( + VmaAllocator allocator, + VmaStats *pStats); + +#ifndef VMA_STATS_STRING_ENABLED +#define VMA_STATS_STRING_ENABLED 1 +#endif + +#if VMA_STATS_STRING_ENABLED + +/// Builds and returns statistics as string in JSON format. +/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function. +*/ +void vmaBuildStatsString( + VmaAllocator allocator, + char **ppStatsString, + VkBool32 detailedMap); + +void vmaFreeStatsString( + VmaAllocator allocator, + char *pStatsString); + +#endif // #if VMA_STATS_STRING_ENABLED + +/** \struct VmaPool +\brief Represents custom memory pool + +Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. +Call function vmaDestroyPool() to destroy it. + +For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). +*/ +VK_DEFINE_HANDLE(VmaPool) + +typedef enum VmaMemoryUsage { + /** No intended memory usage specified. + Use other members of VmaAllocationCreateInfo to specify your requirements. + */ + VMA_MEMORY_USAGE_UNKNOWN = 0, + /** Memory will be used on device only, so fast access from the device is preferred. + It usually means device-local GPU (video) memory. + No need to be mappable on host. + It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`. + + Usage: + + - Resources written and read by device, e.g. images used as attachments. + - Resources transferred from host once (immutable) or infrequently and read by + device multiple times, e.g. textures to be sampled, vertex buffers, uniform + (constant) buffers, and majority of other types of resources used on GPU. + + Allocation may still end up in `HOST_VISIBLE` memory on some implementations. + In such case, you are free to map it. + You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type. + */ + VMA_MEMORY_USAGE_GPU_ONLY = 1, + /** Memory will be mappable on host. + It usually means CPU (system) memory. + Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`. + CPU access is typically uncached. Writes may be write-combined. + Resources created in this pool may still be accessible to the device, but access to them can be slow. + It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`. + + Usage: Staging copy of resources used as transfer source. + */ + VMA_MEMORY_USAGE_CPU_ONLY = 2, + /** + Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU. + CPU access is typically uncached. Writes may be write-combined. + + Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call. + */ + VMA_MEMORY_USAGE_CPU_TO_GPU = 3, + /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached. + It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`. + + Usage: + + - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping. + - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection. + */ + VMA_MEMORY_USAGE_GPU_TO_CPU = 4, + VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF +} VmaMemoryUsage; + +/// Flags to be passed as VmaAllocationCreateInfo::flags. +typedef enum VmaAllocationCreateFlagBits { + /** \brief Set this flag if the allocation should have its own memory block. + + Use it for special, big resources, like fullscreen images used as attachments. + + You should not use this flag if VmaAllocationCreateInfo::pool is not null. + */ + VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, + + /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. + + If new allocation cannot be placed in any of the existing blocks, allocation + fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + + You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and + #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. + + If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */ + VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, + /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. + + Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. + + Is it valid to use this flag for allocation made from memory type that is not + `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is + useful if you need an allocation that is efficient to use on GPU + (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that + support it (e.g. Intel GPU). + + You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT. + */ + VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, + /** Allocation created with this flag can become lost as a result of another + allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you + must check it before use. + + To check if allocation is not lost, call vmaGetAllocationInfo() and check if + VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`. + + For details about supporting lost allocations, see Lost Allocations + chapter of User Guide on Main Page. + + You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT. + */ + VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008, + /** While creating allocation using this flag, other allocations that were + created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost. + + For details about supporting lost allocations, see Lost Allocations + chapter of User Guide on Main Page. + */ + VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010, + /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a + null-terminated string. Instead of copying pointer value, a local copy of the + string is made and stored in allocation's `pUserData`. The string is automatically + freed together with the allocation. It is also used in vmaBuildStatsString(). + */ + VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, + /** Allocation will be created from upper stack in a double stack pool. + + This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. + */ + VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, + /** Create both buffer/image and allocation, but don't bind them together. + It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. + The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). + Otherwise it is ignored. + */ + VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, + + /** Allocation strategy that chooses smallest possible free range for the + allocation. + */ + VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000, + /** Allocation strategy that chooses biggest possible free range for the + allocation. + */ + VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000, + /** Allocation strategy that chooses first suitable free range for the + allocation. + + "First" doesn't necessarily means the one with smallest offset in memory, + but rather the one that is easiest and fastest to find. + */ + VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000, + + /** Allocation strategy that tries to minimize memory usage. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT, + /** Allocation strategy that tries to minimize allocation time. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, + /** Allocation strategy that tries to minimize memory fragmentation. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT, + + /** A bit mask to extract only `STRATEGY` bits from entire set of flags. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MASK = + VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, + + VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocationCreateFlagBits; +typedef VkFlags VmaAllocationCreateFlags; + +typedef struct VmaAllocationCreateInfo { + /// Use #VmaAllocationCreateFlagBits enum. + VmaAllocationCreateFlags flags; + /** \brief Intended usage of memory. + + You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored. + */ + VmaMemoryUsage usage; + /** \brief Flags that must be set in a Memory Type chosen for an allocation. + + Leave 0 if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored.*/ + VkMemoryPropertyFlags requiredFlags; + /** \brief Flags that preferably should be set in a memory type chosen for an allocation. + + Set to 0 if no additional flags are prefered. \n + If `pool` is not null, this member is ignored. */ + VkMemoryPropertyFlags preferredFlags; + /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. + + Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if + it meets other requirements specified by this structure, with no further + restrictions on memory type index. \n + If `pool` is not null, this member is ignored. + */ + uint32_t memoryTypeBits; + /** \brief Pool that this allocation should be created in. + + Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: + `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. + */ + VmaPool pool; + /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). + + If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either + null or pointer to a null-terminated string. The string will be then copied to + internal buffer, so it doesn't need to be valid after allocation call. + */ + void *pUserData; +} VmaAllocationCreateInfo; + +/** +\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. + +This algorithm tries to find a memory type that: + +- Is allowed by memoryTypeBits. +- Contains all the flags from pAllocationCreateInfo->requiredFlags. +- Matches intended usage. +- Has as many flags from pAllocationCreateInfo->preferredFlags as possible. + +\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result +from this function or any other allocating function probably means that your +device doesn't support any memory type with requested features for the specific +type of resource you want to use it for. Please check parameters of your +resource, like image layout (OPTIMAL versus LINEAR) or mip level count. +*/ +VkResult vmaFindMemoryTypeIndex( + VmaAllocator allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + uint32_t *pMemoryTypeIndex); + +/** +\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. + +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy buffer that never has memory bound. +It is just a convenience function, equivalent to calling: + +- `vkCreateBuffer` +- `vkGetBufferMemoryRequirements` +- `vmaFindMemoryTypeIndex` +- `vkDestroyBuffer` +*/ +VkResult vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator allocator, + const VkBufferCreateInfo *pBufferCreateInfo, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + uint32_t *pMemoryTypeIndex); + +/** +\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. + +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy image that never has memory bound. +It is just a convenience function, equivalent to calling: + +- `vkCreateImage` +- `vkGetImageMemoryRequirements` +- `vmaFindMemoryTypeIndex` +- `vkDestroyImage` +*/ +VkResult vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator allocator, + const VkImageCreateInfo *pImageCreateInfo, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + uint32_t *pMemoryTypeIndex); + +/// Flags to be passed as VmaPoolCreateInfo::flags. +typedef enum VmaPoolCreateFlagBits { + /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. + + This is an optional optimization flag. + + If you always allocate using vmaCreateBuffer(), vmaCreateImage(), + vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator + knows exact type of your allocations so it can handle Buffer-Image Granularity + in the optimal way. + + If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), + exact type of such allocations is not known, so allocator must be conservative + in handling Buffer-Image Granularity, which can lead to suboptimal allocation + (wasted memory). In that case, if you can make sure you always allocate only + buffers and linear images or only optimal images out of this pool, use this flag + to make allocator disregard Buffer-Image Granularity and so make allocations + faster and more optimal. + */ + VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, + + /** \brief Enables alternative, linear allocation algorithm in this pool. + + Specify this flag to enable linear allocation algorithm, which always creates + new allocations after last one and doesn't reuse space from allocations freed in + between. It trades memory consumption for simplified algorithm and data + structure, which has better performance and uses less memory for metadata. + + By using this flag, you can achieve behavior of free-at-once, stack, + ring buffer, and double stack. For details, see documentation chapter + \ref linear_algorithm. + + When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default). + + For more details, see [Linear allocation algorithm](@ref linear_algorithm). + */ + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, + + /** \brief Enables alternative, buddy allocation algorithm in this pool. + + It operates on a tree of blocks, each having size that is a power of two and + a half of its parent's size. Comparing to default algorithm, this one provides + faster allocation and deallocation and decreased external fragmentation, + at the expense of more memory wasted (internal fragmentation). + + For more details, see [Buddy allocation algorithm](@ref buddy_algorithm). + */ + VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008, + + /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. + */ + VMA_POOL_CREATE_ALGORITHM_MASK = + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT | + VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT, + + VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaPoolCreateFlagBits; +typedef VkFlags VmaPoolCreateFlags; + +/** \brief Describes parameter of created #VmaPool. +*/ +typedef struct VmaPoolCreateInfo { + /** \brief Vulkan memory type index to allocate this pool from. + */ + uint32_t memoryTypeIndex; + /** \brief Use combination of #VmaPoolCreateFlagBits. + */ + VmaPoolCreateFlags flags; + /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. + + Specify nonzero to set explicit, constant size of memory blocks used by this + pool. + + Leave 0 to use default and let the library manage block sizes automatically. + Sizes of particular blocks may vary. + */ + VkDeviceSize blockSize; + /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. + + Set to 0 to have no preallocated blocks and allow the pool be completely empty. + */ + size_t minBlockCount; + /** \brief Maximum number of blocks that can be allocated in this pool. Optional. + + Set to 0 to use default, which is `SIZE_MAX`, which means no limit. + + Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated + throughout whole lifetime of this pool. + */ + size_t maxBlockCount; + /** \brief Maximum number of additional frames that are in use at the same time as current frame. + + This value is used only when you make allocations with + #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become + lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. + + For example, if you double-buffer your command buffers, so resources used for + rendering in previous frame may still be in use by the GPU at the moment you + allocate resources needed for the current frame, set this value to 1. + + If you want to allow any allocations other than used in the current frame to + become lost, set this value to 0. + */ + uint32_t frameInUseCount; +} VmaPoolCreateInfo; + +/** \brief Describes parameter of existing #VmaPool. +*/ +typedef struct VmaPoolStats { + /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes. + */ + VkDeviceSize size; + /** \brief Total number of bytes in the pool not used by any #VmaAllocation. + */ + VkDeviceSize unusedSize; + /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost. + */ + size_t allocationCount; + /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation. + */ + size_t unusedRangeCount; + /** \brief Size of the largest continuous free memory region available for new allocation. + + Making a new allocation of that size is not guaranteed to succeed because of + possible additional margin required to respect alignment and buffer/image + granularity. + */ + VkDeviceSize unusedRangeSizeMax; + /** \brief Number of `VkDeviceMemory` blocks allocated for this pool. + */ + size_t blockCount; +} VmaPoolStats; + +/** \brief Allocates Vulkan device memory and creates #VmaPool object. + +@param allocator Allocator object. +@param pCreateInfo Parameters of pool to create. +@param[out] pPool Handle to created pool. +*/ +VkResult vmaCreatePool( + VmaAllocator allocator, + const VmaPoolCreateInfo *pCreateInfo, + VmaPool *pPool); + +/** \brief Destroys #VmaPool object and frees Vulkan device memory. +*/ +void vmaDestroyPool( + VmaAllocator allocator, + VmaPool pool); + +/** \brief Retrieves statistics of existing #VmaPool object. + +@param allocator Allocator object. +@param pool Pool object. +@param[out] pPoolStats Statistics of specified pool. +*/ +void vmaGetPoolStats( + VmaAllocator allocator, + VmaPool pool, + VmaPoolStats *pPoolStats); + +/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now. + +@param allocator Allocator object. +@param pool Pool. +@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information. +*/ +void vmaMakePoolAllocationsLost( + VmaAllocator allocator, + VmaPool pool, + size_t *pLostAllocationCount); + +/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. + +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + +Possible return values: + +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VkResult vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool); + +/** \struct VmaAllocation +\brief Represents single memory allocation. + +It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type +plus unique offset. + +There are multiple ways to create such object. +You need to fill structure VmaAllocationCreateInfo. +For more information see [Choosing memory type](@ref choosing_memory_type). + +Although the library provides convenience functions that create Vulkan buffer or image, +allocate memory for it and bind them together, +binding of the allocation to a buffer or an image is out of scope of the allocation itself. +Allocation object can exist without buffer/image bound, +binding can be done manually by the user, and destruction of it can be done +independently of destruction of the allocation. + +The object also remembers its size and some other information. +To retrieve this information, use function vmaGetAllocationInfo() and inspect +returned structure VmaAllocationInfo. + +Some kinds allocations can be in lost state. +For more information, see [Lost allocations](@ref lost_allocations). +*/ +VK_DEFINE_HANDLE(VmaAllocation) + +/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). +*/ +typedef struct VmaAllocationInfo { + /** \brief Memory type index that this allocation was allocated from. + + It never changes. + */ + uint32_t memoryType; + /** \brief Handle to Vulkan memory object. + + Same memory object can be shared by multiple allocations. + + It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. + + If the allocation is lost, it is equal to `VK_NULL_HANDLE`. + */ + VkDeviceMemory deviceMemory; + /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation. + + It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. + */ + VkDeviceSize offset; + /** \brief Size of this allocation, in bytes. + + It never changes, unless allocation is lost. + */ + VkDeviceSize size; + /** \brief Pointer to the beginning of this allocation as mapped data. + + If the allocation hasn't been mapped using vmaMapMemory() and hasn't been + created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null. + + It can change after call to vmaMapMemory(), vmaUnmapMemory(). + It can also change after call to vmaDefragment() if this allocation is passed to the function. + */ + void *pMappedData; + /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). + + It can change after call to vmaSetAllocationUserData() for this allocation. + */ + void *pUserData; +} VmaAllocationInfo; + +/** \brief General purpose memory allocation. + +@param[out] pAllocation Handle to allocated memory. +@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + +It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), +vmaCreateBuffer(), vmaCreateImage() instead whenever possible. +*/ +VkResult vmaAllocateMemory( + VmaAllocator allocator, + const VkMemoryRequirements *pVkMemoryRequirements, + const VmaAllocationCreateInfo *pCreateInfo, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo); + +/** \brief General purpose memory allocation for multiple allocation objects at once. + +@param allocator Allocator object. +@param pVkMemoryRequirements Memory requirements for each allocation. +@param pCreateInfo Creation parameters for each alloction. +@param allocationCount Number of allocations to make. +@param[out] pAllocations Pointer to array that will be filled with handles to created allocations. +@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. + +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + +Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. +It is just a general purpose allocation function able to make multiple allocations at once. +It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. + +All allocations are made using same parameters. All of them are created out of the same memory pool and type. +If any allocation fails, all allocations already made within this function call are also freed, so that when +returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. +*/ +VkResult vmaAllocateMemoryPages( + VmaAllocator allocator, + const VkMemoryRequirements *pVkMemoryRequirements, + const VmaAllocationCreateInfo *pCreateInfo, + size_t allocationCount, + VmaAllocation *pAllocations, + VmaAllocationInfo *pAllocationInfo); + +/** +@param[out] pAllocation Handle to allocated memory. +@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +You should free the memory using vmaFreeMemory(). +*/ +VkResult vmaAllocateMemoryForBuffer( + VmaAllocator allocator, + VkBuffer buffer, + const VmaAllocationCreateInfo *pCreateInfo, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo); + +/// Function similar to vmaAllocateMemoryForBuffer(). +VkResult vmaAllocateMemoryForImage( + VmaAllocator allocator, + VkImage image, + const VmaAllocationCreateInfo *pCreateInfo, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo); + +/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). + +Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. +*/ +void vmaFreeMemory( + VmaAllocator allocator, + VmaAllocation allocation); + +/** \brief Frees memory and destroys multiple allocations. + +Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. +It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), +vmaAllocateMemoryPages() and other functions. +It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. + +Allocations in `pAllocations` array can come from any memory pools and types. +Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. +*/ +void vmaFreeMemoryPages( + VmaAllocator allocator, + size_t allocationCount, + VmaAllocation *pAllocations); + +/** \brief Tries to resize an allocation in place, if there is enough free memory after it. + +Tries to change allocation's size without moving or reallocating it. +You can both shrink and grow allocation size. +When growing, it succeeds only when the allocation belongs to a memory block with enough +free space after it. + +Returns `VK_SUCCESS` if allocation's size has been successfully changed. +Returns `VK_ERROR_OUT_OF_POOL_MEMORY` if allocation's size could not be changed. + +After successful call to this function, VmaAllocationInfo::size of this allocation changes. +All other parameters stay the same: memory pool and type, alignment, offset, mapped pointer. + +- Calling this function on allocation that is in lost state fails with result `VK_ERROR_VALIDATION_FAILED_EXT`. +- Calling this function with `newSize` same as current allocation size does nothing and returns `VK_SUCCESS`. +- Resizing dedicated allocations, as well as allocations created in pools that use linear + or buddy algorithm, is not supported. + The function returns `VK_ERROR_FEATURE_NOT_PRESENT` in such cases. + Support may be added in the future. +*/ +VkResult vmaResizeAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize newSize); + +/** \brief Returns current information about specified allocation and atomically marks it as used in current frame. + +Current paramters of given allocation are returned in `pAllocationInfo`. + +This function also atomically "touches" allocation - marks it as used in current frame, +just like vmaTouchAllocation(). +If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`. + +Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient, +you can avoid calling it too often. + +- You can retrieve same VmaAllocationInfo structure while creating your resource, from function + vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change + (e.g. due to defragmentation or allocation becoming lost). +- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster. +*/ +void vmaGetAllocationInfo( + VmaAllocator allocator, + VmaAllocation allocation, + VmaAllocationInfo *pAllocationInfo); + +/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame. + +If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, +this function returns `VK_TRUE` if it's not in lost state, so it can still be used. +It then also atomically "touches" the allocation - marks it as used in current frame, +so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames. + +If the allocation is in lost state, the function returns `VK_FALSE`. +Memory of such allocation, as well as buffer or image bound to it, should not be used. +Lost allocation and the buffer/image still need to be destroyed. + +If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, +this function always returns `VK_TRUE`. +*/ +VkBool32 vmaTouchAllocation( + VmaAllocator allocator, + VmaAllocation allocation); + +/** \brief Sets pUserData in given allocation to new value. + +If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT, +pUserData must be either null, or pointer to a null-terminated string. The function +makes local copy of the string and sets it as allocation's `pUserData`. String +passed as pUserData doesn't need to be valid for whole lifetime of the allocation - +you can free it after this call. String previously pointed by allocation's +pUserData is freed from memory. + +If the flag was not used, the value of pointer `pUserData` is just copied to +allocation's `pUserData`. It is opaque, so you can use it however you want - e.g. +as a pointer, ordinal number or some handle to you own data. +*/ +void vmaSetAllocationUserData( + VmaAllocator allocator, + VmaAllocation allocation, + void *pUserData); + +/** \brief Creates new allocation that is in lost state from the beginning. + +It can be useful if you need a dummy, non-null allocation. + +You still need to destroy created object using vmaFreeMemory(). + +Returned allocation is not tied to any specific memory pool or memory type and +not bound to any image or buffer. It has size = 0. It cannot be turned into +a real, non-empty allocation. +*/ +void vmaCreateLostAllocation( + VmaAllocator allocator, + VmaAllocation *pAllocation); + +/** \brief Maps memory represented by given allocation and returns pointer to it. + +Maps memory represented by given allocation to make it accessible to CPU code. +When succeeded, `*ppData` contains pointer to first byte of this memory. +If the allocation is part of bigger `VkDeviceMemory` block, the pointer is +correctly offseted to the beginning of region assigned to this particular +allocation. + +Mapping is internally reference-counted and synchronized, so despite raw Vulkan +function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` +multiple times simultaneously, it is safe to call this function on allocations +assigned to the same memory block. Actual Vulkan memory will be mapped on first +mapping and unmapped on last unmapping. + +If the function succeeded, you must call vmaUnmapMemory() to unmap the +allocation when mapping is no longer needed or before freeing the allocation, at +the latest. + +It also safe to call this function multiple times on the same allocation. You +must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). + +It is also safe to call this function on allocation created with +#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. +You must still call vmaUnmapMemory() same number of times as you called +vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the +"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. + +This function fails when used on allocation made in memory type that is not +`HOST_VISIBLE`. + +This function always fails when called for allocation that was created with +#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be +mapped. +*/ +VkResult vmaMapMemory( + VmaAllocator allocator, + VmaAllocation allocation, + void **ppData); + +/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). + +For details, see description of vmaMapMemory(). +*/ +void vmaUnmapMemory( + VmaAllocator allocator, + VmaAllocation allocation); + +/** \brief Flushes memory of given allocation. + +Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. + +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. + +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! +*/ +void vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); + +/** \brief Invalidates memory of given allocation. + +Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. + +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. + +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! +*/ +void vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); + +/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. + +@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. + +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + +Possible return values: + +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VkResult vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits); + +/** \struct VmaDefragmentationContext +\brief Represents Opaque object that represents started defragmentation process. + +Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it. +Call function vmaDefragmentationEnd() to destroy it. +*/ +VK_DEFINE_HANDLE(VmaDefragmentationContext) + +/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use. +typedef enum VmaDefragmentationFlagBits { + VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaDefragmentationFlagBits; +typedef VkFlags VmaDefragmentationFlags; + +/** \brief Parameters for defragmentation. + +To be used with function vmaDefragmentationBegin(). +*/ +typedef struct VmaDefragmentationInfo2 { + /** \brief Reserved for future use. Should be 0. + */ + VmaDefragmentationFlags flags; + /** \brief Number of allocations in `pAllocations` array. + */ + uint32_t allocationCount; + /** \brief Pointer to array of allocations that can be defragmented. + + The array should have `allocationCount` elements. + The array should not contain nulls. + Elements in the array should be unique - same allocation cannot occur twice. + It is safe to pass allocations that are in the lost state - they are ignored. + All allocations not present in this array are considered non-moveable during this defragmentation. + */ + VmaAllocation *pAllocations; + /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation. + + The array should have `allocationCount` elements. + You can pass null if you are not interested in this information. + */ + VkBool32 *pAllocationsChanged; + /** \brief Numer of pools in `pPools` array. + */ + uint32_t poolCount; + /** \brief Either null or pointer to array of pools to be defragmented. + + All the allocations in the specified pools can be moved during defragmentation + and there is no way to check if they were really moved as in `pAllocationsChanged`, + so you must query all the allocations in all these pools for new `VkDeviceMemory` + and offset using vmaGetAllocationInfo() if you might need to recreate buffers + and images bound to them. + + The array should have `poolCount` elements. + The array should not contain nulls. + Elements in the array should be unique - same pool cannot occur twice. + + Using this array is equivalent to specifying all allocations from the pools in `pAllocations`. + It might be more efficient. + */ + VmaPool *pPools; + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`. + + `VK_WHOLE_SIZE` means no limit. + */ + VkDeviceSize maxCpuBytesToMove; + /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`. + + `UINT32_MAX` means no limit. + */ + uint32_t maxCpuAllocationsToMove; + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`. + + `VK_WHOLE_SIZE` means no limit. + */ + VkDeviceSize maxGpuBytesToMove; + /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`. + + `UINT32_MAX` means no limit. + */ + uint32_t maxGpuAllocationsToMove; + /** \brief Optional. Command buffer where GPU copy commands will be posted. + + If not null, it must be a valid command buffer handle that supports Transfer queue type. + It must be in the recording state and outside of a render pass instance. + You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd(). + + Passing null means that only CPU defragmentation will be performed. + */ + VkCommandBuffer commandBuffer; +} VmaDefragmentationInfo2; + +/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment(). + +\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. +*/ +typedef struct VmaDefragmentationInfo { + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places. + + Default is `VK_WHOLE_SIZE`, which means no limit. + */ + VkDeviceSize maxBytesToMove; + /** \brief Maximum number of allocations that can be moved to different place. + + Default is `UINT32_MAX`, which means no limit. + */ + uint32_t maxAllocationsToMove; +} VmaDefragmentationInfo; + +/** \brief Statistics returned by function vmaDefragment(). */ +typedef struct VmaDefragmentationStats { + /// Total number of bytes that have been copied while moving allocations to different places. + VkDeviceSize bytesMoved; + /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. + VkDeviceSize bytesFreed; + /// Number of allocations that have been moved to different places. + uint32_t allocationsMoved; + /// Number of empty `VkDeviceMemory` objects that have been released to the system. + uint32_t deviceMemoryBlocksFreed; +} VmaDefragmentationStats; + +/** \brief Begins defragmentation process. + +@param allocator Allocator object. +@param pInfo Structure filled with parameters of defragmentation. +@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information. +@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation. +@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error. + +Use this function instead of old, deprecated vmaDefragment(). + +Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd(): + +- You should not use any of allocations passed as `pInfo->pAllocations` or + any allocations that belong to pools passed as `pInfo->pPools`, + including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access + their data. +- Some mutexes protecting internal data structures may be locked, so trying to + make or free any allocations, bind buffers or images, map memory, or launch + another simultaneous defragmentation in between may cause stall (when done on + another thread) or deadlock (when done on the same thread), unless you are + 100% sure that defragmented allocations are in different pools. +- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined. + They become valid after call to vmaDefragmentationEnd(). +- If `pInfo->commandBuffer` is not null, you must submit that command buffer + and make sure it finished execution before calling vmaDefragmentationEnd(). + +For more information and important limitations regarding defragmentation, see documentation chapter: +[Defragmentation](@ref defragmentation). +*/ +VkResult vmaDefragmentationBegin( + VmaAllocator allocator, + const VmaDefragmentationInfo2 *pInfo, + VmaDefragmentationStats *pStats, + VmaDefragmentationContext *pContext); + +/** \brief Ends defragmentation process. + +Use this function to finish defragmentation started by vmaDefragmentationBegin(). +It is safe to pass `context == null`. The function then does nothing. +*/ +VkResult vmaDefragmentationEnd( + VmaAllocator allocator, + VmaDefragmentationContext context); + +/** \brief Deprecated. Compacts memory by moving allocations. + +@param pAllocations Array of allocations that can be moved during this compation. +@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays. +@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information. +@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values. +@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information. +@return `VK_SUCCESS` if completed, negative error code in case of error. + +\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. + +This function works by moving allocations to different places (different +`VkDeviceMemory` objects and/or different offsets) in order to optimize memory +usage. Only allocations that are in `pAllocations` array can be moved. All other +allocations are considered nonmovable in this call. Basic rules: + +- Only allocations made in memory types that have + `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` + flags can be compacted. You may pass other allocations but it makes no sense - + these will never be moved. +- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or + #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations + passed to this function that come from such pools are ignored. +- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or + created as dedicated allocations for any other reason are also ignored. +- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT + flag can be compacted. If not persistently mapped, memory will be mapped + temporarily inside this function if needed. +- You must not pass same #VmaAllocation object multiple times in `pAllocations` array. + +The function also frees empty `VkDeviceMemory` blocks. + +Warning: This function may be time-consuming, so you shouldn't call it too often +(like after every resource creation/destruction). +You can call it on special occasions (like when reloading a game level or +when you just destroyed a lot of objects). Calling it every frame may be OK, but +you should measure that on your platform. + +For more information, see [Defragmentation](@ref defragmentation) chapter. +*/ +VkResult vmaDefragment( + VmaAllocator allocator, + VmaAllocation *pAllocations, + size_t allocationCount, + VkBool32 *pAllocationsChanged, + const VmaDefragmentationInfo *pDefragmentationInfo, + VmaDefragmentationStats *pDefragmentationStats); + +/** \brief Binds buffer to allocation. + +Binds specified buffer to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create a buffer, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindBufferMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). + +It is recommended to use function vmaCreateBuffer() instead of this one. +*/ +VkResult vmaBindBufferMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkBuffer buffer); + +/** \brief Binds image to allocation. + +Binds specified image to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create an image, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindImageMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). + +It is recommended to use function vmaCreateImage() instead of this one. +*/ +VkResult vmaBindImageMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkImage image); + +/** +@param[out] pBuffer Buffer that was created. +@param[out] pAllocation Allocation that was created. +@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +This function automatically: + +-# Creates buffer. +-# Allocates appropriate memory for it. +-# Binds the buffer with the memory. + +If any of these operations fail, buffer and allocation are not created, +returned value is negative error code, *pBuffer and *pAllocation are null. + +If the function succeeded, you must destroy both buffer and allocation when you +no longer need them using either convenience function vmaDestroyBuffer() or +separately, using `vkDestroyBuffer()` and vmaFreeMemory(). + +If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, +VK_KHR_dedicated_allocation extension is used internally to query driver whether +it requires or prefers the new buffer to have dedicated allocation. If yes, +and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null +and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated +allocation for this buffer, just like when using +VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +*/ +VkResult vmaCreateBuffer( + VmaAllocator allocator, + const VkBufferCreateInfo *pBufferCreateInfo, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + VkBuffer *pBuffer, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo); + +/** \brief Destroys Vulkan buffer and frees allocated memory. + +This is just a convenience function equivalent to: + +\code +vkDestroyBuffer(device, buffer, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode + +It it safe to pass null as buffer and/or allocation. +*/ +void vmaDestroyBuffer( + VmaAllocator allocator, + VkBuffer buffer, + VmaAllocation allocation); + +/// Function similar to vmaCreateBuffer(). +VkResult vmaCreateImage( + VmaAllocator allocator, + const VkImageCreateInfo *pImageCreateInfo, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + VkImage *pImage, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo); + +/** \brief Destroys Vulkan image and frees allocated memory. + +This is just a convenience function equivalent to: + +\code +vkDestroyImage(device, image, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode + +It it safe to pass null as image and/or allocation. +*/ +void vmaDestroyImage( + VmaAllocator allocator, + VkImage image, + VmaAllocation allocation); + +#ifdef __cplusplus +} +#endif + +#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H + +// For Visual Studio IntelliSense. +#if defined(__cplusplus) && defined(__INTELLISENSE__) +#define VMA_IMPLEMENTATION +#endif + +#ifdef VMA_IMPLEMENTATION +#undef VMA_IMPLEMENTATION + +#include <cstdint> +#include <cstdlib> +#include <cstring> + +/******************************************************************************* +CONFIGURATION SECTION + +Define some of these macros before each #include of this header or change them +here if you need other then default behavior depending on your environment. +*/ + +/* +Define this macro to 1 to make the library fetch pointers to Vulkan functions +internally, like: + + vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; + +Define to 0 if you are going to provide you own pointers to Vulkan functions via +VmaAllocatorCreateInfo::pVulkanFunctions. +*/ +#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) +#define VMA_STATIC_VULKAN_FUNCTIONS 1 +#endif + +// Define this macro to 1 to make the library use STL containers instead of its own implementation. +//#define VMA_USE_STL_CONTAINERS 1 + +/* Set this macro to 1 to make the library including and using STL containers: +std::pair, std::vector, std::list, std::unordered_map. + +Set it to 0 or undefined to make the library using its own implementation of +the containers. +*/ +#if VMA_USE_STL_CONTAINERS +#define VMA_USE_STL_VECTOR 1 +#define VMA_USE_STL_UNORDERED_MAP 1 +#define VMA_USE_STL_LIST 1 +#endif + +#ifndef VMA_USE_STL_SHARED_MUTEX +// Compiler conforms to C++17. +#if __cplusplus >= 201703L +#define VMA_USE_STL_SHARED_MUTEX 1 +// Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus +// Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. +// See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/ +#elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L +#define VMA_USE_STL_SHARED_MUTEX 1 +#else +#define VMA_USE_STL_SHARED_MUTEX 0 +#endif +#endif + +/* +THESE INCLUDES ARE NOT ENABLED BY DEFAULT. +Library has its own container implementation. +*/ +#if VMA_USE_STL_VECTOR +#include <vector> +#endif + +#if VMA_USE_STL_UNORDERED_MAP +#include <unordered_map> +#endif + +#if VMA_USE_STL_LIST +#include <list> +#endif + +/* +Following headers are used in this CONFIGURATION section only, so feel free to +remove them if not needed. +*/ +#include <algorithm> // for min, max +#include <cassert> // for assert +#include <mutex> + +#ifndef VMA_NULL +// Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. +#define VMA_NULL nullptr +#endif + +#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) +#include <cstdlib> +void *aligned_alloc(size_t alignment, size_t size) { + // alignment must be >= sizeof(void*) + if (alignment < sizeof(void *)) { + alignment = sizeof(void *); + } + + return memalign(alignment, size); +} +#elif defined(__APPLE__) || defined(__ANDROID__) +#include <cstdlib> +void *aligned_alloc(size_t alignment, size_t size) { + // alignment must be >= sizeof(void*) + if (alignment < sizeof(void *)) { + alignment = sizeof(void *); + } + + void *pointer; + if (posix_memalign(&pointer, alignment, size) == 0) + return pointer; + return VMA_NULL; +} +#endif + +// If your compiler is not compatible with C++11 and definition of +// aligned_alloc() function is missing, uncommeting following line may help: + +//#include <malloc.h> + +// Normal assert to check for programmer's errors, especially in Debug configuration. +#ifndef VMA_ASSERT +#ifdef _DEBUG +#define VMA_ASSERT(expr) assert(expr) +#else +#define VMA_ASSERT(expr) +#endif +#endif + +// Assert that will be called very often, like inside data structures e.g. operator[]. +// Making it non-empty can make program slow. +#ifndef VMA_HEAVY_ASSERT +#ifdef _DEBUG +#define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) +#else +#define VMA_HEAVY_ASSERT(expr) +#endif +#endif + +#ifndef VMA_ALIGN_OF +#define VMA_ALIGN_OF(type) (__alignof(type)) +#endif + +#ifndef VMA_SYSTEM_ALIGNED_MALLOC +#if defined(_WIN32) +#define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment))) +#else +#define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size))) +#endif +#endif + +#ifndef VMA_SYSTEM_FREE +#if defined(_WIN32) +#define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr) +#else +#define VMA_SYSTEM_FREE(ptr) free(ptr) +#endif +#endif + +#ifndef VMA_MIN +#define VMA_MIN(v1, v2) (std::min((v1), (v2))) +#endif + +#ifndef VMA_MAX +#define VMA_MAX(v1, v2) (std::max((v1), (v2))) +#endif + +#ifndef VMA_SWAP +#define VMA_SWAP(v1, v2) std::swap((v1), (v2)) +#endif + +#ifndef VMA_SORT +#define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) +#endif + +#ifndef VMA_DEBUG_LOG +#define VMA_DEBUG_LOG(format, ...) +/* + #define VMA_DEBUG_LOG(format, ...) do { \ + printf(format, __VA_ARGS__); \ + printf("\n"); \ + } while(false) + */ +#endif + +// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. +#if VMA_STATS_STRING_ENABLED +static inline void VmaUint32ToStr(char *outStr, size_t strLen, uint32_t num) { + snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num)); +} +static inline void VmaUint64ToStr(char *outStr, size_t strLen, uint64_t num) { + snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num)); +} +static inline void VmaPtrToStr(char *outStr, size_t strLen, const void *ptr) { + snprintf(outStr, strLen, "%p", ptr); +} +#endif + +#ifndef VMA_MUTEX +class VmaMutex { +public: + void Lock() { m_Mutex.lock(); } + void Unlock() { m_Mutex.unlock(); } + +private: + std::mutex m_Mutex; +}; +#define VMA_MUTEX VmaMutex +#endif + +// Read-write mutex, where "read" is shared access, "write" is exclusive access. +#ifndef VMA_RW_MUTEX +#if VMA_USE_STL_SHARED_MUTEX +// Use std::shared_mutex from C++17. +#include <shared_mutex> +class VmaRWMutex { +public: + void LockRead() { m_Mutex.lock_shared(); } + void UnlockRead() { m_Mutex.unlock_shared(); } + void LockWrite() { m_Mutex.lock(); } + void UnlockWrite() { m_Mutex.unlock(); } + +private: + std::shared_mutex m_Mutex; +}; +#define VMA_RW_MUTEX VmaRWMutex +#elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 +// Use SRWLOCK from WinAPI. +// Minimum supported client = Windows Vista, server = Windows Server 2008. +class VmaRWMutex { +public: + VmaRWMutex() { InitializeSRWLock(&m_Lock); } + void LockRead() { AcquireSRWLockShared(&m_Lock); } + void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } + void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } + void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } + +private: + SRWLOCK m_Lock; +}; +#define VMA_RW_MUTEX VmaRWMutex +#else +// Less efficient fallback: Use normal mutex. +class VmaRWMutex { +public: + void LockRead() { m_Mutex.Lock(); } + void UnlockRead() { m_Mutex.Unlock(); } + void LockWrite() { m_Mutex.Lock(); } + void UnlockWrite() { m_Mutex.Unlock(); } + +private: + VMA_MUTEX m_Mutex; +}; +#define VMA_RW_MUTEX VmaRWMutex +#endif // #if VMA_USE_STL_SHARED_MUTEX +#endif // #ifndef VMA_RW_MUTEX + +/* +If providing your own implementation, you need to implement a subset of std::atomic: + +- Constructor(uint32_t desired) +- uint32_t load() const +- void store(uint32_t desired) +- bool compare_exchange_weak(uint32_t& expected, uint32_t desired) +*/ +#ifndef VMA_ATOMIC_UINT32 +#include <atomic> +#define VMA_ATOMIC_UINT32 std::atomic<uint32_t> +#endif + +#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY +/** + Every allocation will have its own memory block. + Define to 1 for debugging purposes only. + */ +#define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) +#endif + +#ifndef VMA_DEBUG_ALIGNMENT +/** + Minimum alignment of all allocations, in bytes. + Set to more than 1 for debugging purposes only. Must be power of two. + */ +#define VMA_DEBUG_ALIGNMENT (1) +#endif + +#ifndef VMA_DEBUG_MARGIN +/** + Minimum margin before and after every allocation, in bytes. + Set nonzero for debugging purposes only. + */ +#define VMA_DEBUG_MARGIN (0) +#endif + +#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS +/** + Define this macro to 1 to automatically fill new allocations and destroyed + allocations with some bit pattern. + */ +#define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) +#endif + +#ifndef VMA_DEBUG_DETECT_CORRUPTION +/** + Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to + enable writing magic value to the margin before and after every allocation and + validating it, so that memory corruptions (out-of-bounds writes) are detected. + */ +#define VMA_DEBUG_DETECT_CORRUPTION (0) +#endif + +#ifndef VMA_DEBUG_GLOBAL_MUTEX +/** + Set this to 1 for debugging purposes only, to enable single mutex protecting all + entry calls to the library. Can be useful for debugging multithreading issues. + */ +#define VMA_DEBUG_GLOBAL_MUTEX (0) +#endif + +#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY +/** + Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. + Set to more than 1 for debugging purposes only. Must be power of two. + */ +#define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) +#endif + +#ifndef VMA_SMALL_HEAP_MAX_SIZE +/// Maximum size of a memory heap in Vulkan to consider it "small". +#define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) +#endif + +#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE +/// Default size of a block allocated as single VkDeviceMemory from a "large" heap. +#define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) +#endif + +#ifndef VMA_CLASS_NO_COPY +#define VMA_CLASS_NO_COPY(className) \ +private: \ + className(const className &) = delete; \ + className &operator=(const className &) = delete; +#endif + +static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX; + +// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. +static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; + +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; + +/******************************************************************************* +END OF CONFIGURATION +*/ + +static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; + +static VkAllocationCallbacks VmaEmptyAllocationCallbacks = { + VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL +}; + +// Returns number of bits set to 1 in (v). +static inline uint32_t VmaCountBitsSet(uint32_t v) { + uint32_t c = v - ((v >> 1) & 0x55555555); + c = ((c >> 2) & 0x33333333) + (c & 0x33333333); + c = ((c >> 4) + c) & 0x0F0F0F0F; + c = ((c >> 8) + c) & 0x00FF00FF; + c = ((c >> 16) + c) & 0x0000FFFF; + return c; +} + +// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. +// Use types like uint32_t, uint64_t as T. +template <typename T> +static inline T VmaAlignUp(T val, T align) { + return (val + align - 1) / align * align; +} +// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. +// Use types like uint32_t, uint64_t as T. +template <typename T> +static inline T VmaAlignDown(T val, T align) { + return val / align * align; +} + +// Division with mathematical rounding to nearest number. +template <typename T> +static inline T VmaRoundDiv(T x, T y) { + return (x + (y / (T)2)) / y; +} + +/* +Returns true if given number is a power of two. +T must be unsigned integer number or signed integer but always nonnegative. +For 0 returns true. +*/ +template <typename T> +inline bool VmaIsPow2(T x) { + return (x & (x - 1)) == 0; +} + +// Returns smallest power of 2 greater or equal to v. +static inline uint32_t VmaNextPow2(uint32_t v) { + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v++; + return v; +} +static inline uint64_t VmaNextPow2(uint64_t v) { + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v++; + return v; +} + +// Returns largest power of 2 less or equal to v. +static inline uint32_t VmaPrevPow2(uint32_t v) { + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v = v ^ (v >> 1); + return v; +} +static inline uint64_t VmaPrevPow2(uint64_t v) { + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v = v ^ (v >> 1); + return v; +} + +static inline bool VmaStrIsEmpty(const char *pStr) { + return pStr == VMA_NULL || *pStr == '\0'; +} + +#if VMA_STATS_STRING_ENABLED + +static const char *VmaAlgorithmToStr(uint32_t algorithm) { + switch (algorithm) { + case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: + return "Linear"; + case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: + return "Buddy"; + case 0: + return "Default"; + default: + VMA_ASSERT(0); + return ""; + } +} + +#endif // #if VMA_STATS_STRING_ENABLED + +#ifndef VMA_SORT + +template <typename Iterator, typename Compare> +Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) { + Iterator centerValue = end; + --centerValue; + Iterator insertIndex = beg; + for (Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) { + if (cmp(*memTypeIndex, *centerValue)) { + if (insertIndex != memTypeIndex) { + VMA_SWAP(*memTypeIndex, *insertIndex); + } + ++insertIndex; + } + } + if (insertIndex != centerValue) { + VMA_SWAP(*insertIndex, *centerValue); + } + return insertIndex; +} + +template <typename Iterator, typename Compare> +void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) { + if (beg < end) { + Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp); + VmaQuickSort<Iterator, Compare>(beg, it, cmp); + VmaQuickSort<Iterator, Compare>(it + 1, end, cmp); + } +} + +#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp) + +#endif // #ifndef VMA_SORT + +/* +Returns true if two memory blocks occupy overlapping pages. +ResourceA must be in less memory offset than ResourceB. + +Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" +chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". +*/ +static inline bool VmaBlocksOnSamePage( + VkDeviceSize resourceAOffset, + VkDeviceSize resourceASize, + VkDeviceSize resourceBOffset, + VkDeviceSize pageSize) { + VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); + VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; + VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); + VkDeviceSize resourceBStart = resourceBOffset; + VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); + return resourceAEndPage == resourceBStartPage; +} + +enum VmaSuballocationType { + VMA_SUBALLOCATION_TYPE_FREE = 0, + VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, + VMA_SUBALLOCATION_TYPE_BUFFER = 2, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, + VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF +}; + +/* +Returns true if given suballocation types could conflict and must respect +VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer +or linear image and another one is optimal image. If type is unknown, behave +conservatively. +*/ +static inline bool VmaIsBufferImageGranularityConflict( + VmaSuballocationType suballocType1, + VmaSuballocationType suballocType2) { + if (suballocType1 > suballocType2) { + VMA_SWAP(suballocType1, suballocType2); + } + + switch (suballocType1) { + case VMA_SUBALLOCATION_TYPE_FREE: + return false; + case VMA_SUBALLOCATION_TYPE_UNKNOWN: + return true; + case VMA_SUBALLOCATION_TYPE_BUFFER: + return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: + return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: + return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: + return false; + default: + VMA_ASSERT(0); + return true; + } +} + +static void VmaWriteMagicValue(void *pData, VkDeviceSize offset) { + uint32_t *pDst = (uint32_t *)((char *)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for (size_t i = 0; i < numberCount; ++i, ++pDst) { + *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; + } +} + +static bool VmaValidateMagicValue(const void *pData, VkDeviceSize offset) { + const uint32_t *pSrc = (const uint32_t *)((const char *)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for (size_t i = 0; i < numberCount; ++i, ++pSrc) { + if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) { + return false; + } + } + return true; +} + +/* +Fills structure with parameters of an example buffer to be used for transfers +during GPU memory defragmentation. +*/ +static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo &outBufCreateInfo) { + memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); + outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; + outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. +} + +// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). +struct VmaMutexLock { + VMA_CLASS_NO_COPY(VmaMutexLock) +public: + VmaMutexLock(VMA_MUTEX &mutex, bool useMutex = true) : + m_pMutex(useMutex ? &mutex : VMA_NULL) { + if (m_pMutex) { + m_pMutex->Lock(); + } + } + ~VmaMutexLock() { + if (m_pMutex) { + m_pMutex->Unlock(); + } + } + +private: + VMA_MUTEX *m_pMutex; +}; + +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. +struct VmaMutexLockRead { + VMA_CLASS_NO_COPY(VmaMutexLockRead) +public: + VmaMutexLockRead(VMA_RW_MUTEX &mutex, bool useMutex) : + m_pMutex(useMutex ? &mutex : VMA_NULL) { + if (m_pMutex) { + m_pMutex->LockRead(); + } + } + ~VmaMutexLockRead() { + if (m_pMutex) { + m_pMutex->UnlockRead(); + } + } + +private: + VMA_RW_MUTEX *m_pMutex; +}; + +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. +struct VmaMutexLockWrite { + VMA_CLASS_NO_COPY(VmaMutexLockWrite) +public: + VmaMutexLockWrite(VMA_RW_MUTEX &mutex, bool useMutex) : + m_pMutex(useMutex ? &mutex : VMA_NULL) { + if (m_pMutex) { + m_pMutex->LockWrite(); + } + } + ~VmaMutexLockWrite() { + if (m_pMutex) { + m_pMutex->UnlockWrite(); + } + } + +private: + VMA_RW_MUTEX *m_pMutex; +}; + +#if VMA_DEBUG_GLOBAL_MUTEX +static VMA_MUTEX gDebugGlobalMutex; +#define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); +#else +#define VMA_DEBUG_GLOBAL_MUTEX_LOCK +#endif + +// Minimum size of a free suballocation to register it in the free suballocation collection. +static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16; + +/* +Performs binary search and returns iterator to first element that is greater or +equal to (key), according to comparison (cmp). + +Cmp should return true if first argument is less than second argument. + +Returned value is the found element, if present in the collection or place where +new element with value (key) should be inserted. +*/ +template <typename CmpLess, typename IterT, typename KeyT> +static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpLess cmp) { + size_t down = 0, up = (end - beg); + while (down < up) { + const size_t mid = (down + up) / 2; + if (cmp(*(beg + mid), key)) { + down = mid + 1; + } else { + up = mid; + } + } + return beg + down; +} + +/* +Returns true if all pointers in the array are not-null and unique. +Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. +T must be pointer type, e.g. VmaAllocation, VmaPool. +*/ +template <typename T> +static bool VmaValidatePointerArray(uint32_t count, const T *arr) { + for (uint32_t i = 0; i < count; ++i) { + const T iPtr = arr[i]; + if (iPtr == VMA_NULL) { + return false; + } + for (uint32_t j = i + 1; j < count; ++j) { + if (iPtr == arr[j]) { + return false; + } + } + } + return true; +} + +//////////////////////////////////////////////////////////////////////////////// +// Memory allocation + +static void *VmaMalloc(const VkAllocationCallbacks *pAllocationCallbacks, size_t size, size_t alignment) { + if ((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnAllocation != VMA_NULL)) { + return (*pAllocationCallbacks->pfnAllocation)( + pAllocationCallbacks->pUserData, + size, + alignment, + VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); + } else { + return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); + } +} + +static void VmaFree(const VkAllocationCallbacks *pAllocationCallbacks, void *ptr) { + if ((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnFree != VMA_NULL)) { + (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); + } else { + VMA_SYSTEM_FREE(ptr); + } +} + +template <typename T> +static T *VmaAllocate(const VkAllocationCallbacks *pAllocationCallbacks) { + return (T *)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); +} + +template <typename T> +static T *VmaAllocateArray(const VkAllocationCallbacks *pAllocationCallbacks, size_t count) { + return (T *)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); +} + +#define vma_new(allocator, type) new (VmaAllocate<type>(allocator))(type) + +#define vma_new_array(allocator, type, count) new (VmaAllocateArray<type>((allocator), (count)))(type) + +template <typename T> +static void vma_delete(const VkAllocationCallbacks *pAllocationCallbacks, T *ptr) { + ptr->~T(); + VmaFree(pAllocationCallbacks, ptr); +} + +template <typename T> +static void vma_delete_array(const VkAllocationCallbacks *pAllocationCallbacks, T *ptr, size_t count) { + if (ptr != VMA_NULL) { + for (size_t i = count; i--;) { + ptr[i].~T(); + } + VmaFree(pAllocationCallbacks, ptr); + } +} + +// STL-compatible allocator. +template <typename T> +class VmaStlAllocator { +public: + const VkAllocationCallbacks *const m_pCallbacks; + typedef T value_type; + + VmaStlAllocator(const VkAllocationCallbacks *pCallbacks) : + m_pCallbacks(pCallbacks) {} + template <typename U> + VmaStlAllocator(const VmaStlAllocator<U> &src) : + m_pCallbacks(src.m_pCallbacks) {} + + T *allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); } + void deallocate(T *p, size_t n) { VmaFree(m_pCallbacks, p); } + + template <typename U> + bool operator==(const VmaStlAllocator<U> &rhs) const { + return m_pCallbacks == rhs.m_pCallbacks; + } + template <typename U> + bool operator!=(const VmaStlAllocator<U> &rhs) const { + return m_pCallbacks != rhs.m_pCallbacks; + } + + VmaStlAllocator &operator=(const VmaStlAllocator &x) = delete; +}; + +#if VMA_USE_STL_VECTOR + +#define VmaVector std::vector + +template <typename T, typename allocatorT> +static void VmaVectorInsert(std::vector<T, allocatorT> &vec, size_t index, const T &item) { + vec.insert(vec.begin() + index, item); +} + +template <typename T, typename allocatorT> +static void VmaVectorRemove(std::vector<T, allocatorT> &vec, size_t index) { + vec.erase(vec.begin() + index); +} + +#else // #if VMA_USE_STL_VECTOR + +/* Class with interface compatible with subset of std::vector. +T must be POD because constructors and destructors are not called and memcpy is +used for these objects. */ +template <typename T, typename AllocatorT> +class VmaVector { +public: + typedef T value_type; + + VmaVector(const AllocatorT &allocator) : + m_Allocator(allocator), + m_pArray(VMA_NULL), + m_Count(0), + m_Capacity(0) { + } + + VmaVector(size_t count, const AllocatorT &allocator) : + m_Allocator(allocator), + m_pArray(count ? (T *)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL), + m_Count(count), + m_Capacity(count) { + } + + VmaVector(const VmaVector<T, AllocatorT> &src) : + m_Allocator(src.m_Allocator), + m_pArray(src.m_Count ? (T *)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), + m_Count(src.m_Count), + m_Capacity(src.m_Count) { + if (m_Count != 0) { + memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); + } + } + + ~VmaVector() { + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + } + + VmaVector &operator=(const VmaVector<T, AllocatorT> &rhs) { + if (&rhs != this) { + resize(rhs.m_Count); + if (m_Count != 0) { + memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); + } + } + return *this; + } + + bool empty() const { return m_Count == 0; } + size_t size() const { return m_Count; } + T *data() { return m_pArray; } + const T *data() const { return m_pArray; } + + T &operator[](size_t index) { + VMA_HEAVY_ASSERT(index < m_Count); + return m_pArray[index]; + } + const T &operator[](size_t index) const { + VMA_HEAVY_ASSERT(index < m_Count); + return m_pArray[index]; + } + + T &front() { + VMA_HEAVY_ASSERT(m_Count > 0); + return m_pArray[0]; + } + const T &front() const { + VMA_HEAVY_ASSERT(m_Count > 0); + return m_pArray[0]; + } + T &back() { + VMA_HEAVY_ASSERT(m_Count > 0); + return m_pArray[m_Count - 1]; + } + const T &back() const { + VMA_HEAVY_ASSERT(m_Count > 0); + return m_pArray[m_Count - 1]; + } + + void reserve(size_t newCapacity, bool freeMemory = false) { + newCapacity = VMA_MAX(newCapacity, m_Count); + + if ((newCapacity < m_Capacity) && !freeMemory) { + newCapacity = m_Capacity; + } + + if (newCapacity != m_Capacity) { + T *const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL; + if (m_Count != 0) { + memcpy(newArray, m_pArray, m_Count * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } + } + + void resize(size_t newCount, bool freeMemory = false) { + size_t newCapacity = m_Capacity; + if (newCount > m_Capacity) { + newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); + } else if (freeMemory) { + newCapacity = newCount; + } + + if (newCapacity != m_Capacity) { + T *const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; + const size_t elementsToCopy = VMA_MIN(m_Count, newCount); + if (elementsToCopy != 0) { + memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } + + m_Count = newCount; + } + + void clear(bool freeMemory = false) { + resize(0, freeMemory); + } + + void insert(size_t index, const T &src) { + VMA_HEAVY_ASSERT(index <= m_Count); + const size_t oldCount = size(); + resize(oldCount + 1); + if (index < oldCount) { + memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); + } + m_pArray[index] = src; + } + + void remove(size_t index) { + VMA_HEAVY_ASSERT(index < m_Count); + const size_t oldCount = size(); + if (index < oldCount - 1) { + memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); + } + resize(oldCount - 1); + } + + void push_back(const T &src) { + const size_t newIndex = size(); + resize(newIndex + 1); + m_pArray[newIndex] = src; + } + + void pop_back() { + VMA_HEAVY_ASSERT(m_Count > 0); + resize(size() - 1); + } + + void push_front(const T &src) { + insert(0, src); + } + + void pop_front() { + VMA_HEAVY_ASSERT(m_Count > 0); + remove(0); + } + + typedef T *iterator; + + iterator begin() { return m_pArray; } + iterator end() { return m_pArray + m_Count; } + +private: + AllocatorT m_Allocator; + T *m_pArray; + size_t m_Count; + size_t m_Capacity; +}; + +template <typename T, typename allocatorT> +static void VmaVectorInsert(VmaVector<T, allocatorT> &vec, size_t index, const T &item) { + vec.insert(index, item); +} + +template <typename T, typename allocatorT> +static void VmaVectorRemove(VmaVector<T, allocatorT> &vec, size_t index) { + vec.remove(index); +} + +#endif // #if VMA_USE_STL_VECTOR + +template <typename CmpLess, typename VectorT> +size_t VmaVectorInsertSorted(VectorT &vector, const typename VectorT::value_type &value) { + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + vector.data(), + vector.data() + vector.size(), + value, + CmpLess()) - + vector.data(); + VmaVectorInsert(vector, indexToInsert, value); + return indexToInsert; +} + +template <typename CmpLess, typename VectorT> +bool VmaVectorRemoveSorted(VectorT &vector, const typename VectorT::value_type &value) { + CmpLess comparator; + typename VectorT::iterator it = VmaBinaryFindFirstNotLess( + vector.begin(), + vector.end(), + value, + comparator); + if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) { + size_t indexToRemove = it - vector.begin(); + VmaVectorRemove(vector, indexToRemove); + return true; + } + return false; +} + +template <typename CmpLess, typename IterT, typename KeyT> +IterT VmaVectorFindSorted(const IterT &beg, const IterT &end, const KeyT &value) { + CmpLess comparator; + IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>( + beg, end, value, comparator); + if (it == end || + (!comparator(*it, value) && !comparator(value, *it))) { + return it; + } + return end; +} + +//////////////////////////////////////////////////////////////////////////////// +// class VmaPoolAllocator + +/* +Allocator for objects of type T using a list of arrays (pools) to speed up +allocation. Number of elements that can be allocated is not bounded because +allocator can create multiple blocks. +*/ +template <typename T> +class VmaPoolAllocator { + VMA_CLASS_NO_COPY(VmaPoolAllocator) +public: + VmaPoolAllocator(const VkAllocationCallbacks *pAllocationCallbacks, uint32_t firstBlockCapacity); + ~VmaPoolAllocator(); + void Clear(); + T *Alloc(); + void Free(T *ptr); + +private: + union Item { + uint32_t NextFreeIndex; + T Value; + }; + + struct ItemBlock { + Item *pItems; + uint32_t Capacity; + uint32_t FirstFreeIndex; + }; + + const VkAllocationCallbacks *m_pAllocationCallbacks; + const uint32_t m_FirstBlockCapacity; + VmaVector<ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks; + + ItemBlock &CreateNewBlock(); +}; + +template <typename T> +VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks *pAllocationCallbacks, uint32_t firstBlockCapacity) : + m_pAllocationCallbacks(pAllocationCallbacks), + m_FirstBlockCapacity(firstBlockCapacity), + m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks)) { + VMA_ASSERT(m_FirstBlockCapacity > 1); +} + +template <typename T> +VmaPoolAllocator<T>::~VmaPoolAllocator() { + Clear(); +} + +template <typename T> +void VmaPoolAllocator<T>::Clear() { + for (size_t i = m_ItemBlocks.size(); i--;) + vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); + m_ItemBlocks.clear(); +} + +template <typename T> +T *VmaPoolAllocator<T>::Alloc() { + for (size_t i = m_ItemBlocks.size(); i--;) { + ItemBlock &block = m_ItemBlocks[i]; + // This block has some free items: Use first one. + if (block.FirstFreeIndex != UINT32_MAX) { + Item *const pItem = &block.pItems[block.FirstFreeIndex]; + block.FirstFreeIndex = pItem->NextFreeIndex; + return &pItem->Value; + } + } + + // No block has free item: Create new one and use it. + ItemBlock &newBlock = CreateNewBlock(); + Item *const pItem = &newBlock.pItems[0]; + newBlock.FirstFreeIndex = pItem->NextFreeIndex; + return &pItem->Value; +} + +template <typename T> +void VmaPoolAllocator<T>::Free(T *ptr) { + // Search all memory blocks to find ptr. + for (size_t i = m_ItemBlocks.size(); i--;) { + ItemBlock &block = m_ItemBlocks[i]; + + // Casting to union. + Item *pItemPtr; + memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); + + // Check if pItemPtr is in address range of this block. + if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) { + const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems); + pItemPtr->NextFreeIndex = block.FirstFreeIndex; + block.FirstFreeIndex = index; + return; + } + } + VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); +} + +template <typename T> +typename VmaPoolAllocator<T>::ItemBlock &VmaPoolAllocator<T>::CreateNewBlock() { + const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? + m_FirstBlockCapacity : + m_ItemBlocks.back().Capacity * 3 / 2; + + const ItemBlock newBlock = { + vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), + newBlockCapacity, + 0 + }; + + m_ItemBlocks.push_back(newBlock); + + // Setup singly-linked list of all free items in this block. + for (uint32_t i = 0; i < newBlockCapacity - 1; ++i) + newBlock.pItems[i].NextFreeIndex = i + 1; + newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; + return m_ItemBlocks.back(); +} + +//////////////////////////////////////////////////////////////////////////////// +// class VmaRawList, VmaList + +#if VMA_USE_STL_LIST + +#define VmaList std::list + +#else // #if VMA_USE_STL_LIST + +template <typename T> +struct VmaListItem { + VmaListItem *pPrev; + VmaListItem *pNext; + T Value; +}; + +// Doubly linked list. +template <typename T> +class VmaRawList { + VMA_CLASS_NO_COPY(VmaRawList) +public: + typedef VmaListItem<T> ItemType; + + VmaRawList(const VkAllocationCallbacks *pAllocationCallbacks); + ~VmaRawList(); + void Clear(); + + size_t GetCount() const { return m_Count; } + bool IsEmpty() const { return m_Count == 0; } + + ItemType *Front() { return m_pFront; } + const ItemType *Front() const { return m_pFront; } + ItemType *Back() { return m_pBack; } + const ItemType *Back() const { return m_pBack; } + + ItemType *PushBack(); + ItemType *PushFront(); + ItemType *PushBack(const T &value); + ItemType *PushFront(const T &value); + void PopBack(); + void PopFront(); + + // Item can be null - it means PushBack. + ItemType *InsertBefore(ItemType *pItem); + // Item can be null - it means PushFront. + ItemType *InsertAfter(ItemType *pItem); + + ItemType *InsertBefore(ItemType *pItem, const T &value); + ItemType *InsertAfter(ItemType *pItem, const T &value); + + void Remove(ItemType *pItem); + +private: + const VkAllocationCallbacks *const m_pAllocationCallbacks; + VmaPoolAllocator<ItemType> m_ItemAllocator; + ItemType *m_pFront; + ItemType *m_pBack; + size_t m_Count; +}; + +template <typename T> +VmaRawList<T>::VmaRawList(const VkAllocationCallbacks *pAllocationCallbacks) : + m_pAllocationCallbacks(pAllocationCallbacks), + m_ItemAllocator(pAllocationCallbacks, 128), + m_pFront(VMA_NULL), + m_pBack(VMA_NULL), + m_Count(0) { +} + +template <typename T> +VmaRawList<T>::~VmaRawList() { + // Intentionally not calling Clear, because that would be unnecessary + // computations to return all items to m_ItemAllocator as free. +} + +template <typename T> +void VmaRawList<T>::Clear() { + if (IsEmpty() == false) { + ItemType *pItem = m_pBack; + while (pItem != VMA_NULL) { + ItemType *const pPrevItem = pItem->pPrev; + m_ItemAllocator.Free(pItem); + pItem = pPrevItem; + } + m_pFront = VMA_NULL; + m_pBack = VMA_NULL; + m_Count = 0; + } +} + +template <typename T> +VmaListItem<T> *VmaRawList<T>::PushBack() { + ItemType *const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pNext = VMA_NULL; + if (IsEmpty()) { + pNewItem->pPrev = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } else { + pNewItem->pPrev = m_pBack; + m_pBack->pNext = pNewItem; + m_pBack = pNewItem; + ++m_Count; + } + return pNewItem; +} + +template <typename T> +VmaListItem<T> *VmaRawList<T>::PushFront() { + ItemType *const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pPrev = VMA_NULL; + if (IsEmpty()) { + pNewItem->pNext = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } else { + pNewItem->pNext = m_pFront; + m_pFront->pPrev = pNewItem; + m_pFront = pNewItem; + ++m_Count; + } + return pNewItem; +} + +template <typename T> +VmaListItem<T> *VmaRawList<T>::PushBack(const T &value) { + ItemType *const pNewItem = PushBack(); + pNewItem->Value = value; + return pNewItem; +} + +template <typename T> +VmaListItem<T> *VmaRawList<T>::PushFront(const T &value) { + ItemType *const pNewItem = PushFront(); + pNewItem->Value = value; + return pNewItem; +} + +template <typename T> +void VmaRawList<T>::PopBack() { + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType *const pBackItem = m_pBack; + ItemType *const pPrevItem = pBackItem->pPrev; + if (pPrevItem != VMA_NULL) { + pPrevItem->pNext = VMA_NULL; + } + m_pBack = pPrevItem; + m_ItemAllocator.Free(pBackItem); + --m_Count; +} + +template <typename T> +void VmaRawList<T>::PopFront() { + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType *const pFrontItem = m_pFront; + ItemType *const pNextItem = pFrontItem->pNext; + if (pNextItem != VMA_NULL) { + pNextItem->pPrev = VMA_NULL; + } + m_pFront = pNextItem; + m_ItemAllocator.Free(pFrontItem); + --m_Count; +} + +template <typename T> +void VmaRawList<T>::Remove(ItemType *pItem) { + VMA_HEAVY_ASSERT(pItem != VMA_NULL); + VMA_HEAVY_ASSERT(m_Count > 0); + + if (pItem->pPrev != VMA_NULL) { + pItem->pPrev->pNext = pItem->pNext; + } else { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = pItem->pNext; + } + + if (pItem->pNext != VMA_NULL) { + pItem->pNext->pPrev = pItem->pPrev; + } else { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = pItem->pPrev; + } + + m_ItemAllocator.Free(pItem); + --m_Count; +} + +template <typename T> +VmaListItem<T> *VmaRawList<T>::InsertBefore(ItemType *pItem) { + if (pItem != VMA_NULL) { + ItemType *const prevItem = pItem->pPrev; + ItemType *const newItem = m_ItemAllocator.Alloc(); + newItem->pPrev = prevItem; + newItem->pNext = pItem; + pItem->pPrev = newItem; + if (prevItem != VMA_NULL) { + prevItem->pNext = newItem; + } else { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = newItem; + } + ++m_Count; + return newItem; + } else + return PushBack(); +} + +template <typename T> +VmaListItem<T> *VmaRawList<T>::InsertAfter(ItemType *pItem) { + if (pItem != VMA_NULL) { + ItemType *const nextItem = pItem->pNext; + ItemType *const newItem = m_ItemAllocator.Alloc(); + newItem->pNext = nextItem; + newItem->pPrev = pItem; + pItem->pNext = newItem; + if (nextItem != VMA_NULL) { + nextItem->pPrev = newItem; + } else { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = newItem; + } + ++m_Count; + return newItem; + } else + return PushFront(); +} + +template <typename T> +VmaListItem<T> *VmaRawList<T>::InsertBefore(ItemType *pItem, const T &value) { + ItemType *const newItem = InsertBefore(pItem); + newItem->Value = value; + return newItem; +} + +template <typename T> +VmaListItem<T> *VmaRawList<T>::InsertAfter(ItemType *pItem, const T &value) { + ItemType *const newItem = InsertAfter(pItem); + newItem->Value = value; + return newItem; +} + +template <typename T, typename AllocatorT> +class VmaList { + VMA_CLASS_NO_COPY(VmaList) +public: + class iterator { + public: + iterator() : + m_pList(VMA_NULL), + m_pItem(VMA_NULL) { + } + + T &operator*() const { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + return m_pItem->Value; + } + T *operator->() const { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + return &m_pItem->Value; + } + + iterator &operator++() { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + m_pItem = m_pItem->pNext; + return *this; + } + iterator &operator--() { + if (m_pItem != VMA_NULL) { + m_pItem = m_pItem->pPrev; + } else { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; + } + + iterator operator++(int) { + iterator result = *this; + ++*this; + return result; + } + iterator operator--(int) { + iterator result = *this; + --*this; + return result; + } + + bool operator==(const iterator &rhs) const { + VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); + return m_pItem == rhs.m_pItem; + } + bool operator!=(const iterator &rhs) const { + VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); + return m_pItem != rhs.m_pItem; + } + + private: + VmaRawList<T> *m_pList; + VmaListItem<T> *m_pItem; + + iterator(VmaRawList<T> *pList, VmaListItem<T> *pItem) : + m_pList(pList), + m_pItem(pItem) { + } + + friend class VmaList<T, AllocatorT>; + }; + + class const_iterator { + public: + const_iterator() : + m_pList(VMA_NULL), + m_pItem(VMA_NULL) { + } + + const_iterator(const iterator &src) : + m_pList(src.m_pList), + m_pItem(src.m_pItem) { + } + + const T &operator*() const { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + return m_pItem->Value; + } + const T *operator->() const { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + return &m_pItem->Value; + } + + const_iterator &operator++() { + VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); + m_pItem = m_pItem->pNext; + return *this; + } + const_iterator &operator--() { + if (m_pItem != VMA_NULL) { + m_pItem = m_pItem->pPrev; + } else { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; + } + + const_iterator operator++(int) { + const_iterator result = *this; + ++*this; + return result; + } + const_iterator operator--(int) { + const_iterator result = *this; + --*this; + return result; + } + + bool operator==(const const_iterator &rhs) const { + VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); + return m_pItem == rhs.m_pItem; + } + bool operator!=(const const_iterator &rhs) const { + VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); + return m_pItem != rhs.m_pItem; + } + + private: + const_iterator(const VmaRawList<T> *pList, const VmaListItem<T> *pItem) : + m_pList(pList), + m_pItem(pItem) { + } + + const VmaRawList<T> *m_pList; + const VmaListItem<T> *m_pItem; + + friend class VmaList<T, AllocatorT>; + }; + + VmaList(const AllocatorT &allocator) : + m_RawList(allocator.m_pCallbacks) {} + + bool empty() const { return m_RawList.IsEmpty(); } + size_t size() const { return m_RawList.GetCount(); } + + iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } + iterator end() { return iterator(&m_RawList, VMA_NULL); } + + const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } + const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } + + void clear() { m_RawList.Clear(); } + void push_back(const T &value) { m_RawList.PushBack(value); } + void erase(iterator it) { m_RawList.Remove(it.m_pItem); } + iterator insert(iterator it, const T &value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } + +private: + VmaRawList<T> m_RawList; +}; + +#endif // #if VMA_USE_STL_LIST + +//////////////////////////////////////////////////////////////////////////////// +// class VmaMap + +// Unused in this version. +#if 0 + +#if VMA_USE_STL_UNORDERED_MAP + +#define VmaPair std::pair + +#define VMA_MAP_TYPE(KeyT, ValueT) \ + std::unordered_map<KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator<std::pair<KeyT, ValueT> > > + +#else // #if VMA_USE_STL_UNORDERED_MAP + +template<typename T1, typename T2> +struct VmaPair +{ + T1 first; + T2 second; + + VmaPair() : first(), second() { } + VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { } +}; + +/* Class compatible with subset of interface of std::unordered_map. +KeyT, ValueT must be POD because they will be stored in VmaVector. +*/ +template<typename KeyT, typename ValueT> +class VmaMap +{ +public: + typedef VmaPair<KeyT, ValueT> PairType; + typedef PairType* iterator; + + VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { } + + iterator begin() { return m_Vector.begin(); } + iterator end() { return m_Vector.end(); } + + void insert(const PairType& pair); + iterator find(const KeyT& key); + void erase(iterator it); + +private: + VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector; +}; + +#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT> + +template<typename FirstT, typename SecondT> +struct VmaPairFirstLess +{ + bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const + { + return lhs.first < rhs.first; + } + bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const + { + return lhs.first < rhsFirst; + } +}; + +template<typename KeyT, typename ValueT> +void VmaMap<KeyT, ValueT>::insert(const PairType& pair) +{ + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + m_Vector.data(), + m_Vector.data() + m_Vector.size(), + pair, + VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data(); + VmaVectorInsert(m_Vector, indexToInsert, pair); +} + +template<typename KeyT, typename ValueT> +VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key) +{ + PairType* it = VmaBinaryFindFirstNotLess( + m_Vector.data(), + m_Vector.data() + m_Vector.size(), + key, + VmaPairFirstLess<KeyT, ValueT>()); + if((it != m_Vector.end()) && (it->first == key)) + { + return it; + } + else + { + return m_Vector.end(); + } +} + +template<typename KeyT, typename ValueT> +void VmaMap<KeyT, ValueT>::erase(iterator it) +{ + VmaVectorRemove(m_Vector, it - m_Vector.begin()); +} + +#endif // #if VMA_USE_STL_UNORDERED_MAP + +#endif // #if 0 + +//////////////////////////////////////////////////////////////////////////////// + +class VmaDeviceMemoryBlock; + +enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, + VMA_CACHE_INVALIDATE }; + +struct VmaAllocation_T { +private: + static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80; + + enum FLAGS { + FLAG_USER_DATA_STRING = 0x01, + }; + +public: + enum ALLOCATION_TYPE { + ALLOCATION_TYPE_NONE, + ALLOCATION_TYPE_BLOCK, + ALLOCATION_TYPE_DEDICATED, + }; + + /* + This struct cannot have constructor or destructor. It must be POD because it is + allocated using VmaPoolAllocator. + */ + + void Ctor(uint32_t currentFrameIndex, bool userDataString) { + m_Alignment = 1; + m_Size = 0; + m_pUserData = VMA_NULL; + m_LastUseFrameIndex = currentFrameIndex; + m_Type = (uint8_t)ALLOCATION_TYPE_NONE; + m_SuballocationType = (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN; + m_MapCount = 0; + m_Flags = userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0; + +#if VMA_STATS_STRING_ENABLED + m_CreationFrameIndex = currentFrameIndex; + m_BufferImageUsage = 0; +#endif + } + + void Dtor() { + VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction."); + + // Check if owned string was freed. + VMA_ASSERT(m_pUserData == VMA_NULL); + } + + void InitBlockAllocation( + VmaDeviceMemoryBlock *block, + VkDeviceSize offset, + VkDeviceSize alignment, + VkDeviceSize size, + VmaSuballocationType suballocationType, + bool mapped, + bool canBecomeLost) { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(block != VMA_NULL); + m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; + m_Alignment = alignment; + m_Size = size; + m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; + m_SuballocationType = (uint8_t)suballocationType; + m_BlockAllocation.m_Block = block; + m_BlockAllocation.m_Offset = offset; + m_BlockAllocation.m_CanBecomeLost = canBecomeLost; + } + + void InitLost() { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST); + m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; + m_BlockAllocation.m_Block = VMA_NULL; + m_BlockAllocation.m_Offset = 0; + m_BlockAllocation.m_CanBecomeLost = true; + } + + void ChangeBlockAllocation( + VmaAllocator hAllocator, + VmaDeviceMemoryBlock *block, + VkDeviceSize offset); + + void ChangeSize(VkDeviceSize newSize); + void ChangeOffset(VkDeviceSize newOffset); + + // pMappedData not null means allocation is created with MAPPED flag. + void InitDedicatedAllocation( + uint32_t memoryTypeIndex, + VkDeviceMemory hMemory, + VmaSuballocationType suballocationType, + void *pMappedData, + VkDeviceSize size) { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(hMemory != VK_NULL_HANDLE); + m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; + m_Alignment = 0; + m_Size = size; + m_SuballocationType = (uint8_t)suballocationType; + m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; + m_DedicatedAllocation.m_MemoryTypeIndex = memoryTypeIndex; + m_DedicatedAllocation.m_hMemory = hMemory; + m_DedicatedAllocation.m_pMappedData = pMappedData; + } + + ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } + VkDeviceSize GetAlignment() const { return m_Alignment; } + VkDeviceSize GetSize() const { return m_Size; } + bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; } + void *GetUserData() const { return m_pUserData; } + void SetUserData(VmaAllocator hAllocator, void *pUserData); + VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } + + VmaDeviceMemoryBlock *GetBlock() const { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + return m_BlockAllocation.m_Block; + } + VkDeviceSize GetOffset() const; + VkDeviceMemory GetMemory() const; + uint32_t GetMemoryTypeIndex() const; + bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; } + void *GetMappedData() const; + bool CanBecomeLost() const; + + uint32_t GetLastUseFrameIndex() const { + return m_LastUseFrameIndex.load(); + } + bool CompareExchangeLastUseFrameIndex(uint32_t &expected, uint32_t desired) { + return m_LastUseFrameIndex.compare_exchange_weak(expected, desired); + } + /* + - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex, + makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true. + - Else, returns false. + + If hAllocation is already lost, assert - you should not call it then. + If hAllocation was not created with CAN_BECOME_LOST_BIT, assert. + */ + bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + + void DedicatedAllocCalcStatsInfo(VmaStatInfo &outInfo) { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED); + outInfo.blockCount = 1; + outInfo.allocationCount = 1; + outInfo.unusedRangeCount = 0; + outInfo.usedBytes = m_Size; + outInfo.unusedBytes = 0; + outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size; + outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMax = 0; + } + + void BlockAllocMap(); + void BlockAllocUnmap(); + VkResult DedicatedAllocMap(VmaAllocator hAllocator, void **ppData); + void DedicatedAllocUnmap(VmaAllocator hAllocator); + +#if VMA_STATS_STRING_ENABLED + uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; } + uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } + + void InitBufferImageUsage(uint32_t bufferImageUsage) { + VMA_ASSERT(m_BufferImageUsage == 0); + m_BufferImageUsage = bufferImageUsage; + } + + void PrintParameters(class VmaJsonWriter &json) const; +#endif + +private: + VkDeviceSize m_Alignment; + VkDeviceSize m_Size; + void *m_pUserData; + VMA_ATOMIC_UINT32 m_LastUseFrameIndex; + uint8_t m_Type; // ALLOCATION_TYPE + uint8_t m_SuballocationType; // VmaSuballocationType + // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT. + // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory(). + uint8_t m_MapCount; + uint8_t m_Flags; // enum FLAGS + + // Allocation out of VmaDeviceMemoryBlock. + struct BlockAllocation { + VmaDeviceMemoryBlock *m_Block; + VkDeviceSize m_Offset; + bool m_CanBecomeLost; + }; + + // Allocation for an object that has its own private VkDeviceMemory. + struct DedicatedAllocation { + uint32_t m_MemoryTypeIndex; + VkDeviceMemory m_hMemory; + void *m_pMappedData; // Not null means memory is mapped. + }; + + union { + // Allocation out of VmaDeviceMemoryBlock. + BlockAllocation m_BlockAllocation; + // Allocation for an object that has its own private VkDeviceMemory. + DedicatedAllocation m_DedicatedAllocation; + }; + +#if VMA_STATS_STRING_ENABLED + uint32_t m_CreationFrameIndex; + uint32_t m_BufferImageUsage; // 0 if unknown. +#endif + + void FreeUserDataString(VmaAllocator hAllocator); +}; + +/* +Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as +allocated memory block or free. +*/ +struct VmaSuballocation { + VkDeviceSize offset; + VkDeviceSize size; + VmaAllocation hAllocation; + VmaSuballocationType type; +}; + +// Comparator for offsets. +struct VmaSuballocationOffsetLess { + bool operator()(const VmaSuballocation &lhs, const VmaSuballocation &rhs) const { + return lhs.offset < rhs.offset; + } +}; +struct VmaSuballocationOffsetGreater { + bool operator()(const VmaSuballocation &lhs, const VmaSuballocation &rhs) const { + return lhs.offset > rhs.offset; + } +}; + +typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList; + +// Cost of one additional allocation lost, as equivalent in bytes. +static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576; + +enum class VmaAllocationRequestType { + Normal, + // Used by "Linear" algorithm. + UpperAddress, + EndOf1st, + EndOf2nd, +}; + +/* +Parameters of planned allocation inside a VmaDeviceMemoryBlock. + +If canMakeOtherLost was false: +- item points to a FREE suballocation. +- itemsToMakeLostCount is 0. + +If canMakeOtherLost was true: +- item points to first of sequence of suballocations, which are either FREE, + or point to VmaAllocations that can become lost. +- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for + the requested allocation to succeed. +*/ +struct VmaAllocationRequest { + VkDeviceSize offset; + VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation. + VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation. + VmaSuballocationList::iterator item; + size_t itemsToMakeLostCount; + void *customData; + VmaAllocationRequestType type; + + VkDeviceSize CalcCost() const { + return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST; + } +}; + +/* +Data structure used for bookkeeping of allocations and unused ranges of memory +in a single VkDeviceMemory block. +*/ +class VmaBlockMetadata { +public: + VmaBlockMetadata(VmaAllocator hAllocator); + virtual ~VmaBlockMetadata() {} + virtual void Init(VkDeviceSize size) { m_Size = size; } + + // Validates all data structures inside this object. If not valid, returns false. + virtual bool Validate() const = 0; + VkDeviceSize GetSize() const { return m_Size; } + virtual size_t GetAllocationCount() const = 0; + virtual VkDeviceSize GetSumFreeSize() const = 0; + virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0; + // Returns true if this block is empty - contains only single free suballocation. + virtual bool IsEmpty() const = 0; + + virtual void CalcAllocationStatInfo(VmaStatInfo &outInfo) const = 0; + // Shouldn't modify blockCount. + virtual void AddPoolStats(VmaPoolStats &inoutStats) const = 0; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter &json) const = 0; +#endif + + // Tries to find a place for suballocation with given parameters inside this block. + // If succeeded, fills pAllocationRequest and returns true. + // If failed, returns false. + virtual bool CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest) = 0; + + virtual bool MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest *pAllocationRequest) = 0; + + virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0; + + virtual VkResult CheckCorruption(const void *pBlockData) = 0; + + // Makes actual allocation based on request. Request must already be checked and valid. + virtual void Alloc( + const VmaAllocationRequest &request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation) = 0; + + // Frees suballocation assigned to given memory region. + virtual void Free(const VmaAllocation allocation) = 0; + virtual void FreeAtOffset(VkDeviceSize offset) = 0; + + // Tries to resize (grow or shrink) space for given allocation, in place. + virtual bool ResizeAllocation(const VmaAllocation alloc, VkDeviceSize newSize) { return false; } + +protected: + const VkAllocationCallbacks *GetAllocationCallbacks() const { return m_pAllocationCallbacks; } + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap_Begin(class VmaJsonWriter &json, + VkDeviceSize unusedBytes, + size_t allocationCount, + size_t unusedRangeCount) const; + void PrintDetailedMap_Allocation(class VmaJsonWriter &json, + VkDeviceSize offset, + VmaAllocation hAllocation) const; + void PrintDetailedMap_UnusedRange(class VmaJsonWriter &json, + VkDeviceSize offset, + VkDeviceSize size) const; + void PrintDetailedMap_End(class VmaJsonWriter &json) const; +#endif + +private: + VkDeviceSize m_Size; + const VkAllocationCallbacks *m_pAllocationCallbacks; +}; + +#define VMA_VALIDATE(cond) \ + do { \ + if (!(cond)) { \ + VMA_ASSERT(0 && "Validation failed: " #cond); \ + return false; \ + } \ + } while (false) + +class VmaBlockMetadata_Generic : public VmaBlockMetadata { + VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) +public: + VmaBlockMetadata_Generic(VmaAllocator hAllocator); + virtual ~VmaBlockMetadata_Generic(); + virtual void Init(VkDeviceSize size); + + virtual bool Validate() const; + virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; } + virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } + virtual VkDeviceSize GetUnusedRangeSizeMax() const; + virtual bool IsEmpty() const; + + virtual void CalcAllocationStatInfo(VmaStatInfo &outInfo) const; + virtual void AddPoolStats(VmaPoolStats &inoutStats) const; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter &json) const; +#endif + + virtual bool CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest); + + virtual bool MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest *pAllocationRequest); + + virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + + virtual VkResult CheckCorruption(const void *pBlockData); + + virtual void Alloc( + const VmaAllocationRequest &request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation); + + virtual void Free(const VmaAllocation allocation); + virtual void FreeAtOffset(VkDeviceSize offset); + + virtual bool ResizeAllocation(const VmaAllocation alloc, VkDeviceSize newSize); + + //////////////////////////////////////////////////////////////////////////////// + // For defragmentation + + bool IsBufferImageGranularityConflictPossible( + VkDeviceSize bufferImageGranularity, + VmaSuballocationType &inOutPrevSuballocType) const; + +private: + friend class VmaDefragmentationAlgorithm_Generic; + friend class VmaDefragmentationAlgorithm_Fast; + + uint32_t m_FreeCount; + VkDeviceSize m_SumFreeSize; + VmaSuballocationList m_Suballocations; + // Suballocations that are free and have size greater than certain threshold. + // Sorted by size, ascending. + VmaVector<VmaSuballocationList::iterator, VmaStlAllocator<VmaSuballocationList::iterator> > m_FreeSuballocationsBySize; + + bool ValidateFreeSuballocationList() const; + + // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. + // If yes, fills pOffset and returns true. If no, returns false. + bool CheckAllocation( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaSuballocationList::const_iterator suballocItem, + bool canMakeOtherLost, + VkDeviceSize *pOffset, + size_t *itemsToMakeLostCount, + VkDeviceSize *pSumFreeSize, + VkDeviceSize *pSumItemSize) const; + // Given free suballocation, it merges it with following one, which must also be free. + void MergeFreeWithNext(VmaSuballocationList::iterator item); + // Releases given suballocation, making it free. + // Merges it with adjacent free suballocations if applicable. + // Returns iterator to new free suballocation at this place. + VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); + // Given free suballocation, it inserts it into sorted list of + // m_FreeSuballocationsBySize if it's suitable. + void RegisterFreeSuballocation(VmaSuballocationList::iterator item); + // Given free suballocation, it removes it from sorted list of + // m_FreeSuballocationsBySize if it's suitable. + void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); +}; + +/* +Allocations and their references in internal data structure look like this: + +if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): + + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | +GetSize() +-------+ + +if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): + + 0 +-------+ + | Alloc | 2nd[0] + +-------+ + | Alloc | 2nd[1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | +GetSize() +-------+ + +if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): + + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[1] + +-------+ + | Alloc | 2nd[0] +GetSize() +-------+ + +*/ +class VmaBlockMetadata_Linear : public VmaBlockMetadata { + VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) +public: + VmaBlockMetadata_Linear(VmaAllocator hAllocator); + virtual ~VmaBlockMetadata_Linear(); + virtual void Init(VkDeviceSize size); + + virtual bool Validate() const; + virtual size_t GetAllocationCount() const; + virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } + virtual VkDeviceSize GetUnusedRangeSizeMax() const; + virtual bool IsEmpty() const { return GetAllocationCount() == 0; } + + virtual void CalcAllocationStatInfo(VmaStatInfo &outInfo) const; + virtual void AddPoolStats(VmaPoolStats &inoutStats) const; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter &json) const; +#endif + + virtual bool CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest); + + virtual bool MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest *pAllocationRequest); + + virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + + virtual VkResult CheckCorruption(const void *pBlockData); + + virtual void Alloc( + const VmaAllocationRequest &request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation); + + virtual void Free(const VmaAllocation allocation); + virtual void FreeAtOffset(VkDeviceSize offset); + +private: + /* + There are two suballocation vectors, used in ping-pong way. + The one with index m_1stVectorIndex is called 1st. + The one with index (m_1stVectorIndex ^ 1) is called 2nd. + 2nd can be non-empty only when 1st is not empty. + When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. + */ + typedef VmaVector<VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType; + + enum SECOND_VECTOR_MODE { + SECOND_VECTOR_EMPTY, + /* + Suballocations in 2nd vector are created later than the ones in 1st, but they + all have smaller offset. + */ + SECOND_VECTOR_RING_BUFFER, + /* + Suballocations in 2nd vector are upper side of double stack. + They all have offsets higher than those in 1st vector. + Top of this stack means smaller offsets, but higher indices in this vector. + */ + SECOND_VECTOR_DOUBLE_STACK, + }; + + VkDeviceSize m_SumFreeSize; + SuballocationVectorType m_Suballocations0, m_Suballocations1; + uint32_t m_1stVectorIndex; + SECOND_VECTOR_MODE m_2ndVectorMode; + + SuballocationVectorType &AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + SuballocationVectorType &AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + const SuballocationVectorType &AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + const SuballocationVectorType &AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + + // Number of items in 1st vector with hAllocation = null at the beginning. + size_t m_1stNullItemsBeginCount; + // Number of other items in 1st vector with hAllocation = null somewhere in the middle. + size_t m_1stNullItemsMiddleCount; + // Number of items in 2nd vector with hAllocation = null. + size_t m_2ndNullItemsCount; + + bool ShouldCompact1st() const; + void CleanupAfterFree(); + + bool CreateAllocationRequest_LowerAddress( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest); + bool CreateAllocationRequest_UpperAddress( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest); +}; + +/* +- GetSize() is the original size of allocated memory block. +- m_UsableSize is this size aligned down to a power of two. + All allocations and calculations happen relative to m_UsableSize. +- GetUnusableSize() is the difference between them. + It is repoted as separate, unused range, not available for allocations. + +Node at level 0 has size = m_UsableSize. +Each next level contains nodes with size 2 times smaller than current level. +m_LevelCount is the maximum number of levels to use in the current object. +*/ +class VmaBlockMetadata_Buddy : public VmaBlockMetadata { + VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy) +public: + VmaBlockMetadata_Buddy(VmaAllocator hAllocator); + virtual ~VmaBlockMetadata_Buddy(); + virtual void Init(VkDeviceSize size); + + virtual bool Validate() const; + virtual size_t GetAllocationCount() const { return m_AllocationCount; } + virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); } + virtual VkDeviceSize GetUnusedRangeSizeMax() const; + virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; } + + virtual void CalcAllocationStatInfo(VmaStatInfo &outInfo) const; + virtual void AddPoolStats(VmaPoolStats &inoutStats) const; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter &json) const; +#endif + + virtual bool CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest); + + virtual bool MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest *pAllocationRequest); + + virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + + virtual VkResult CheckCorruption(const void *pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; } + + virtual void Alloc( + const VmaAllocationRequest &request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation); + + virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); } + virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); } + +private: + static const VkDeviceSize MIN_NODE_SIZE = 32; + static const size_t MAX_LEVELS = 30; + + struct ValidationContext { + size_t calculatedAllocationCount; + size_t calculatedFreeCount; + VkDeviceSize calculatedSumFreeSize; + + ValidationContext() : + calculatedAllocationCount(0), + calculatedFreeCount(0), + calculatedSumFreeSize(0) {} + }; + + struct Node { + VkDeviceSize offset; + enum TYPE { + TYPE_FREE, + TYPE_ALLOCATION, + TYPE_SPLIT, + TYPE_COUNT + } type; + Node *parent; + Node *buddy; + + union { + struct + { + Node *prev; + Node *next; + } free; + struct + { + VmaAllocation alloc; + } allocation; + struct + { + Node *leftChild; + } split; + }; + }; + + // Size of the memory block aligned down to a power of two. + VkDeviceSize m_UsableSize; + uint32_t m_LevelCount; + + Node *m_Root; + struct { + Node *front; + Node *back; + } m_FreeList[MAX_LEVELS]; + // Number of nodes in the tree with type == TYPE_ALLOCATION. + size_t m_AllocationCount; + // Number of nodes in the tree with type == TYPE_FREE. + size_t m_FreeCount; + // This includes space wasted due to internal fragmentation. Doesn't include unusable size. + VkDeviceSize m_SumFreeSize; + + VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; } + void DeleteNode(Node *node); + bool ValidateNode(ValidationContext &ctx, const Node *parent, const Node *curr, uint32_t level, VkDeviceSize levelNodeSize) const; + uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const; + inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } + // Alloc passed just for validation. Can be null. + void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset); + void CalcAllocationStatInfoNode(VmaStatInfo &outInfo, const Node *node, VkDeviceSize levelNodeSize) const; + // Adds node to the front of FreeList at given level. + // node->type must be FREE. + // node->free.prev, next can be undefined. + void AddToFreeListFront(uint32_t level, Node *node); + // Removes node from FreeList at given level. + // node->type must be FREE. + // node->free.prev, next stay untouched. + void RemoveFromFreeList(uint32_t level, Node *node); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMapNode(class VmaJsonWriter &json, const Node *node, VkDeviceSize levelNodeSize) const; +#endif +}; + +/* +Represents a single block of device memory (`VkDeviceMemory`) with all the +data about its regions (aka suballocations, #VmaAllocation), assigned and free. + +Thread-safety: This class must be externally synchronized. +*/ +class VmaDeviceMemoryBlock { + VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) +public: + VmaBlockMetadata *m_pMetadata; + + VmaDeviceMemoryBlock(VmaAllocator hAllocator); + + ~VmaDeviceMemoryBlock() { + VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); + } + + // Always call after construction. + void Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm); + // Always call before destruction. + void Destroy(VmaAllocator allocator); + + VmaPool GetParentPool() const { return m_hParentPool; } + VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + uint32_t GetId() const { return m_Id; } + void *GetMappedData() const { return m_pMappedData; } + + // Validates all data structures inside this object. If not valid, returns false. + bool Validate() const; + + VkResult CheckCorruption(VmaAllocator hAllocator); + + // ppData can be null. + VkResult Map(VmaAllocator hAllocator, uint32_t count, void **ppData); + void Unmap(VmaAllocator hAllocator, uint32_t count); + + VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + + VkResult BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkBuffer hBuffer); + VkResult BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkImage hImage); + +private: + VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. + uint32_t m_MemoryTypeIndex; + uint32_t m_Id; + VkDeviceMemory m_hMemory; + + /* + Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. + Also protects m_MapCount, m_pMappedData. + Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. + */ + VMA_MUTEX m_Mutex; + uint32_t m_MapCount; + void *m_pMappedData; +}; + +struct VmaPointerLess { + bool operator()(const void *lhs, const void *rhs) const { + return lhs < rhs; + } +}; + +struct VmaDefragmentationMove { + size_t srcBlockIndex; + size_t dstBlockIndex; + VkDeviceSize srcOffset; + VkDeviceSize dstOffset; + VkDeviceSize size; +}; + +class VmaDefragmentationAlgorithm; + +/* +Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific +Vulkan memory type. + +Synchronized internally with a mutex. +*/ +struct VmaBlockVector { + VMA_CLASS_NO_COPY(VmaBlockVector) +public: + VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + uint32_t frameInUseCount, + bool isCustomPool, + bool explicitBlockSize, + uint32_t algorithm); + ~VmaBlockVector(); + + VkResult CreateMinBlocks(); + + VmaPool GetParentPool() const { return m_hParentPool; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } + VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } + uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; } + uint32_t GetAlgorithm() const { return m_Algorithm; } + + void GetPoolStats(VmaPoolStats *pStats); + + bool IsEmpty() const { return m_Blocks.empty(); } + bool IsCorruptionDetectionEnabled() const; + + VkResult Allocate( + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo &createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation *pAllocations); + + void Free( + VmaAllocation hAllocation); + + // Adds statistics of this BlockVector to pStats. + void AddStats(VmaStats *pStats); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter &json); +#endif + + void MakePoolAllocationsLost( + uint32_t currentFrameIndex, + size_t *pLostAllocationCount); + VkResult CheckCorruption(); + + // Saves results in pCtx->res. + void Defragment( + class VmaBlockVectorDefragmentationContext *pCtx, + VmaDefragmentationStats *pStats, + VkDeviceSize &maxCpuBytesToMove, uint32_t &maxCpuAllocationsToMove, + VkDeviceSize &maxGpuBytesToMove, uint32_t &maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer); + void DefragmentationEnd( + class VmaBlockVectorDefragmentationContext *pCtx, + VmaDefragmentationStats *pStats); + + //////////////////////////////////////////////////////////////////////////////// + // To be used only while the m_Mutex is locked. Used during defragmentation. + + size_t GetBlockCount() const { return m_Blocks.size(); } + VmaDeviceMemoryBlock *GetBlock(size_t index) const { return m_Blocks[index]; } + size_t CalcAllocationCount() const; + bool IsBufferImageGranularityConflictPossible() const; + +private: + friend class VmaDefragmentationAlgorithm_Generic; + + const VmaAllocator m_hAllocator; + const VmaPool m_hParentPool; + const uint32_t m_MemoryTypeIndex; + const VkDeviceSize m_PreferredBlockSize; + const size_t m_MinBlockCount; + const size_t m_MaxBlockCount; + const VkDeviceSize m_BufferImageGranularity; + const uint32_t m_FrameInUseCount; + const bool m_IsCustomPool; + const bool m_ExplicitBlockSize; + const uint32_t m_Algorithm; + /* There can be at most one allocation that is completely empty - a + hysteresis to avoid pessimistic case of alternating creation and destruction + of a VkDeviceMemory. */ + bool m_HasEmptyBlock; + VMA_RW_MUTEX m_Mutex; + // Incrementally sorted by sumFreeSize, ascending. + VmaVector<VmaDeviceMemoryBlock *, VmaStlAllocator<VmaDeviceMemoryBlock *> > m_Blocks; + uint32_t m_NextBlockId; + + VkDeviceSize CalcMaxBlockSize() const; + + // Finds and removes given block from vector. + void Remove(VmaDeviceMemoryBlock *pBlock); + + // Performs single step in sorting m_Blocks. They may not be fully sorted + // after this call. + void IncrementallySortBlocks(); + + VkResult AllocatePage( + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo &createInfo, + VmaSuballocationType suballocType, + VmaAllocation *pAllocation); + + // To be used only without CAN_MAKE_OTHER_LOST flag. + VkResult AllocateFromBlock( + VmaDeviceMemoryBlock *pBlock, + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void *pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation *pAllocation); + + VkResult CreateBlock(VkDeviceSize blockSize, size_t *pNewBlockIndex); + + // Saves result to pCtx->res. + void ApplyDefragmentationMovesCpu( + class VmaBlockVectorDefragmentationContext *pDefragCtx, + const VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves); + // Saves result to pCtx->res. + void ApplyDefragmentationMovesGpu( + class VmaBlockVectorDefragmentationContext *pDefragCtx, + const VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkCommandBuffer commandBuffer); + + /* + Used during defragmentation. pDefragmentationStats is optional. It's in/out + - updated with new data. + */ + void FreeEmptyBlocks(VmaDefragmentationStats *pDefragmentationStats); +}; + +struct VmaPool_T { + VMA_CLASS_NO_COPY(VmaPool_T) +public: + VmaBlockVector m_BlockVector; + + VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo &createInfo, + VkDeviceSize preferredBlockSize); + ~VmaPool_T(); + + uint32_t GetId() const { return m_Id; } + void SetId(uint32_t id) { + VMA_ASSERT(m_Id == 0); + m_Id = id; + } + +#if VMA_STATS_STRING_ENABLED + //void PrintDetailedMap(class VmaStringBuilder& sb); +#endif + +private: + uint32_t m_Id; +}; + +/* +Performs defragmentation: + +- Updates `pBlockVector->m_pMetadata`. +- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset(). +- Does not move actual data, only returns requested moves as `moves`. +*/ +class VmaDefragmentationAlgorithm { + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm) +public: + VmaDefragmentationAlgorithm( + VmaAllocator hAllocator, + VmaBlockVector *pBlockVector, + uint32_t currentFrameIndex) : + m_hAllocator(hAllocator), + m_pBlockVector(pBlockVector), + m_CurrentFrameIndex(currentFrameIndex) { + } + virtual ~VmaDefragmentationAlgorithm() { + } + + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged) = 0; + virtual void AddAll() = 0; + + virtual VkResult Defragment( + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove) = 0; + + virtual VkDeviceSize GetBytesMoved() const = 0; + virtual uint32_t GetAllocationsMoved() const = 0; + +protected: + VmaAllocator const m_hAllocator; + VmaBlockVector *const m_pBlockVector; + const uint32_t m_CurrentFrameIndex; + + struct AllocationInfo { + VmaAllocation m_hAllocation; + VkBool32 *m_pChanged; + + AllocationInfo() : + m_hAllocation(VK_NULL_HANDLE), + m_pChanged(VMA_NULL) { + } + AllocationInfo(VmaAllocation hAlloc, VkBool32 *pChanged) : + m_hAllocation(hAlloc), + m_pChanged(pChanged) { + } + }; +}; + +class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm { + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic) +public: + VmaDefragmentationAlgorithm_Generic( + VmaAllocator hAllocator, + VmaBlockVector *pBlockVector, + uint32_t currentFrameIndex, + bool overlappingMoveSupported); + virtual ~VmaDefragmentationAlgorithm_Generic(); + + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged); + virtual void AddAll() { m_AllAllocations = true; } + + virtual VkResult Defragment( + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove); + + virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } + virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } + +private: + uint32_t m_AllocationCount; + bool m_AllAllocations; + + VkDeviceSize m_BytesMoved; + uint32_t m_AllocationsMoved; + + struct AllocationInfoSizeGreater { + bool operator()(const AllocationInfo &lhs, const AllocationInfo &rhs) const { + return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize(); + } + }; + + struct AllocationInfoOffsetGreater { + bool operator()(const AllocationInfo &lhs, const AllocationInfo &rhs) const { + return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset(); + } + }; + + struct BlockInfo { + size_t m_OriginalBlockIndex; + VmaDeviceMemoryBlock *m_pBlock; + bool m_HasNonMovableAllocations; + VmaVector<AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations; + + BlockInfo(const VkAllocationCallbacks *pAllocationCallbacks) : + m_OriginalBlockIndex(SIZE_MAX), + m_pBlock(VMA_NULL), + m_HasNonMovableAllocations(true), + m_Allocations(pAllocationCallbacks) { + } + + void CalcHasNonMovableAllocations() { + const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount(); + const size_t defragmentAllocCount = m_Allocations.size(); + m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount; + } + + void SortAllocationsBySizeDescending() { + VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater()); + } + + void SortAllocationsByOffsetDescending() { + VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater()); + } + }; + + struct BlockPointerLess { + bool operator()(const BlockInfo *pLhsBlockInfo, const VmaDeviceMemoryBlock *pRhsBlock) const { + return pLhsBlockInfo->m_pBlock < pRhsBlock; + } + bool operator()(const BlockInfo *pLhsBlockInfo, const BlockInfo *pRhsBlockInfo) const { + return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock; + } + }; + + // 1. Blocks with some non-movable allocations go first. + // 2. Blocks with smaller sumFreeSize go first. + struct BlockInfoCompareMoveDestination { + bool operator()(const BlockInfo *pLhsBlockInfo, const BlockInfo *pRhsBlockInfo) const { + if (pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) { + return true; + } + if (!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) { + return false; + } + if (pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) { + return true; + } + return false; + } + }; + + typedef VmaVector<BlockInfo *, VmaStlAllocator<BlockInfo *> > BlockInfoVector; + BlockInfoVector m_Blocks; + + VkResult DefragmentRound( + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove); + + size_t CalcBlocksWithNonMovableCount() const; + + static bool MoveMakesSense( + size_t dstBlockIndex, VkDeviceSize dstOffset, + size_t srcBlockIndex, VkDeviceSize srcOffset); +}; + +class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm { + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast) +public: + VmaDefragmentationAlgorithm_Fast( + VmaAllocator hAllocator, + VmaBlockVector *pBlockVector, + uint32_t currentFrameIndex, + bool overlappingMoveSupported); + virtual ~VmaDefragmentationAlgorithm_Fast(); + + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged) { ++m_AllocationCount; } + virtual void AddAll() { m_AllAllocations = true; } + + virtual VkResult Defragment( + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove); + + virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } + virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } + +private: + struct BlockInfo { + size_t origBlockIndex; + }; + + class FreeSpaceDatabase { + public: + FreeSpaceDatabase() { + FreeSpace s = {}; + s.blockInfoIndex = SIZE_MAX; + for (size_t i = 0; i < MAX_COUNT; ++i) { + m_FreeSpaces[i] = s; + } + } + + void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) { + if (size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) { + return; + } + + // Find first invalid or the smallest structure. + size_t bestIndex = SIZE_MAX; + for (size_t i = 0; i < MAX_COUNT; ++i) { + // Empty structure. + if (m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) { + bestIndex = i; + break; + } + if (m_FreeSpaces[i].size < size && + (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) { + bestIndex = i; + } + } + + if (bestIndex != SIZE_MAX) { + m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex; + m_FreeSpaces[bestIndex].offset = offset; + m_FreeSpaces[bestIndex].size = size; + } + } + + bool Fetch(VkDeviceSize alignment, VkDeviceSize size, + size_t &outBlockInfoIndex, VkDeviceSize &outDstOffset) { + size_t bestIndex = SIZE_MAX; + VkDeviceSize bestFreeSpaceAfter = 0; + for (size_t i = 0; i < MAX_COUNT; ++i) { + // Structure is valid. + if (m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) { + const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment); + // Allocation fits into this structure. + if (dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) { + const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - + (dstOffset + size); + if (bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) { + bestIndex = i; + bestFreeSpaceAfter = freeSpaceAfter; + } + } + } + } + + if (bestIndex != SIZE_MAX) { + outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex; + outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment); + + if (bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) { + // Leave this structure for remaining empty space. + const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size; + m_FreeSpaces[bestIndex].offset += alignmentPlusSize; + m_FreeSpaces[bestIndex].size -= alignmentPlusSize; + } else { + // This structure becomes invalid. + m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX; + } + + return true; + } + + return false; + } + + private: + static const size_t MAX_COUNT = 4; + + struct FreeSpace { + size_t blockInfoIndex; // SIZE_MAX means this structure is invalid. + VkDeviceSize offset; + VkDeviceSize size; + } m_FreeSpaces[MAX_COUNT]; + }; + + const bool m_OverlappingMoveSupported; + + uint32_t m_AllocationCount; + bool m_AllAllocations; + + VkDeviceSize m_BytesMoved; + uint32_t m_AllocationsMoved; + + VmaVector<BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos; + + void PreprocessMetadata(); + void PostprocessMetadata(); + void InsertSuballoc(VmaBlockMetadata_Generic *pMetadata, const VmaSuballocation &suballoc); +}; + +struct VmaBlockDefragmentationContext { + enum BLOCK_FLAG { + BLOCK_FLAG_USED = 0x00000001, + }; + uint32_t flags; + VkBuffer hBuffer; + + VmaBlockDefragmentationContext() : + flags(0), + hBuffer(VK_NULL_HANDLE) { + } +}; + +class VmaBlockVectorDefragmentationContext { + VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext) +public: + VkResult res; + bool mutexLocked; + VmaVector<VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts; + + VmaBlockVectorDefragmentationContext( + VmaAllocator hAllocator, + VmaPool hCustomPool, // Optional. + VmaBlockVector *pBlockVector, + uint32_t currFrameIndex, + uint32_t flags); + ~VmaBlockVectorDefragmentationContext(); + + VmaPool GetCustomPool() const { return m_hCustomPool; } + VmaBlockVector *GetBlockVector() const { return m_pBlockVector; } + VmaDefragmentationAlgorithm *GetAlgorithm() const { return m_pAlgorithm; } + + void AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged); + void AddAll() { m_AllAllocations = true; } + + void Begin(bool overlappingMoveSupported); + +private: + const VmaAllocator m_hAllocator; + // Null if not from custom pool. + const VmaPool m_hCustomPool; + // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors. + VmaBlockVector *const m_pBlockVector; + const uint32_t m_CurrFrameIndex; + const uint32_t m_AlgorithmFlags; + // Owner of this object. + VmaDefragmentationAlgorithm *m_pAlgorithm; + + struct AllocInfo { + VmaAllocation hAlloc; + VkBool32 *pChanged; + }; + // Used between constructor and Begin. + VmaVector<AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations; + bool m_AllAllocations; +}; + +struct VmaDefragmentationContext_T { +private: + VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) +public: + VmaDefragmentationContext_T( + VmaAllocator hAllocator, + uint32_t currFrameIndex, + uint32_t flags, + VmaDefragmentationStats *pStats); + ~VmaDefragmentationContext_T(); + + void AddPools(uint32_t poolCount, VmaPool *pPools); + void AddAllocations( + uint32_t allocationCount, + VmaAllocation *pAllocations, + VkBool32 *pAllocationsChanged); + + /* + Returns: + - `VK_SUCCESS` if succeeded and object can be destroyed immediately. + - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd(). + - Negative value if error occured and object can be destroyed immediately. + */ + VkResult Defragment( + VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, + VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer, VmaDefragmentationStats *pStats); + +private: + const VmaAllocator m_hAllocator; + const uint32_t m_CurrFrameIndex; + const uint32_t m_Flags; + VmaDefragmentationStats *const m_pStats; + // Owner of these objects. + VmaBlockVectorDefragmentationContext *m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES]; + // Owner of these objects. + VmaVector<VmaBlockVectorDefragmentationContext *, VmaStlAllocator<VmaBlockVectorDefragmentationContext *> > m_CustomPoolContexts; +}; + +#if VMA_RECORDING_ENABLED + +class VmaRecorder { +public: + VmaRecorder(); + VkResult Init(const VmaRecordSettings &settings, bool useMutex); + void WriteConfiguration( + const VkPhysicalDeviceProperties &devProps, + const VkPhysicalDeviceMemoryProperties &memProps, + bool dedicatedAllocationExtensionEnabled); + ~VmaRecorder(); + + void RecordCreateAllocator(uint32_t frameIndex); + void RecordDestroyAllocator(uint32_t frameIndex); + void RecordCreatePool(uint32_t frameIndex, + const VmaPoolCreateInfo &createInfo, + VmaPool pool); + void RecordDestroyPool(uint32_t frameIndex, VmaPool pool); + void RecordAllocateMemory(uint32_t frameIndex, + const VkMemoryRequirements &vkMemReq, + const VmaAllocationCreateInfo &createInfo, + VmaAllocation allocation); + void RecordAllocateMemoryPages(uint32_t frameIndex, + const VkMemoryRequirements &vkMemReq, + const VmaAllocationCreateInfo &createInfo, + uint64_t allocationCount, + const VmaAllocation *pAllocations); + void RecordAllocateMemoryForBuffer(uint32_t frameIndex, + const VkMemoryRequirements &vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + const VmaAllocationCreateInfo &createInfo, + VmaAllocation allocation); + void RecordAllocateMemoryForImage(uint32_t frameIndex, + const VkMemoryRequirements &vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + const VmaAllocationCreateInfo &createInfo, + VmaAllocation allocation); + void RecordFreeMemory(uint32_t frameIndex, + VmaAllocation allocation); + void RecordFreeMemoryPages(uint32_t frameIndex, + uint64_t allocationCount, + const VmaAllocation *pAllocations); + void RecordResizeAllocation( + uint32_t frameIndex, + VmaAllocation allocation, + VkDeviceSize newSize); + void RecordSetAllocationUserData(uint32_t frameIndex, + VmaAllocation allocation, + const void *pUserData); + void RecordCreateLostAllocation(uint32_t frameIndex, + VmaAllocation allocation); + void RecordMapMemory(uint32_t frameIndex, + VmaAllocation allocation); + void RecordUnmapMemory(uint32_t frameIndex, + VmaAllocation allocation); + void RecordFlushAllocation(uint32_t frameIndex, + VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); + void RecordInvalidateAllocation(uint32_t frameIndex, + VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); + void RecordCreateBuffer(uint32_t frameIndex, + const VkBufferCreateInfo &bufCreateInfo, + const VmaAllocationCreateInfo &allocCreateInfo, + VmaAllocation allocation); + void RecordCreateImage(uint32_t frameIndex, + const VkImageCreateInfo &imageCreateInfo, + const VmaAllocationCreateInfo &allocCreateInfo, + VmaAllocation allocation); + void RecordDestroyBuffer(uint32_t frameIndex, + VmaAllocation allocation); + void RecordDestroyImage(uint32_t frameIndex, + VmaAllocation allocation); + void RecordTouchAllocation(uint32_t frameIndex, + VmaAllocation allocation); + void RecordGetAllocationInfo(uint32_t frameIndex, + VmaAllocation allocation); + void RecordMakePoolAllocationsLost(uint32_t frameIndex, + VmaPool pool); + void RecordDefragmentationBegin(uint32_t frameIndex, + const VmaDefragmentationInfo2 &info, + VmaDefragmentationContext ctx); + void RecordDefragmentationEnd(uint32_t frameIndex, + VmaDefragmentationContext ctx); + +private: + struct CallParams { + uint32_t threadId; + double time; + }; + + class UserDataString { + public: + UserDataString(VmaAllocationCreateFlags allocFlags, const void *pUserData); + const char *GetString() const { return m_Str; } + + private: + char m_PtrStr[17]; + const char *m_Str; + }; + + bool m_UseMutex; + VmaRecordFlags m_Flags; + FILE *m_File; + VMA_MUTEX m_FileMutex; + int64_t m_Freq; + int64_t m_StartCounter; + + void GetBasicParams(CallParams &outParams); + + // T must be a pointer type, e.g. VmaAllocation, VmaPool. + template <typename T> + void PrintPointerList(uint64_t count, const T *pItems) { + if (count) { + fprintf(m_File, "%p", pItems[0]); + for (uint64_t i = 1; i < count; ++i) { + fprintf(m_File, " %p", pItems[i]); + } + } + } + + void PrintPointerList(uint64_t count, const VmaAllocation *pItems); + void Flush(); +}; + +#endif // #if VMA_RECORDING_ENABLED + +/* +Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. +*/ +class VmaAllocationObjectAllocator { + VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator) +public: + VmaAllocationObjectAllocator(const VkAllocationCallbacks *pAllocationCallbacks); + + VmaAllocation Allocate(); + void Free(VmaAllocation hAlloc); + +private: + VMA_MUTEX m_Mutex; + VmaPoolAllocator<VmaAllocation_T> m_Allocator; +}; + +// Main allocator object. +struct VmaAllocator_T { + VMA_CLASS_NO_COPY(VmaAllocator_T) +public: + bool m_UseMutex; + bool m_UseKhrDedicatedAllocation; + VkDevice m_hDevice; + bool m_AllocationCallbacksSpecified; + VkAllocationCallbacks m_AllocationCallbacks; + VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; + VmaAllocationObjectAllocator m_AllocationObjectAllocator; + + // Number of bytes free out of limit, or VK_WHOLE_SIZE if no limit for that heap. + VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS]; + VMA_MUTEX m_HeapSizeLimitMutex; + + VkPhysicalDeviceProperties m_PhysicalDeviceProperties; + VkPhysicalDeviceMemoryProperties m_MemProps; + + // Default pools. + VmaBlockVector *m_pBlockVectors[VK_MAX_MEMORY_TYPES]; + + // Each vector is sorted by memory (handle value). + typedef VmaVector<VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType; + AllocationVectorType *m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES]; + VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES]; + + VmaAllocator_T(const VmaAllocatorCreateInfo *pCreateInfo); + VkResult Init(const VmaAllocatorCreateInfo *pCreateInfo); + ~VmaAllocator_T(); + + const VkAllocationCallbacks *GetAllocationCallbacks() const { + return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0; + } + const VmaVulkanFunctions &GetVulkanFunctions() const { + return m_VulkanFunctions; + } + + VkDeviceSize GetBufferImageGranularity() const { + return VMA_MAX( + static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), + m_PhysicalDeviceProperties.limits.bufferImageGranularity); + } + + uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } + uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } + + uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const { + VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); + return m_MemProps.memoryTypes[memTypeIndex].heapIndex; + } + // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. + bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const { + return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + } + // Minimum alignment for all allocations in specific memory type. + VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const { + return IsMemoryTypeNonCoherent(memTypeIndex) ? + VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : + (VkDeviceSize)VMA_DEBUG_ALIGNMENT; + } + + bool IsIntegratedGpu() const { + return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; + } + +#if VMA_RECORDING_ENABLED + VmaRecorder *GetRecorder() const { return m_pRecorder; } +#endif + + void GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements &memReq, + bool &requiresDedicatedAllocation, + bool &prefersDedicatedAllocation) const; + void GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements &memReq, + bool &requiresDedicatedAllocation, + bool &prefersDedicatedAllocation) const; + + // Main allocation function. + VkResult AllocateMemory( + const VkMemoryRequirements &vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + const VmaAllocationCreateInfo &createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation *pAllocations); + + // Main deallocation function. + void FreeMemory( + size_t allocationCount, + const VmaAllocation *pAllocations); + + VkResult ResizeAllocation( + const VmaAllocation alloc, + VkDeviceSize newSize); + + void CalculateStats(VmaStats *pStats); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter &json); +#endif + + VkResult DefragmentationBegin( + const VmaDefragmentationInfo2 &info, + VmaDefragmentationStats *pStats, + VmaDefragmentationContext *pContext); + VkResult DefragmentationEnd( + VmaDefragmentationContext context); + + void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo *pAllocationInfo); + bool TouchAllocation(VmaAllocation hAllocation); + + VkResult CreatePool(const VmaPoolCreateInfo *pCreateInfo, VmaPool *pPool); + void DestroyPool(VmaPool pool); + void GetPoolStats(VmaPool pool, VmaPoolStats *pPoolStats); + + void SetCurrentFrameIndex(uint32_t frameIndex); + uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } + + void MakePoolAllocationsLost( + VmaPool hPool, + size_t *pLostAllocationCount); + VkResult CheckPoolCorruption(VmaPool hPool); + VkResult CheckCorruption(uint32_t memoryTypeBits); + + void CreateLostAllocation(VmaAllocation *pAllocation); + + VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo *pAllocateInfo, VkDeviceMemory *pMemory); + void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); + + VkResult Map(VmaAllocation hAllocation, void **ppData); + void Unmap(VmaAllocation hAllocation); + + VkResult BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer); + VkResult BindImageMemory(VmaAllocation hAllocation, VkImage hImage); + + void FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op); + + void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); + + /* + Returns bit mask of memory types that can support defragmentation on GPU as + they support creation of required buffer for copy operations. + */ + uint32_t GetGpuDefragmentationMemoryTypeBits(); + +private: + VkDeviceSize m_PreferredLargeHeapBlockSize; + + VkPhysicalDevice m_PhysicalDevice; + VMA_ATOMIC_UINT32 m_CurrentFrameIndex; + VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. + + VMA_RW_MUTEX m_PoolsMutex; + // Protected by m_PoolsMutex. Sorted by pointer value. + VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools; + uint32_t m_NextPoolId; + + VmaVulkanFunctions m_VulkanFunctions; + +#if VMA_RECORDING_ENABLED + VmaRecorder *m_pRecorder; +#endif + + void ImportVulkanFunctions(const VmaVulkanFunctions *pVulkanFunctions); + + VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); + + VkResult AllocateMemoryOfType( + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + const VmaAllocationCreateInfo &createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation *pAllocations); + + // Helper function only to be used inside AllocateDedicatedMemory. + VkResult AllocateDedicatedMemoryPage( + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo &allocInfo, + bool map, + bool isUserDataString, + void *pUserData, + VmaAllocation *pAllocation); + + // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. + VkResult AllocateDedicatedMemory( + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + bool map, + bool isUserDataString, + void *pUserData, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + size_t allocationCount, + VmaAllocation *pAllocations); + + // Tries to free pMemory as Dedicated Memory. Returns true if found and freed. + void FreeDedicatedMemory(VmaAllocation allocation); + + /* + Calculates and returns bit mask of memory types that can support defragmentation + on GPU as they support creation of required buffer for copy operations. + */ + uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; +}; + +//////////////////////////////////////////////////////////////////////////////// +// Memory allocation #2 after VmaAllocator_T definition + +static void *VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) { + return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); +} + +static void VmaFree(VmaAllocator hAllocator, void *ptr) { + VmaFree(&hAllocator->m_AllocationCallbacks, ptr); +} + +template <typename T> +static T *VmaAllocate(VmaAllocator hAllocator) { + return (T *)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); +} + +template <typename T> +static T *VmaAllocateArray(VmaAllocator hAllocator, size_t count) { + return (T *)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); +} + +template <typename T> +static void vma_delete(VmaAllocator hAllocator, T *ptr) { + if (ptr != VMA_NULL) { + ptr->~T(); + VmaFree(hAllocator, ptr); + } +} + +template <typename T> +static void vma_delete_array(VmaAllocator hAllocator, T *ptr, size_t count) { + if (ptr != VMA_NULL) { + for (size_t i = count; i--;) + ptr[i].~T(); + VmaFree(hAllocator, ptr); + } +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaStringBuilder + +#if VMA_STATS_STRING_ENABLED + +class VmaStringBuilder { +public: + VmaStringBuilder(VmaAllocator alloc) : + m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) {} + size_t GetLength() const { return m_Data.size(); } + const char *GetData() const { return m_Data.data(); } + + void Add(char ch) { m_Data.push_back(ch); } + void Add(const char *pStr); + void AddNewLine() { Add('\n'); } + void AddNumber(uint32_t num); + void AddNumber(uint64_t num); + void AddPointer(const void *ptr); + +private: + VmaVector<char, VmaStlAllocator<char> > m_Data; +}; + +void VmaStringBuilder::Add(const char *pStr) { + const size_t strLen = strlen(pStr); + if (strLen > 0) { + const size_t oldCount = m_Data.size(); + m_Data.resize(oldCount + strLen); + memcpy(m_Data.data() + oldCount, pStr, strLen); + } +} + +void VmaStringBuilder::AddNumber(uint32_t num) { + char buf[11]; + VmaUint32ToStr(buf, sizeof(buf), num); + Add(buf); +} + +void VmaStringBuilder::AddNumber(uint64_t num) { + char buf[21]; + VmaUint64ToStr(buf, sizeof(buf), num); + Add(buf); +} + +void VmaStringBuilder::AddPointer(const void *ptr) { + char buf[21]; + VmaPtrToStr(buf, sizeof(buf), ptr); + Add(buf); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// VmaJsonWriter + +#if VMA_STATS_STRING_ENABLED + +class VmaJsonWriter { + VMA_CLASS_NO_COPY(VmaJsonWriter) +public: + VmaJsonWriter(const VkAllocationCallbacks *pAllocationCallbacks, VmaStringBuilder &sb); + ~VmaJsonWriter(); + + void BeginObject(bool singleLine = false); + void EndObject(); + + void BeginArray(bool singleLine = false); + void EndArray(); + + void WriteString(const char *pStr); + void BeginString(const char *pStr = VMA_NULL); + void ContinueString(const char *pStr); + void ContinueString(uint32_t n); + void ContinueString(uint64_t n); + void ContinueString_Pointer(const void *ptr); + void EndString(const char *pStr = VMA_NULL); + + void WriteNumber(uint32_t n); + void WriteNumber(uint64_t n); + void WriteBool(bool b); + void WriteNull(); + +private: + static const char *const INDENT; + + enum COLLECTION_TYPE { + COLLECTION_TYPE_OBJECT, + COLLECTION_TYPE_ARRAY, + }; + struct StackItem { + COLLECTION_TYPE type; + uint32_t valueCount; + bool singleLineMode; + }; + + VmaStringBuilder &m_SB; + VmaVector<StackItem, VmaStlAllocator<StackItem> > m_Stack; + bool m_InsideString; + + void BeginValue(bool isString); + void WriteIndent(bool oneLess = false); +}; + +const char *const VmaJsonWriter::INDENT = " "; + +VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks *pAllocationCallbacks, VmaStringBuilder &sb) : + m_SB(sb), + m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)), + m_InsideString(false) { +} + +VmaJsonWriter::~VmaJsonWriter() { + VMA_ASSERT(!m_InsideString); + VMA_ASSERT(m_Stack.empty()); +} + +void VmaJsonWriter::BeginObject(bool singleLine) { + VMA_ASSERT(!m_InsideString); + + BeginValue(false); + m_SB.Add('{'); + + StackItem item; + item.type = COLLECTION_TYPE_OBJECT; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} + +void VmaJsonWriter::EndObject() { + VMA_ASSERT(!m_InsideString); + + WriteIndent(true); + m_SB.Add('}'); + + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); + m_Stack.pop_back(); +} + +void VmaJsonWriter::BeginArray(bool singleLine) { + VMA_ASSERT(!m_InsideString); + + BeginValue(false); + m_SB.Add('['); + + StackItem item; + item.type = COLLECTION_TYPE_ARRAY; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} + +void VmaJsonWriter::EndArray() { + VMA_ASSERT(!m_InsideString); + + WriteIndent(true); + m_SB.Add(']'); + + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); + m_Stack.pop_back(); +} + +void VmaJsonWriter::WriteString(const char *pStr) { + BeginString(pStr); + EndString(); +} + +void VmaJsonWriter::BeginString(const char *pStr) { + VMA_ASSERT(!m_InsideString); + + BeginValue(true); + m_SB.Add('"'); + m_InsideString = true; + if (pStr != VMA_NULL && pStr[0] != '\0') { + ContinueString(pStr); + } +} + +void VmaJsonWriter::ContinueString(const char *pStr) { + VMA_ASSERT(m_InsideString); + + const size_t strLen = strlen(pStr); + for (size_t i = 0; i < strLen; ++i) { + char ch = pStr[i]; + if (ch == '\\') { + m_SB.Add("\\\\"); + } else if (ch == '"') { + m_SB.Add("\\\""); + } else if (ch >= 32) { + m_SB.Add(ch); + } else + switch (ch) { + case '\b': + m_SB.Add("\\b"); + break; + case '\f': + m_SB.Add("\\f"); + break; + case '\n': + m_SB.Add("\\n"); + break; + case '\r': + m_SB.Add("\\r"); + break; + case '\t': + m_SB.Add("\\t"); + break; + default: + VMA_ASSERT(0 && "Character not currently supported."); + break; + } + } +} + +void VmaJsonWriter::ContinueString(uint32_t n) { + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::ContinueString(uint64_t n) { + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::ContinueString_Pointer(const void *ptr) { + VMA_ASSERT(m_InsideString); + m_SB.AddPointer(ptr); +} + +void VmaJsonWriter::EndString(const char *pStr) { + VMA_ASSERT(m_InsideString); + if (pStr != VMA_NULL && pStr[0] != '\0') { + ContinueString(pStr); + } + m_SB.Add('"'); + m_InsideString = false; +} + +void VmaJsonWriter::WriteNumber(uint32_t n) { + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::WriteNumber(uint64_t n) { + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::WriteBool(bool b) { + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add(b ? "true" : "false"); +} + +void VmaJsonWriter::WriteNull() { + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add("null"); +} + +void VmaJsonWriter::BeginValue(bool isString) { + if (!m_Stack.empty()) { + StackItem &currItem = m_Stack.back(); + if (currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 == 0) { + VMA_ASSERT(isString); + } + + if (currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 != 0) { + m_SB.Add(": "); + } else if (currItem.valueCount > 0) { + m_SB.Add(", "); + WriteIndent(); + } else { + WriteIndent(); + } + ++currItem.valueCount; + } +} + +void VmaJsonWriter::WriteIndent(bool oneLess) { + if (!m_Stack.empty() && !m_Stack.back().singleLineMode) { + m_SB.AddNewLine(); + + size_t count = m_Stack.size(); + if (count > 0 && oneLess) { + --count; + } + for (size_t i = 0; i < count; ++i) { + m_SB.Add(INDENT); + } + } +} + +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// + +void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void *pUserData) { + if (IsUserDataString()) { + VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData); + + FreeUserDataString(hAllocator); + + if (pUserData != VMA_NULL) { + const char *const newStrSrc = (char *)pUserData; + const size_t newStrLen = strlen(newStrSrc); + char *const newStrDst = vma_new_array(hAllocator, char, newStrLen + 1); + memcpy(newStrDst, newStrSrc, newStrLen + 1); + m_pUserData = newStrDst; + } + } else { + m_pUserData = pUserData; + } +} + +void VmaAllocation_T::ChangeBlockAllocation( + VmaAllocator hAllocator, + VmaDeviceMemoryBlock *block, + VkDeviceSize offset) { + VMA_ASSERT(block != VMA_NULL); + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + + // Move mapping reference counter from old block to new block. + if (block != m_BlockAllocation.m_Block) { + uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP; + if (IsPersistentMap()) + ++mapRefCount; + m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount); + block->Map(hAllocator, mapRefCount, VMA_NULL); + } + + m_BlockAllocation.m_Block = block; + m_BlockAllocation.m_Offset = offset; +} + +void VmaAllocation_T::ChangeSize(VkDeviceSize newSize) { + VMA_ASSERT(newSize > 0); + m_Size = newSize; +} + +void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset) { + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + m_BlockAllocation.m_Offset = newOffset; +} + +VkDeviceSize VmaAllocation_T::GetOffset() const { + switch (m_Type) { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Offset; + case ALLOCATION_TYPE_DEDICATED: + return 0; + default: + VMA_ASSERT(0); + return 0; + } +} + +VkDeviceMemory VmaAllocation_T::GetMemory() const { + switch (m_Type) { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetDeviceMemory(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_hMemory; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; + } +} + +uint32_t VmaAllocation_T::GetMemoryTypeIndex() const { + switch (m_Type) { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetMemoryTypeIndex(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_MemoryTypeIndex; + default: + VMA_ASSERT(0); + return UINT32_MAX; + } +} + +void *VmaAllocation_T::GetMappedData() const { + switch (m_Type) { + case ALLOCATION_TYPE_BLOCK: + if (m_MapCount != 0) { + void *pBlockData = m_BlockAllocation.m_Block->GetMappedData(); + VMA_ASSERT(pBlockData != VMA_NULL); + return (char *)pBlockData + m_BlockAllocation.m_Offset; + } else { + return VMA_NULL; + } + break; + case ALLOCATION_TYPE_DEDICATED: + VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0)); + return m_DedicatedAllocation.m_pMappedData; + default: + VMA_ASSERT(0); + return VMA_NULL; + } +} + +bool VmaAllocation_T::CanBecomeLost() const { + switch (m_Type) { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_CanBecomeLost; + case ALLOCATION_TYPE_DEDICATED: + return false; + default: + VMA_ASSERT(0); + return false; + } +} + +bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) { + VMA_ASSERT(CanBecomeLost()); + + /* + Warning: This is a carefully designed algorithm. + Do not modify unless you really know what you're doing :) + */ + uint32_t localLastUseFrameIndex = GetLastUseFrameIndex(); + for (;;) { + if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) { + VMA_ASSERT(0); + return false; + } else if (localLastUseFrameIndex + frameInUseCount >= currentFrameIndex) { + return false; + } else // Last use time earlier than current time. + { + if (CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST)) { + // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST. + // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock. + return true; + } + } + } +} + +#if VMA_STATS_STRING_ENABLED + +// Correspond to values of enum VmaSuballocationType. +static const char *VMA_SUBALLOCATION_TYPE_NAMES[] = { + "FREE", + "UNKNOWN", + "BUFFER", + "IMAGE_UNKNOWN", + "IMAGE_LINEAR", + "IMAGE_OPTIMAL", +}; + +void VmaAllocation_T::PrintParameters(class VmaJsonWriter &json) const { + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); + + json.WriteString("Size"); + json.WriteNumber(m_Size); + + if (m_pUserData != VMA_NULL) { + json.WriteString("UserData"); + if (IsUserDataString()) { + json.WriteString((const char *)m_pUserData); + } else { + json.BeginString(); + json.ContinueString_Pointer(m_pUserData); + json.EndString(); + } + } + + json.WriteString("CreationFrameIndex"); + json.WriteNumber(m_CreationFrameIndex); + + json.WriteString("LastUseFrameIndex"); + json.WriteNumber(GetLastUseFrameIndex()); + + if (m_BufferImageUsage != 0) { + json.WriteString("Usage"); + json.WriteNumber(m_BufferImageUsage); + } +} + +#endif + +void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) { + VMA_ASSERT(IsUserDataString()); + if (m_pUserData != VMA_NULL) { + char *const oldStr = (char *)m_pUserData; + const size_t oldStrLen = strlen(oldStr); + vma_delete_array(hAllocator, oldStr, oldStrLen + 1); + m_pUserData = VMA_NULL; + } +} + +void VmaAllocation_T::BlockAllocMap() { + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + + if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) { + ++m_MapCount; + } else { + VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); + } +} + +void VmaAllocation_T::BlockAllocUnmap() { + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + + if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) { + --m_MapCount; + } else { + VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); + } +} + +VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void **ppData) { + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + + if (m_MapCount != 0) { + if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) { + VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); + *ppData = m_DedicatedAllocation.m_pMappedData; + ++m_MapCount; + return VK_SUCCESS; + } else { + VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); + return VK_ERROR_MEMORY_MAP_FAILED; + } + } else { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + ppData); + if (result == VK_SUCCESS) { + m_DedicatedAllocation.m_pMappedData = *ppData; + m_MapCount = 1; + } + return result; + } +} + +void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) { + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + + if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) { + --m_MapCount; + if (m_MapCount == 0) { + m_DedicatedAllocation.m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory); + } + } else { + VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); + } +} + +#if VMA_STATS_STRING_ENABLED + +static void VmaPrintStatInfo(VmaJsonWriter &json, const VmaStatInfo &stat) { + json.BeginObject(); + + json.WriteString("Blocks"); + json.WriteNumber(stat.blockCount); + + json.WriteString("Allocations"); + json.WriteNumber(stat.allocationCount); + + json.WriteString("UnusedRanges"); + json.WriteNumber(stat.unusedRangeCount); + + json.WriteString("UsedBytes"); + json.WriteNumber(stat.usedBytes); + + json.WriteString("UnusedBytes"); + json.WriteNumber(stat.unusedBytes); + + if (stat.allocationCount > 1) { + json.WriteString("AllocationSize"); + json.BeginObject(true); + json.WriteString("Min"); + json.WriteNumber(stat.allocationSizeMin); + json.WriteString("Avg"); + json.WriteNumber(stat.allocationSizeAvg); + json.WriteString("Max"); + json.WriteNumber(stat.allocationSizeMax); + json.EndObject(); + } + + if (stat.unusedRangeCount > 1) { + json.WriteString("UnusedRangeSize"); + json.BeginObject(true); + json.WriteString("Min"); + json.WriteNumber(stat.unusedRangeSizeMin); + json.WriteString("Avg"); + json.WriteNumber(stat.unusedRangeSizeAvg); + json.WriteString("Max"); + json.WriteNumber(stat.unusedRangeSizeMax); + json.EndObject(); + } + + json.EndObject(); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +struct VmaSuballocationItemSizeLess { + bool operator()( + const VmaSuballocationList::iterator lhs, + const VmaSuballocationList::iterator rhs) const { + return lhs->size < rhs->size; + } + bool operator()( + const VmaSuballocationList::iterator lhs, + VkDeviceSize rhsSize) const { + return lhs->size < rhsSize; + } +}; + +//////////////////////////////////////////////////////////////////////////////// +// class VmaBlockMetadata + +VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) : + m_Size(0), + m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks()) { +} + +#if VMA_STATS_STRING_ENABLED + +void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter &json, + VkDeviceSize unusedBytes, + size_t allocationCount, + size_t unusedRangeCount) const { + json.BeginObject(); + + json.WriteString("TotalBytes"); + json.WriteNumber(GetSize()); + + json.WriteString("UnusedBytes"); + json.WriteNumber(unusedBytes); + + json.WriteString("Allocations"); + json.WriteNumber((uint64_t)allocationCount); + + json.WriteString("UnusedRanges"); + json.WriteNumber((uint64_t)unusedRangeCount); + + json.WriteString("Suballocations"); + json.BeginArray(); +} + +void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter &json, + VkDeviceSize offset, + VmaAllocation hAllocation) const { + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + hAllocation->PrintParameters(json); + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter &json, + VkDeviceSize offset, + VkDeviceSize size) const { + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); + + json.WriteString("Size"); + json.WriteNumber(size); + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter &json) const { + json.EndArray(); + json.EndObject(); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// class VmaBlockMetadata_Generic + +VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) : + VmaBlockMetadata(hAllocator), + m_FreeCount(0), + m_SumFreeSize(0), + m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), + m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks())) { +} + +VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic() { +} + +void VmaBlockMetadata_Generic::Init(VkDeviceSize size) { + VmaBlockMetadata::Init(size); + + m_FreeCount = 1; + m_SumFreeSize = size; + + VmaSuballocation suballoc = {}; + suballoc.offset = 0; + suballoc.size = size; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + + VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); + m_Suballocations.push_back(suballoc); + VmaSuballocationList::iterator suballocItem = m_Suballocations.end(); + --suballocItem; + m_FreeSuballocationsBySize.push_back(suballocItem); +} + +bool VmaBlockMetadata_Generic::Validate() const { + VMA_VALIDATE(!m_Suballocations.empty()); + + // Expected offset of new suballocation as calculated from previous ones. + VkDeviceSize calculatedOffset = 0; + // Expected number of free suballocations as calculated from traversing their list. + uint32_t calculatedFreeCount = 0; + // Expected sum size of free suballocations as calculated from traversing their list. + VkDeviceSize calculatedSumFreeSize = 0; + // Expected number of free suballocations that should be registered in + // m_FreeSuballocationsBySize calculated from traversing their list. + size_t freeSuballocationsToRegister = 0; + // True if previous visited suballocation was free. + bool prevFree = false; + + for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); + suballocItem != m_Suballocations.cend(); + ++suballocItem) { + const VmaSuballocation &subAlloc = *suballocItem; + + // Actual offset of this suballocation doesn't match expected one. + VMA_VALIDATE(subAlloc.offset == calculatedOffset); + + const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); + // Two adjacent free suballocations are invalid. They should be merged. + VMA_VALIDATE(!prevFree || !currFree); + + VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE)); + + if (currFree) { + calculatedSumFreeSize += subAlloc.size; + ++calculatedFreeCount; + if (subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) { + ++freeSuballocationsToRegister; + } + + // Margin required between allocations - every free space must be at least that large. + VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN); + } else { + VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset); + VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size); + + // Margin required between allocations - previous allocation must be free. + VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree); + } + + calculatedOffset += subAlloc.size; + prevFree = currFree; + } + + // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't + // match expected one. + VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); + + VkDeviceSize lastSize = 0; + for (size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) { + VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; + + // Only free suballocations can be registered in m_FreeSuballocationsBySize. + VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); + // They must be sorted by size ascending. + VMA_VALIDATE(suballocItem->size >= lastSize); + + lastSize = suballocItem->size; + } + + // Check if totals match calculacted values. + VMA_VALIDATE(ValidateFreeSuballocationList()); + VMA_VALIDATE(calculatedOffset == GetSize()); + VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); + VMA_VALIDATE(calculatedFreeCount == m_FreeCount); + + return true; +} + +VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const { + if (!m_FreeSuballocationsBySize.empty()) { + return m_FreeSuballocationsBySize.back()->size; + } else { + return 0; + } +} + +bool VmaBlockMetadata_Generic::IsEmpty() const { + return (m_Suballocations.size() == 1) && (m_FreeCount == 1); +} + +void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo &outInfo) const { + outInfo.blockCount = 1; + + const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); + outInfo.allocationCount = rangeCount - m_FreeCount; + outInfo.unusedRangeCount = m_FreeCount; + + outInfo.unusedBytes = m_SumFreeSize; + outInfo.usedBytes = GetSize() - outInfo.unusedBytes; + + outInfo.allocationSizeMin = UINT64_MAX; + outInfo.allocationSizeMax = 0; + outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMax = 0; + + for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); + suballocItem != m_Suballocations.cend(); + ++suballocItem) { + const VmaSuballocation &suballoc = *suballocItem; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { + outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); + outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size); + } else { + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size); + outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size); + } + } +} + +void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats &inoutStats) const { + const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); + + inoutStats.size += GetSize(); + inoutStats.unusedSize += m_SumFreeSize; + inoutStats.allocationCount += rangeCount - m_FreeCount; + inoutStats.unusedRangeCount += m_FreeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); +} + +#if VMA_STATS_STRING_ENABLED + +void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter &json) const { + PrintDetailedMap_Begin(json, + m_SumFreeSize, // unusedBytes + m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount + m_FreeCount); // unusedRangeCount + + size_t i = 0; + for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); + suballocItem != m_Suballocations.cend(); + ++suballocItem, ++i) { + if (suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) { + PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size); + } else { + PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation); + } + } + + PrintDetailedMap_End(json); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Generic::CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest) { + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(!upperAddress); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); + + pAllocationRequest->type = VmaAllocationRequestType::Normal; + + // There is not enough total free space in this block to fullfill the request: Early return. + if (canMakeOtherLost == false && + m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN) { + return false; + } + + // New algorithm, efficiently searching freeSuballocationsBySize. + const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); + if (freeSuballocCount > 0) { + if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) { + // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN. + VmaSuballocationList::iterator *const it = VmaBinaryFindFirstNotLess( + m_FreeSuballocationsBySize.data(), + m_FreeSuballocationsBySize.data() + freeSuballocCount, + allocSize + 2 * VMA_DEBUG_MARGIN, + VmaSuballocationItemSizeLess()); + size_t index = it - m_FreeSuballocationsBySize.data(); + for (; index < freeSuballocCount; ++index) { + if (CheckAllocation( + currentFrameIndex, + frameInUseCount, + bufferImageGranularity, + allocSize, + allocAlignment, + allocType, + m_FreeSuballocationsBySize[index], + false, // canMakeOtherLost + &pAllocationRequest->offset, + &pAllocationRequest->itemsToMakeLostCount, + &pAllocationRequest->sumFreeSize, + &pAllocationRequest->sumItemSize)) { + pAllocationRequest->item = m_FreeSuballocationsBySize[index]; + return true; + } + } + } else if (strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) { + for (VmaSuballocationList::iterator it = m_Suballocations.begin(); + it != m_Suballocations.end(); + ++it) { + if (it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( + currentFrameIndex, + frameInUseCount, + bufferImageGranularity, + allocSize, + allocAlignment, + allocType, + it, + false, // canMakeOtherLost + &pAllocationRequest->offset, + &pAllocationRequest->itemsToMakeLostCount, + &pAllocationRequest->sumFreeSize, + &pAllocationRequest->sumItemSize)) { + pAllocationRequest->item = it; + return true; + } + } + } else // WORST_FIT, FIRST_FIT + { + // Search staring from biggest suballocations. + for (size_t index = freeSuballocCount; index--;) { + if (CheckAllocation( + currentFrameIndex, + frameInUseCount, + bufferImageGranularity, + allocSize, + allocAlignment, + allocType, + m_FreeSuballocationsBySize[index], + false, // canMakeOtherLost + &pAllocationRequest->offset, + &pAllocationRequest->itemsToMakeLostCount, + &pAllocationRequest->sumFreeSize, + &pAllocationRequest->sumItemSize)) { + pAllocationRequest->item = m_FreeSuballocationsBySize[index]; + return true; + } + } + } + } + + if (canMakeOtherLost) { + // Brute-force algorithm. TODO: Come up with something better. + + bool found = false; + VmaAllocationRequest tmpAllocRequest = {}; + tmpAllocRequest.type = VmaAllocationRequestType::Normal; + for (VmaSuballocationList::iterator suballocIt = m_Suballocations.begin(); + suballocIt != m_Suballocations.end(); + ++suballocIt) { + if (suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE || + suballocIt->hAllocation->CanBecomeLost()) { + if (CheckAllocation( + currentFrameIndex, + frameInUseCount, + bufferImageGranularity, + allocSize, + allocAlignment, + allocType, + suballocIt, + canMakeOtherLost, + &tmpAllocRequest.offset, + &tmpAllocRequest.itemsToMakeLostCount, + &tmpAllocRequest.sumFreeSize, + &tmpAllocRequest.sumItemSize)) { + if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) { + *pAllocationRequest = tmpAllocRequest; + pAllocationRequest->item = suballocIt; + break; + } + if (!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost()) { + *pAllocationRequest = tmpAllocRequest; + pAllocationRequest->item = suballocIt; + found = true; + } + } + } + } + + return found; + } + + return false; +} + +bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest *pAllocationRequest) { + VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal); + + while (pAllocationRequest->itemsToMakeLostCount > 0) { + if (pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE) { + ++pAllocationRequest->item; + } + VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); + VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE); + VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost()); + if (pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) { + pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item); + --pAllocationRequest->itemsToMakeLostCount; + } else { + return false; + } + } + + VMA_HEAVY_ASSERT(Validate()); + VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); + VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE); + + return true; +} + +uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) { + uint32_t lostAllocationCount = 0; + for (VmaSuballocationList::iterator it = m_Suballocations.begin(); + it != m_Suballocations.end(); + ++it) { + if (it->type != VMA_SUBALLOCATION_TYPE_FREE && + it->hAllocation->CanBecomeLost() && + it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) { + it = FreeSuballocation(it); + ++lostAllocationCount; + } + } + return lostAllocationCount; +} + +VkResult VmaBlockMetadata_Generic::CheckCorruption(const void *pBlockData) { + for (VmaSuballocationList::iterator it = m_Suballocations.begin(); + it != m_Suballocations.end(); + ++it) { + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) { + if (!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN)) { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if (!VmaValidateMagicValue(pBlockData, it->offset + it->size)) { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_Generic::Alloc( + const VmaAllocationRequest &request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation) { + VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); + VMA_ASSERT(request.item != m_Suballocations.end()); + VmaSuballocation &suballoc = *request.item; + // Given suballocation is a free block. + VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + // Given offset is inside this suballocation. + VMA_ASSERT(request.offset >= suballoc.offset); + const VkDeviceSize paddingBegin = request.offset - suballoc.offset; + VMA_ASSERT(suballoc.size >= paddingBegin + allocSize); + const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize; + + // Unregister this free suballocation from m_FreeSuballocationsBySize and update + // it to become used. + UnregisterFreeSuballocation(request.item); + + suballoc.offset = request.offset; + suballoc.size = allocSize; + suballoc.type = type; + suballoc.hAllocation = hAllocation; + + // If there are any free bytes remaining at the end, insert new free suballocation after current one. + if (paddingEnd) { + VmaSuballocation paddingSuballoc = {}; + paddingSuballoc.offset = request.offset + allocSize; + paddingSuballoc.size = paddingEnd; + paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + VmaSuballocationList::iterator next = request.item; + ++next; + const VmaSuballocationList::iterator paddingEndItem = + m_Suballocations.insert(next, paddingSuballoc); + RegisterFreeSuballocation(paddingEndItem); + } + + // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. + if (paddingBegin) { + VmaSuballocation paddingSuballoc = {}; + paddingSuballoc.offset = request.offset - paddingBegin; + paddingSuballoc.size = paddingBegin; + paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + const VmaSuballocationList::iterator paddingBeginItem = + m_Suballocations.insert(request.item, paddingSuballoc); + RegisterFreeSuballocation(paddingBeginItem); + } + + // Update totals. + m_FreeCount = m_FreeCount - 1; + if (paddingBegin > 0) { + ++m_FreeCount; + } + if (paddingEnd > 0) { + ++m_FreeCount; + } + m_SumFreeSize -= allocSize; +} + +void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation) { + for (VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); + suballocItem != m_Suballocations.end(); + ++suballocItem) { + VmaSuballocation &suballoc = *suballocItem; + if (suballoc.hAllocation == allocation) { + FreeSuballocation(suballocItem); + VMA_HEAVY_ASSERT(Validate()); + return; + } + } + VMA_ASSERT(0 && "Not found!"); +} + +void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset) { + for (VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); + suballocItem != m_Suballocations.end(); + ++suballocItem) { + VmaSuballocation &suballoc = *suballocItem; + if (suballoc.offset == offset) { + FreeSuballocation(suballocItem); + return; + } + } + VMA_ASSERT(0 && "Not found!"); +} + +bool VmaBlockMetadata_Generic::ResizeAllocation(const VmaAllocation alloc, VkDeviceSize newSize) { + typedef VmaSuballocationList::iterator iter_type; + for (iter_type suballocItem = m_Suballocations.begin(); + suballocItem != m_Suballocations.end(); + ++suballocItem) { + VmaSuballocation &suballoc = *suballocItem; + if (suballoc.hAllocation == alloc) { + iter_type nextItem = suballocItem; + ++nextItem; + + // Should have been ensured on higher level. + VMA_ASSERT(newSize != alloc->GetSize() && newSize > 0); + + // Shrinking. + if (newSize < alloc->GetSize()) { + const VkDeviceSize sizeDiff = suballoc.size - newSize; + + // There is next item. + if (nextItem != m_Suballocations.end()) { + // Next item is free. + if (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE) { + // Grow this next item backward. + UnregisterFreeSuballocation(nextItem); + nextItem->offset -= sizeDiff; + nextItem->size += sizeDiff; + RegisterFreeSuballocation(nextItem); + } + // Next item is not free. + else { + // Create free item after current one. + VmaSuballocation newFreeSuballoc; + newFreeSuballoc.hAllocation = VK_NULL_HANDLE; + newFreeSuballoc.offset = suballoc.offset + newSize; + newFreeSuballoc.size = sizeDiff; + newFreeSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + iter_type newFreeSuballocIt = m_Suballocations.insert(nextItem, newFreeSuballoc); + RegisterFreeSuballocation(newFreeSuballocIt); + + ++m_FreeCount; + } + } + // This is the last item. + else { + // Create free item at the end. + VmaSuballocation newFreeSuballoc; + newFreeSuballoc.hAllocation = VK_NULL_HANDLE; + newFreeSuballoc.offset = suballoc.offset + newSize; + newFreeSuballoc.size = sizeDiff; + newFreeSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + m_Suballocations.push_back(newFreeSuballoc); + + iter_type newFreeSuballocIt = m_Suballocations.end(); + RegisterFreeSuballocation(--newFreeSuballocIt); + + ++m_FreeCount; + } + + suballoc.size = newSize; + m_SumFreeSize += sizeDiff; + } + // Growing. + else { + const VkDeviceSize sizeDiff = newSize - suballoc.size; + + // There is next item. + if (nextItem != m_Suballocations.end()) { + // Next item is free. + if (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE) { + // There is not enough free space, including margin. + if (nextItem->size < sizeDiff + VMA_DEBUG_MARGIN) { + return false; + } + + // There is more free space than required. + if (nextItem->size > sizeDiff) { + // Move and shrink this next item. + UnregisterFreeSuballocation(nextItem); + nextItem->offset += sizeDiff; + nextItem->size -= sizeDiff; + RegisterFreeSuballocation(nextItem); + } + // There is exactly the amount of free space required. + else { + // Remove this next free item. + UnregisterFreeSuballocation(nextItem); + m_Suballocations.erase(nextItem); + --m_FreeCount; + } + } + // Next item is not free - there is no space to grow. + else { + return false; + } + } + // This is the last item - there is no space to grow. + else { + return false; + } + + suballoc.size = newSize; + m_SumFreeSize -= sizeDiff; + } + + // We cannot call Validate() here because alloc object is updated to new size outside of this call. + return true; + } + } + VMA_ASSERT(0 && "Not found!"); + return false; +} + +bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const { + VkDeviceSize lastSize = 0; + for (size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) { + const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; + + VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); + VMA_VALIDATE(it->size >= lastSize); + lastSize = it->size; + } + return true; +} + +bool VmaBlockMetadata_Generic::CheckAllocation( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaSuballocationList::const_iterator suballocItem, + bool canMakeOtherLost, + VkDeviceSize *pOffset, + size_t *itemsToMakeLostCount, + VkDeviceSize *pSumFreeSize, + VkDeviceSize *pSumItemSize) const { + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(suballocItem != m_Suballocations.cend()); + VMA_ASSERT(pOffset != VMA_NULL); + + *itemsToMakeLostCount = 0; + *pSumFreeSize = 0; + *pSumItemSize = 0; + + if (canMakeOtherLost) { + if (suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) { + *pSumFreeSize = suballocItem->size; + } else { + if (suballocItem->hAllocation->CanBecomeLost() && + suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) { + ++*itemsToMakeLostCount; + *pSumItemSize = suballocItem->size; + } else { + return false; + } + } + + // Remaining size is too small for this request: Early return. + if (GetSize() - suballocItem->offset < allocSize) { + return false; + } + + // Start from offset equal to beginning of this suballocation. + *pOffset = suballocItem->offset; + + // Apply VMA_DEBUG_MARGIN at the beginning. + if (VMA_DEBUG_MARGIN > 0) { + *pOffset += VMA_DEBUG_MARGIN; + } + + // Apply alignment. + *pOffset = VmaAlignUp(*pOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1) { + bool bufferImageGranularityConflict = false; + VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; + while (prevSuballocItem != m_Suballocations.cbegin()) { + --prevSuballocItem; + const VmaSuballocation &prevSuballoc = *prevSuballocItem; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) { + bufferImageGranularityConflict = true; + break; + } + } else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) { + *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); + } + } + + // Now that we have final *pOffset, check if we are past suballocItem. + // If yes, return false - this function should be called for another suballocItem as starting point. + if (*pOffset >= suballocItem->offset + suballocItem->size) { + return false; + } + + // Calculate padding at the beginning based on current offset. + const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset; + + // Calculate required margin at the end. + const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; + + const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin; + // Another early return check. + if (suballocItem->offset + totalSize > GetSize()) { + return false; + } + + // Advance lastSuballocItem until desired size is reached. + // Update itemsToMakeLostCount. + VmaSuballocationList::const_iterator lastSuballocItem = suballocItem; + if (totalSize > suballocItem->size) { + VkDeviceSize remainingSize = totalSize - suballocItem->size; + while (remainingSize > 0) { + ++lastSuballocItem; + if (lastSuballocItem == m_Suballocations.cend()) { + return false; + } + if (lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) { + *pSumFreeSize += lastSuballocItem->size; + } else { + VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE); + if (lastSuballocItem->hAllocation->CanBecomeLost() && + lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) { + ++*itemsToMakeLostCount; + *pSumItemSize += lastSuballocItem->size; + } else { + return false; + } + } + remainingSize = (lastSuballocItem->size < remainingSize) ? + remainingSize - lastSuballocItem->size : + 0; + } + } + + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, we must mark more allocations lost or fail. + if (bufferImageGranularity > 1) { + VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem; + ++nextSuballocItem; + while (nextSuballocItem != m_Suballocations.cend()) { + const VmaSuballocation &nextSuballoc = *nextSuballocItem; + if (VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) { + VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE); + if (nextSuballoc.hAllocation->CanBecomeLost() && + nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) { + ++*itemsToMakeLostCount; + } else { + return false; + } + } + } else { + // Already on next page. + break; + } + ++nextSuballocItem; + } + } + } else { + const VmaSuballocation &suballoc = *suballocItem; + VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + *pSumFreeSize = suballoc.size; + + // Size of this suballocation is too small for this request: Early return. + if (suballoc.size < allocSize) { + return false; + } + + // Start from offset equal to beginning of this suballocation. + *pOffset = suballoc.offset; + + // Apply VMA_DEBUG_MARGIN at the beginning. + if (VMA_DEBUG_MARGIN > 0) { + *pOffset += VMA_DEBUG_MARGIN; + } + + // Apply alignment. + *pOffset = VmaAlignUp(*pOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1) { + bool bufferImageGranularityConflict = false; + VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; + while (prevSuballocItem != m_Suballocations.cbegin()) { + --prevSuballocItem; + const VmaSuballocation &prevSuballoc = *prevSuballocItem; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) { + bufferImageGranularityConflict = true; + break; + } + } else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) { + *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); + } + } + + // Calculate padding at the beginning based on current offset. + const VkDeviceSize paddingBegin = *pOffset - suballoc.offset; + + // Calculate required margin at the end. + const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; + + // Fail if requested size plus margin before and after is bigger than size of this suballocation. + if (paddingBegin + allocSize + requiredEndMargin > suballoc.size) { + return false; + } + + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (bufferImageGranularity > 1) { + VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; + ++nextSuballocItem; + while (nextSuballocItem != m_Suballocations.cend()) { + const VmaSuballocation &nextSuballoc = *nextSuballocItem; + if (VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) { + return false; + } + } else { + // Already on next page. + break; + } + ++nextSuballocItem; + } + } + } + + // All tests passed: Success. pOffset is already filled. + return true; +} + +void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) { + VMA_ASSERT(item != m_Suballocations.end()); + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaSuballocationList::iterator nextItem = item; + ++nextItem; + VMA_ASSERT(nextItem != m_Suballocations.end()); + VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); + + item->size += nextItem->size; + --m_FreeCount; + m_Suballocations.erase(nextItem); +} + +VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) { + // Change this suballocation to be marked as free. + VmaSuballocation &suballoc = *suballocItem; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + + // Update totals. + ++m_FreeCount; + m_SumFreeSize += suballoc.size; + + // Merge with previous and/or next suballocation if it's also free. + bool mergeWithNext = false; + bool mergeWithPrev = false; + + VmaSuballocationList::iterator nextItem = suballocItem; + ++nextItem; + if ((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) { + mergeWithNext = true; + } + + VmaSuballocationList::iterator prevItem = suballocItem; + if (suballocItem != m_Suballocations.begin()) { + --prevItem; + if (prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) { + mergeWithPrev = true; + } + } + + if (mergeWithNext) { + UnregisterFreeSuballocation(nextItem); + MergeFreeWithNext(suballocItem); + } + + if (mergeWithPrev) { + UnregisterFreeSuballocation(prevItem); + MergeFreeWithNext(prevItem); + RegisterFreeSuballocation(prevItem); + return prevItem; + } else { + RegisterFreeSuballocation(suballocItem); + return suballocItem; + } +} + +void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) { + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(item->size > 0); + + // You may want to enable this validation at the beginning or at the end of + // this function, depending on what do you want to check. + VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + + if (item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) { + if (m_FreeSuballocationsBySize.empty()) { + m_FreeSuballocationsBySize.push_back(item); + } else { + VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item); + } + } + + //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); +} + +void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) { + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(item->size > 0); + + // You may want to enable this validation at the beginning or at the end of + // this function, depending on what do you want to check. + VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + + if (item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) { + VmaSuballocationList::iterator *const it = VmaBinaryFindFirstNotLess( + m_FreeSuballocationsBySize.data(), + m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), + item, + VmaSuballocationItemSizeLess()); + for (size_t index = it - m_FreeSuballocationsBySize.data(); + index < m_FreeSuballocationsBySize.size(); + ++index) { + if (m_FreeSuballocationsBySize[index] == item) { + VmaVectorRemove(m_FreeSuballocationsBySize, index); + return; + } + VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found."); + } + VMA_ASSERT(0 && "Not found."); + } + + //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); +} + +bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible( + VkDeviceSize bufferImageGranularity, + VmaSuballocationType &inOutPrevSuballocType) const { + if (bufferImageGranularity == 1 || IsEmpty()) { + return false; + } + + VkDeviceSize minAlignment = VK_WHOLE_SIZE; + bool typeConflictFound = false; + for (VmaSuballocationList::const_iterator it = m_Suballocations.cbegin(); + it != m_Suballocations.cend(); + ++it) { + const VmaSuballocationType suballocType = it->type; + if (suballocType != VMA_SUBALLOCATION_TYPE_FREE) { + minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment()); + if (VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) { + typeConflictFound = true; + } + inOutPrevSuballocType = suballocType; + } + } + + return typeConflictFound || minAlignment >= bufferImageGranularity; +} + +//////////////////////////////////////////////////////////////////////////////// +// class VmaBlockMetadata_Linear + +VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) : + VmaBlockMetadata(hAllocator), + m_SumFreeSize(0), + m_Suballocations0(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), + m_Suballocations1(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), + m_1stVectorIndex(0), + m_2ndVectorMode(SECOND_VECTOR_EMPTY), + m_1stNullItemsBeginCount(0), + m_1stNullItemsMiddleCount(0), + m_2ndNullItemsCount(0) { +} + +VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear() { +} + +void VmaBlockMetadata_Linear::Init(VkDeviceSize size) { + VmaBlockMetadata::Init(size); + m_SumFreeSize = size; +} + +bool VmaBlockMetadata_Linear::Validate() const { + const SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + + VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); + VMA_VALIDATE(!suballocations1st.empty() || + suballocations2nd.empty() || + m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); + + if (!suballocations1st.empty()) { + // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. + VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE); + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE); + } + if (!suballocations2nd.empty()) { + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE); + } + + VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); + VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); + + VkDeviceSize sumUsedSize = 0; + const size_t suballoc1stCount = suballocations1st.size(); + VkDeviceSize offset = VMA_DEBUG_MARGIN; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for (size_t i = 0; i < suballoc2ndCount; ++i) { + const VmaSuballocation &suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); + VMA_VALIDATE(suballoc.offset >= offset); + + if (!currFree) { + VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); + VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); + sumUsedSize += suballoc.size; + } else { + ++nullItem2ndCount; + } + + offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; + } + + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } + + for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i) { + const VmaSuballocation &suballoc = suballocations1st[i]; + VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && + suballoc.hAllocation == VK_NULL_HANDLE); + } + + size_t nullItem1stCount = m_1stNullItemsBeginCount; + + for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) { + const VmaSuballocation &suballoc = suballocations1st[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); + VMA_VALIDATE(suballoc.offset >= offset); + VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); + + if (!currFree) { + VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); + VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); + sumUsedSize += suballoc.size; + } else { + ++nullItem1stCount; + } + + offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; + } + VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for (size_t i = suballoc2ndCount; i--;) { + const VmaSuballocation &suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); + VMA_VALIDATE(suballoc.offset >= offset); + + if (!currFree) { + VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); + VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); + sumUsedSize += suballoc.size; + } else { + ++nullItem2ndCount; + } + + offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; + } + + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } + + VMA_VALIDATE(offset <= GetSize()); + VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); + + return true; +} + +size_t VmaBlockMetadata_Linear::GetAllocationCount() const { + return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) + + AccessSuballocations2nd().size() - m_2ndNullItemsCount; +} + +VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const { + const VkDeviceSize size = GetSize(); + + /* + We don't consider gaps inside allocation vectors with freed allocations because + they are not suitable for reuse in linear allocator. We consider only space that + is available for new allocations. + */ + if (IsEmpty()) { + return size; + } + + const SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + + switch (m_2ndVectorMode) { + case SECOND_VECTOR_EMPTY: + /* + Available space is after end of 1st, as well as before beginning of 1st (which + whould make it a ring buffer). + */ + { + const size_t suballocations1stCount = suballocations1st.size(); + VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount); + const VmaSuballocation &firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; + const VmaSuballocation &lastSuballoc = suballocations1st[suballocations1stCount - 1]; + return VMA_MAX( + firstSuballoc.offset, + size - (lastSuballoc.offset + lastSuballoc.size)); + } + break; + + case SECOND_VECTOR_RING_BUFFER: + /* + Available space is only between end of 2nd and beginning of 1st. + */ + { + const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + const VmaSuballocation &lastSuballoc2nd = suballocations2nd.back(); + const VmaSuballocation &firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount]; + return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size); + } + break; + + case SECOND_VECTOR_DOUBLE_STACK: + /* + Available space is only between end of 1st and top of 2nd. + */ + { + const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + const VmaSuballocation &topSuballoc2nd = suballocations2nd.back(); + const VmaSuballocation &lastSuballoc1st = suballocations1st.back(); + return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size); + } + break; + + default: + VMA_ASSERT(0); + return 0; + } +} + +void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo &outInfo) const { + const VkDeviceSize size = GetSize(); + const SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + outInfo.blockCount = 1; + outInfo.allocationCount = (uint32_t)GetAllocationCount(); + outInfo.unusedRangeCount = 0; + outInfo.usedBytes = 0; + outInfo.allocationSizeMin = UINT64_MAX; + outInfo.allocationSizeMax = 0; + outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMax = 0; + + VkDeviceSize lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) { + const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + outInfo.usedBytes += suballoc.size; + outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); + outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + if (lastOffset < freeSpace2ndTo1stEnd) { + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) { + const VmaSuballocation &suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + outInfo.usedBytes += suballoc.size; + outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); + outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + if (lastOffset < freeSpace1stTo2ndEnd) { + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) { + const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + outInfo.usedBytes += suballoc.size; + outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); + outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else { + // There is free space from lastOffset to size. + if (lastOffset < size) { + const VkDeviceSize unusedRangeSize = size - lastOffset; + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); + outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } + + outInfo.unusedBytes = size - outInfo.usedBytes; +} + +void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats &inoutStats) const { + const SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + const VkDeviceSize size = GetSize(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + inoutStats.size += size; + + VkDeviceSize lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; + while (lastOffset < freeSpace2ndTo1stEnd) { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) { + const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else { + if (lastOffset < freeSpace2ndTo1stEnd) { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) { + const VmaSuballocation &suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else { + if (lastOffset < freeSpace1stTo2ndEnd) { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) { + const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else { + if (lastOffset < size) { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter &json) const { + const VkDeviceSize size = GetSize(); + const SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + // FIRST PASS + + size_t unusedRangeCount = 0; + VkDeviceSize usedBytes = 0; + + VkDeviceSize lastOffset = 0; + + size_t alloc2ndCount = 0; + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) { + const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else { + if (lastOffset < freeSpace2ndTo1stEnd) { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + size_t alloc1stCount = 0; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) { + const VmaSuballocation &suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc1stCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else { + if (lastOffset < size) { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) { + const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else { + if (lastOffset < size) { + // There is free space from lastOffset to size. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = size; + } + } + } + + const VkDeviceSize unusedBytes = size - usedBytes; + PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); + + // SECOND PASS + lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) { + const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else { + if (lastOffset < freeSpace2ndTo1stEnd) { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + nextAlloc1stIndex = m_1stNullItemsBeginCount; + while (lastOffset < freeSpace1stTo2ndEnd) { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) { + const VmaSuballocation &suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else { + if (lastOffset < freeSpace1stTo2ndEnd) { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) { + const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else { + if (lastOffset < size) { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } + + PrintDetailedMap_End(json); +} +#endif // #if VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Linear::CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest) { + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); + return upperAddress ? + CreateAllocationRequest_UpperAddress( + currentFrameIndex, frameInUseCount, bufferImageGranularity, + allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) : + CreateAllocationRequest_LowerAddress( + currentFrameIndex, frameInUseCount, bufferImageGranularity, + allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest); +} + +bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest) { + const VkDeviceSize size = GetSize(); + SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); + return false; + } + + // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). + if (allocSize > size) { + return false; + } + VkDeviceSize resultBaseOffset = size - allocSize; + if (!suballocations2nd.empty()) { + const VmaSuballocation &lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset - allocSize; + if (allocSize > lastSuballoc.offset) { + return false; + } + } + + // Start from offset equal to end of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply VMA_DEBUG_MARGIN at the end. + if (VMA_DEBUG_MARGIN > 0) { + if (resultOffset < VMA_DEBUG_MARGIN) { + return false; + } + resultOffset -= VMA_DEBUG_MARGIN; + } + + // Apply alignment. + resultOffset = VmaAlignDown(resultOffset, allocAlignment); + + // Check next suballocations from 2nd for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && !suballocations2nd.empty()) { + bool bufferImageGranularityConflict = false; + for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--;) { + const VmaSuballocation &nextSuballoc = suballocations2nd[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) { + bufferImageGranularityConflict = true; + break; + } + } else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) { + resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); + } + } + + // There is enough free space. + const VkDeviceSize endOf1st = !suballocations1st.empty() ? + suballocations1st.back().offset + suballocations1st.back().size : + 0; + if (endOf1st + VMA_DEBUG_MARGIN <= resultOffset) { + // Check previous suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (bufferImageGranularity > 1) { + for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--;) { + const VmaSuballocation &prevSuballoc = suballocations1st[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) { + return false; + } + } else { + // Already on next page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->offset = resultOffset; + pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st; + pAllocationRequest->sumItemSize = 0; + // pAllocationRequest->item unused. + pAllocationRequest->itemsToMakeLostCount = 0; + pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; + return true; + } + + return false; +} + +bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest) { + const VkDeviceSize size = GetSize(); + SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + + if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { + // Try to allocate at the end of 1st vector. + + VkDeviceSize resultBaseOffset = 0; + if (!suballocations1st.empty()) { + const VmaSuballocation &lastSuballoc = suballocations1st.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; + } + + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply VMA_DEBUG_MARGIN at the beginning. + if (VMA_DEBUG_MARGIN > 0) { + resultOffset += VMA_DEBUG_MARGIN; + } + + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && !suballocations1st.empty()) { + bool bufferImageGranularityConflict = false; + for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--;) { + const VmaSuballocation &prevSuballoc = suballocations1st[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) { + bufferImageGranularityConflict = true; + break; + } + } else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } + + const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? + suballocations2nd.back().offset : + size; + + // There is enough free space at the end after alignment. + if (resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd) { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { + for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--;) { + const VmaSuballocation &nextSuballoc = suballocations2nd[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) { + return false; + } + } else { + // Already on previous page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->offset = resultOffset; + pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset; + pAllocationRequest->sumItemSize = 0; + // pAllocationRequest->item, customData unused. + pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; + pAllocationRequest->itemsToMakeLostCount = 0; + return true; + } + } + + // Wrap-around to end of 2nd vector. Try to allocate there, watching for the + // beginning of 1st vector as the end of free space. + if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + VMA_ASSERT(!suballocations1st.empty()); + + VkDeviceSize resultBaseOffset = 0; + if (!suballocations2nd.empty()) { + const VmaSuballocation &lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; + } + + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply VMA_DEBUG_MARGIN at the beginning. + if (VMA_DEBUG_MARGIN > 0) { + resultOffset += VMA_DEBUG_MARGIN; + } + + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && !suballocations2nd.empty()) { + bool bufferImageGranularityConflict = false; + for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--;) { + const VmaSuballocation &prevSuballoc = suballocations2nd[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) { + bufferImageGranularityConflict = true; + break; + } + } else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } + + pAllocationRequest->itemsToMakeLostCount = 0; + pAllocationRequest->sumItemSize = 0; + size_t index1st = m_1stNullItemsBeginCount; + + if (canMakeOtherLost) { + while (index1st < suballocations1st.size() && + resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset) { + // Next colliding allocation at the beginning of 1st vector found. Try to make it lost. + const VmaSuballocation &suballoc = suballocations1st[index1st]; + if (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) { + // No problem. + } else { + VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); + if (suballoc.hAllocation->CanBecomeLost() && + suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) { + ++pAllocationRequest->itemsToMakeLostCount; + pAllocationRequest->sumItemSize += suballoc.size; + } else { + return false; + } + } + ++index1st; + } + + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, we must mark more allocations lost or fail. + if (bufferImageGranularity > 1) { + while (index1st < suballocations1st.size()) { + const VmaSuballocation &suballoc = suballocations1st[index1st]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity)) { + if (suballoc.hAllocation != VK_NULL_HANDLE) { + // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type). + if (suballoc.hAllocation->CanBecomeLost() && + suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) { + ++pAllocationRequest->itemsToMakeLostCount; + pAllocationRequest->sumItemSize += suballoc.size; + } else { + return false; + } + } + } else { + // Already on next page. + break; + } + ++index1st; + } + } + + // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost. + if (index1st == suballocations1st.size() && + resultOffset + allocSize + VMA_DEBUG_MARGIN > size) { + // TODO: This is a known bug that it's not yet implemented and the allocation is failing. + VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost."); + } + } + + // There is enough free space at the end after alignment. + if ((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) || + (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset)) { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (bufferImageGranularity > 1) { + for (size_t nextSuballocIndex = index1st; + nextSuballocIndex < suballocations1st.size(); + nextSuballocIndex++) { + const VmaSuballocation &nextSuballoc = suballocations1st[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) { + return false; + } + } else { + // Already on next page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->offset = resultOffset; + pAllocationRequest->sumFreeSize = + (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size) - resultBaseOffset - pAllocationRequest->sumItemSize; + pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; + // pAllocationRequest->item, customData unused. + return true; + } + } + + return false; +} + +bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest *pAllocationRequest) { + if (pAllocationRequest->itemsToMakeLostCount == 0) { + return true; + } + + VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER); + + // We always start from 1st. + SuballocationVectorType *suballocations = &AccessSuballocations1st(); + size_t index = m_1stNullItemsBeginCount; + size_t madeLostCount = 0; + while (madeLostCount < pAllocationRequest->itemsToMakeLostCount) { + if (index == suballocations->size()) { + index = 0; + // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st. + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + suballocations = &AccessSuballocations2nd(); + } + // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY: + // suballocations continues pointing at AccessSuballocations1st(). + VMA_ASSERT(!suballocations->empty()); + } + VmaSuballocation &suballoc = (*suballocations)[index]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { + VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); + VMA_ASSERT(suballoc.hAllocation->CanBecomeLost()); + if (suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) { + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + m_SumFreeSize += suballoc.size; + if (suballocations == &AccessSuballocations1st()) { + ++m_1stNullItemsMiddleCount; + } else { + ++m_2ndNullItemsCount; + } + ++madeLostCount; + } else { + return false; + } + } + ++index; + } + + CleanupAfterFree(); + //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree(). + + return true; +} + +uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) { + uint32_t lostAllocationCount = 0; + + SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) { + VmaSuballocation &suballoc = suballocations1st[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && + suballoc.hAllocation->CanBecomeLost() && + suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) { + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + ++m_1stNullItemsMiddleCount; + m_SumFreeSize += suballoc.size; + ++lostAllocationCount; + } + } + + SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) { + VmaSuballocation &suballoc = suballocations2nd[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && + suballoc.hAllocation->CanBecomeLost() && + suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) { + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.hAllocation = VK_NULL_HANDLE; + ++m_2ndNullItemsCount; + m_SumFreeSize += suballoc.size; + ++lostAllocationCount; + } + } + + if (lostAllocationCount) { + CleanupAfterFree(); + } + + return lostAllocationCount; +} + +VkResult VmaBlockMetadata_Linear::CheckCorruption(const void *pBlockData) { + SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) { + const VmaSuballocation &suballoc = suballocations1st[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + } + } + + SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) { + const VmaSuballocation &suballoc = suballocations2nd[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_VALIDATION_FAILED_EXT; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_Linear::Alloc( + const VmaAllocationRequest &request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation) { + const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type }; + + switch (request.type) { + case VmaAllocationRequestType::UpperAddress: { + VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && + "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); + SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + suballocations2nd.push_back(newSuballoc); + m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; + } break; + case VmaAllocationRequestType::EndOf1st: { + SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + + VMA_ASSERT(suballocations1st.empty() || + request.offset >= suballocations1st.back().offset + suballocations1st.back().size); + // Check if it fits before the end of the block. + VMA_ASSERT(request.offset + allocSize <= GetSize()); + + suballocations1st.push_back(newSuballoc); + } break; + case VmaAllocationRequestType::EndOf2nd: { + SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. + VMA_ASSERT(!suballocations1st.empty() && + request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset); + SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + + switch (m_2ndVectorMode) { + case SECOND_VECTOR_EMPTY: + // First allocation from second part ring buffer. + VMA_ASSERT(suballocations2nd.empty()); + m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; + break; + case SECOND_VECTOR_RING_BUFFER: + // 2-part ring buffer is already started. + VMA_ASSERT(!suballocations2nd.empty()); + break; + case SECOND_VECTOR_DOUBLE_STACK: + VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); + break; + default: + VMA_ASSERT(0); + } + + suballocations2nd.push_back(newSuballoc); + } break; + default: + VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); + } + + m_SumFreeSize -= newSuballoc.size; +} + +void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation) { + FreeAtOffset(allocation->GetOffset()); +} + +void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset) { + SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + + if (!suballocations1st.empty()) { + // First allocation: Mark it as next empty at the beginning. + VmaSuballocation &firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; + if (firstSuballoc.offset == offset) { + firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + firstSuballoc.hAllocation = VK_NULL_HANDLE; + m_SumFreeSize += firstSuballoc.size; + ++m_1stNullItemsBeginCount; + CleanupAfterFree(); + return; + } + } + + // Last allocation in 2-part ring buffer or top of upper stack (same logic). + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { + VmaSuballocation &lastSuballoc = suballocations2nd.back(); + if (lastSuballoc.offset == offset) { + m_SumFreeSize += lastSuballoc.size; + suballocations2nd.pop_back(); + CleanupAfterFree(); + return; + } + } + // Last allocation in 1st vector. + else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY) { + VmaSuballocation &lastSuballoc = suballocations1st.back(); + if (lastSuballoc.offset == offset) { + m_SumFreeSize += lastSuballoc.size; + suballocations1st.pop_back(); + CleanupAfterFree(); + return; + } + } + + // Item from the middle of 1st vector. + { + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. + SuballocationVectorType::iterator it = VmaVectorFindSorted<VmaSuballocationOffsetLess>( + suballocations1st.begin() + m_1stNullItemsBeginCount, + suballocations1st.end(), + refSuballoc); + if (it != suballocations1st.end()) { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->hAllocation = VK_NULL_HANDLE; + ++m_1stNullItemsMiddleCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } + + if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) { + // Item from the middle of 2nd vector. + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. + SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? + VmaVectorFindSorted<VmaSuballocationOffsetLess>(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc) : + VmaVectorFindSorted<VmaSuballocationOffsetGreater>(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc); + if (it != suballocations2nd.end()) { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->hAllocation = VK_NULL_HANDLE; + ++m_2ndNullItemsCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } + + VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); +} + +bool VmaBlockMetadata_Linear::ShouldCompact1st() const { + const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + const size_t suballocCount = AccessSuballocations1st().size(); + return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; +} + +void VmaBlockMetadata_Linear::CleanupAfterFree() { + SuballocationVectorType &suballocations1st = AccessSuballocations1st(); + SuballocationVectorType &suballocations2nd = AccessSuballocations2nd(); + + if (IsEmpty()) { + suballocations1st.clear(); + suballocations2nd.clear(); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + m_2ndNullItemsCount = 0; + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } else { + const size_t suballoc1stCount = suballocations1st.size(); + const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + VMA_ASSERT(nullItem1stCount <= suballoc1stCount); + + // Find more null items at the beginning of 1st vector. + while (m_1stNullItemsBeginCount < suballoc1stCount && + suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + + // Find more null items at the end of 1st vector. + while (m_1stNullItemsMiddleCount > 0 && + suballocations1st.back().hAllocation == VK_NULL_HANDLE) { + --m_1stNullItemsMiddleCount; + suballocations1st.pop_back(); + } + + // Find more null items at the end of 2nd vector. + while (m_2ndNullItemsCount > 0 && + suballocations2nd.back().hAllocation == VK_NULL_HANDLE) { + --m_2ndNullItemsCount; + suballocations2nd.pop_back(); + } + + // Find more null items at the beginning of 2nd vector. + while (m_2ndNullItemsCount > 0 && + suballocations2nd[0].hAllocation == VK_NULL_HANDLE) { + --m_2ndNullItemsCount; + VmaVectorRemove(suballocations2nd, 0); + } + + if (ShouldCompact1st()) { + const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; + size_t srcIndex = m_1stNullItemsBeginCount; + for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) { + while (suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE) { + ++srcIndex; + } + if (dstIndex != srcIndex) { + suballocations1st[dstIndex] = suballocations1st[srcIndex]; + } + ++srcIndex; + } + suballocations1st.resize(nonNullItemCount); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + } + + // 2nd vector became empty. + if (suballocations2nd.empty()) { + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } + + // 1st vector became empty. + if (suballocations1st.size() - m_1stNullItemsBeginCount == 0) { + suballocations1st.clear(); + m_1stNullItemsBeginCount = 0; + + if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { + // Swap 1st with 2nd. Now 2nd is empty. + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + m_1stNullItemsMiddleCount = m_2ndNullItemsCount; + while (m_1stNullItemsBeginCount < suballocations2nd.size() && + suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + m_2ndNullItemsCount = 0; + m_1stVectorIndex ^= 1; + } + } + } + + VMA_HEAVY_ASSERT(Validate()); +} + +//////////////////////////////////////////////////////////////////////////////// +// class VmaBlockMetadata_Buddy + +VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) : + VmaBlockMetadata(hAllocator), + m_Root(VMA_NULL), + m_AllocationCount(0), + m_FreeCount(1), + m_SumFreeSize(0) { + memset(m_FreeList, 0, sizeof(m_FreeList)); +} + +VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() { + DeleteNode(m_Root); +} + +void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) { + VmaBlockMetadata::Init(size); + + m_UsableSize = VmaPrevPow2(size); + m_SumFreeSize = m_UsableSize; + + // Calculate m_LevelCount. + m_LevelCount = 1; + while (m_LevelCount < MAX_LEVELS && + LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE) { + ++m_LevelCount; + } + + Node *rootNode = vma_new(GetAllocationCallbacks(), Node)(); + rootNode->offset = 0; + rootNode->type = Node::TYPE_FREE; + rootNode->parent = VMA_NULL; + rootNode->buddy = VMA_NULL; + + m_Root = rootNode; + AddToFreeListFront(0, rootNode); +} + +bool VmaBlockMetadata_Buddy::Validate() const { + // Validate tree. + ValidationContext ctx; + if (!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) { + VMA_VALIDATE(false && "ValidateNode failed."); + } + VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); + VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); + + // Validate free node lists. + for (uint32_t level = 0; level < m_LevelCount; ++level) { + VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || + m_FreeList[level].front->free.prev == VMA_NULL); + + for (Node *node = m_FreeList[level].front; + node != VMA_NULL; + node = node->free.next) { + VMA_VALIDATE(node->type == Node::TYPE_FREE); + + if (node->free.next == VMA_NULL) { + VMA_VALIDATE(m_FreeList[level].back == node); + } else { + VMA_VALIDATE(node->free.next->free.prev == node); + } + } + } + + // Validate that free lists ar higher levels are empty. + for (uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) { + VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); + } + + return true; +} + +VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const { + for (uint32_t level = 0; level < m_LevelCount; ++level) { + if (m_FreeList[level].front != VMA_NULL) { + return LevelToNodeSize(level); + } + } + return 0; +} + +void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo &outInfo) const { + const VkDeviceSize unusableSize = GetUnusableSize(); + + outInfo.blockCount = 1; + + outInfo.allocationCount = outInfo.unusedRangeCount = 0; + outInfo.usedBytes = outInfo.unusedBytes = 0; + + outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0; + outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused. + + CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0)); + + if (unusableSize > 0) { + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusableSize; + outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize); + outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize); + } +} + +void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats &inoutStats) const { + const VkDeviceSize unusableSize = GetUnusableSize(); + + inoutStats.size += GetSize(); + inoutStats.unusedSize += m_SumFreeSize + unusableSize; + inoutStats.allocationCount += m_AllocationCount; + inoutStats.unusedRangeCount += m_FreeCount; + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); + + if (unusableSize > 0) { + ++inoutStats.unusedRangeCount; + // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations. + } +} + +#if VMA_STATS_STRING_ENABLED + +void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter &json) const { + // TODO optimize + VmaStatInfo stat; + CalcAllocationStatInfo(stat); + + PrintDetailedMap_Begin( + json, + stat.unusedBytes, + stat.allocationCount, + stat.unusedRangeCount); + + PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); + + const VkDeviceSize unusableSize = GetUnusableSize(); + if (unusableSize > 0) { + PrintDetailedMap_UnusedRange(json, + m_UsableSize, // offset + unusableSize); // size + } + + PrintDetailedMap_End(json); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Buddy::CreateAllocationRequest( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VkDeviceSize bufferImageGranularity, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + bool canMakeOtherLost, + uint32_t strategy, + VmaAllocationRequest *pAllocationRequest) { + VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); + + // Simple way to respect bufferImageGranularity. May be optimized some day. + // Whenever it might be an OPTIMAL image... + if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) { + allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity); + allocSize = VMA_MAX(allocSize, bufferImageGranularity); + } + + if (allocSize > m_UsableSize) { + return false; + } + + const uint32_t targetLevel = AllocSizeToLevel(allocSize); + for (uint32_t level = targetLevel + 1; level--;) { + for (Node *freeNode = m_FreeList[level].front; + freeNode != VMA_NULL; + freeNode = freeNode->free.next) { + if (freeNode->offset % allocAlignment == 0) { + pAllocationRequest->type = VmaAllocationRequestType::Normal; + pAllocationRequest->offset = freeNode->offset; + pAllocationRequest->sumFreeSize = LevelToNodeSize(level); + pAllocationRequest->sumItemSize = 0; + pAllocationRequest->itemsToMakeLostCount = 0; + pAllocationRequest->customData = (void *)(uintptr_t)level; + return true; + } + } + } + + return false; +} + +bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost( + uint32_t currentFrameIndex, + uint32_t frameInUseCount, + VmaAllocationRequest *pAllocationRequest) { + /* + Lost allocations are not supported in buddy allocator at the moment. + Support might be added in the future. + */ + return pAllocationRequest->itemsToMakeLostCount == 0; +} + +uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) { + /* + Lost allocations are not supported in buddy allocator at the moment. + Support might be added in the future. + */ + return 0; +} + +void VmaBlockMetadata_Buddy::Alloc( + const VmaAllocationRequest &request, + VmaSuballocationType type, + VkDeviceSize allocSize, + VmaAllocation hAllocation) { + VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); + + const uint32_t targetLevel = AllocSizeToLevel(allocSize); + uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; + + Node *currNode = m_FreeList[currLevel].front; + VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + while (currNode->offset != request.offset) { + currNode = currNode->free.next; + VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + } + + // Go down, splitting free nodes. + while (currLevel < targetLevel) { + // currNode is already first free node at currLevel. + // Remove it from list of free nodes at this currLevel. + RemoveFromFreeList(currLevel, currNode); + + const uint32_t childrenLevel = currLevel + 1; + + // Create two free sub-nodes. + Node *leftChild = vma_new(GetAllocationCallbacks(), Node)(); + Node *rightChild = vma_new(GetAllocationCallbacks(), Node)(); + + leftChild->offset = currNode->offset; + leftChild->type = Node::TYPE_FREE; + leftChild->parent = currNode; + leftChild->buddy = rightChild; + + rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); + rightChild->type = Node::TYPE_FREE; + rightChild->parent = currNode; + rightChild->buddy = leftChild; + + // Convert current currNode to split type. + currNode->type = Node::TYPE_SPLIT; + currNode->split.leftChild = leftChild; + + // Add child nodes to free list. Order is important! + AddToFreeListFront(childrenLevel, rightChild); + AddToFreeListFront(childrenLevel, leftChild); + + ++m_FreeCount; + //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2. + ++currLevel; + currNode = m_FreeList[currLevel].front; + + /* + We can be sure that currNode, as left child of node previously split, + also fullfills the alignment requirement. + */ + } + + // Remove from free list. + VMA_ASSERT(currLevel == targetLevel && + currNode != VMA_NULL && + currNode->type == Node::TYPE_FREE); + RemoveFromFreeList(currLevel, currNode); + + // Convert to allocation node. + currNode->type = Node::TYPE_ALLOCATION; + currNode->allocation.alloc = hAllocation; + + ++m_AllocationCount; + --m_FreeCount; + m_SumFreeSize -= allocSize; +} + +void VmaBlockMetadata_Buddy::DeleteNode(Node *node) { + if (node->type == Node::TYPE_SPLIT) { + DeleteNode(node->split.leftChild->buddy); + DeleteNode(node->split.leftChild); + } + + vma_delete(GetAllocationCallbacks(), node); +} + +bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext &ctx, const Node *parent, const Node *curr, uint32_t level, VkDeviceSize levelNodeSize) const { + VMA_VALIDATE(level < m_LevelCount); + VMA_VALIDATE(curr->parent == parent); + VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); + VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); + switch (curr->type) { + case Node::TYPE_FREE: + // curr->free.prev, next are validated separately. + ctx.calculatedSumFreeSize += levelNodeSize; + ++ctx.calculatedFreeCount; + break; + case Node::TYPE_ALLOCATION: + ++ctx.calculatedAllocationCount; + ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize(); + VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE); + break; + case Node::TYPE_SPLIT: { + const uint32_t childrenLevel = level + 1; + const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2; + const Node *const leftChild = curr->split.leftChild; + VMA_VALIDATE(leftChild != VMA_NULL); + VMA_VALIDATE(leftChild->offset == curr->offset); + if (!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) { + VMA_VALIDATE(false && "ValidateNode for left child failed."); + } + const Node *const rightChild = leftChild->buddy; + VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); + if (!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) { + VMA_VALIDATE(false && "ValidateNode for right child failed."); + } + } break; + default: + return false; + } + + return true; +} + +uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const { + // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. + uint32_t level = 0; + VkDeviceSize currLevelNodeSize = m_UsableSize; + VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; + while (allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) { + ++level; + currLevelNodeSize = nextLevelNodeSize; + nextLevelNodeSize = currLevelNodeSize >> 1; + } + return level; +} + +void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset) { + // Find node and level. + Node *node = m_Root; + VkDeviceSize nodeOffset = 0; + uint32_t level = 0; + VkDeviceSize levelNodeSize = LevelToNodeSize(0); + while (node->type == Node::TYPE_SPLIT) { + const VkDeviceSize nextLevelSize = levelNodeSize >> 1; + if (offset < nodeOffset + nextLevelSize) { + node = node->split.leftChild; + } else { + node = node->split.leftChild->buddy; + nodeOffset += nextLevelSize; + } + ++level; + levelNodeSize = nextLevelSize; + } + + VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); + VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc); + + ++m_FreeCount; + --m_AllocationCount; + m_SumFreeSize += alloc->GetSize(); + + node->type = Node::TYPE_FREE; + + // Join free nodes if possible. + while (level > 0 && node->buddy->type == Node::TYPE_FREE) { + RemoveFromFreeList(level, node->buddy); + Node *const parent = node->parent; + + vma_delete(GetAllocationCallbacks(), node->buddy); + vma_delete(GetAllocationCallbacks(), node); + parent->type = Node::TYPE_FREE; + + node = parent; + --level; + //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2. + --m_FreeCount; + } + + AddToFreeListFront(level, node); +} + +void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo &outInfo, const Node *node, VkDeviceSize levelNodeSize) const { + switch (node->type) { + case Node::TYPE_FREE: + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += levelNodeSize; + outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize); + outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize); + break; + case Node::TYPE_ALLOCATION: { + const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); + ++outInfo.allocationCount; + outInfo.usedBytes += allocSize; + outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize); + outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize); + + const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize; + if (unusedRangeSize > 0) { + ++outInfo.unusedRangeCount; + outInfo.unusedBytes += unusedRangeSize; + outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize); + outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize); + } + } break; + case Node::TYPE_SPLIT: { + const VkDeviceSize childrenNodeSize = levelNodeSize / 2; + const Node *const leftChild = node->split.leftChild; + CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize); + const Node *const rightChild = leftChild->buddy; + CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize); + } break; + default: + VMA_ASSERT(0); + } +} + +void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node *node) { + VMA_ASSERT(node->type == Node::TYPE_FREE); + + // List is empty. + Node *const frontNode = m_FreeList[level].front; + if (frontNode == VMA_NULL) { + VMA_ASSERT(m_FreeList[level].back == VMA_NULL); + node->free.prev = node->free.next = VMA_NULL; + m_FreeList[level].front = m_FreeList[level].back = node; + } else { + VMA_ASSERT(frontNode->free.prev == VMA_NULL); + node->free.prev = VMA_NULL; + node->free.next = frontNode; + frontNode->free.prev = node; + m_FreeList[level].front = node; + } +} + +void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node *node) { + VMA_ASSERT(m_FreeList[level].front != VMA_NULL); + + // It is at the front. + if (node->free.prev == VMA_NULL) { + VMA_ASSERT(m_FreeList[level].front == node); + m_FreeList[level].front = node->free.next; + } else { + Node *const prevFreeNode = node->free.prev; + VMA_ASSERT(prevFreeNode->free.next == node); + prevFreeNode->free.next = node->free.next; + } + + // It is at the back. + if (node->free.next == VMA_NULL) { + VMA_ASSERT(m_FreeList[level].back == node); + m_FreeList[level].back = node->free.prev; + } else { + Node *const nextFreeNode = node->free.next; + VMA_ASSERT(nextFreeNode->free.prev == node); + nextFreeNode->free.prev = node->free.prev; + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter &json, const Node *node, VkDeviceSize levelNodeSize) const { + switch (node->type) { + case Node::TYPE_FREE: + PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); + break; + case Node::TYPE_ALLOCATION: { + PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc); + const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); + if (allocSize < levelNodeSize) { + PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize); + } + } break; + case Node::TYPE_SPLIT: { + const VkDeviceSize childrenNodeSize = levelNodeSize / 2; + const Node *const leftChild = node->split.leftChild; + PrintDetailedMapNode(json, leftChild, childrenNodeSize); + const Node *const rightChild = leftChild->buddy; + PrintDetailedMapNode(json, rightChild, childrenNodeSize); + } break; + default: + VMA_ASSERT(0); + } +} +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// class VmaDeviceMemoryBlock + +VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) : + m_pMetadata(VMA_NULL), + m_MemoryTypeIndex(UINT32_MAX), + m_Id(0), + m_hMemory(VK_NULL_HANDLE), + m_MapCount(0), + m_pMappedData(VMA_NULL) { +} + +void VmaDeviceMemoryBlock::Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm) { + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); + + m_hParentPool = hParentPool; + m_MemoryTypeIndex = newMemoryTypeIndex; + m_Id = id; + m_hMemory = newMemory; + + switch (algorithm) { + case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator); + break; + case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator); + break; + default: + VMA_ASSERT(0); + // Fall-through. + case 0: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator); + } + m_pMetadata->Init(newSize); +} + +void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) { + // This is the most important assert in the entire library. + // Hitting it means you have some memory leak - unreleased VmaAllocation objects. + VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); + + VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); + allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); + m_hMemory = VK_NULL_HANDLE; + + vma_delete(allocator, m_pMetadata); + m_pMetadata = VMA_NULL; +} + +bool VmaDeviceMemoryBlock::Validate() const { + VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && + (m_pMetadata->GetSize() != 0)); + + return m_pMetadata->Validate(); +} + +VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) { + void *pData = nullptr; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) { + return res; + } + + res = m_pMetadata->CheckCorruption(pData); + + Unmap(hAllocator, 1); + + return res; +} + +VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void **ppData) { + if (count == 0) { + return VK_SUCCESS; + } + + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + if (m_MapCount != 0) { + m_MapCount += count; + VMA_ASSERT(m_pMappedData != VMA_NULL); + if (ppData != VMA_NULL) { + *ppData = m_pMappedData; + } + return VK_SUCCESS; + } else { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + &m_pMappedData); + if (result == VK_SUCCESS) { + if (ppData != VMA_NULL) { + *ppData = m_pMappedData; + } + m_MapCount = count; + } + return result; + } +} + +void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) { + if (count == 0) { + return; + } + + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + if (m_MapCount >= count) { + m_MapCount -= count; + if (m_MapCount == 0) { + m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); + } + } else { + VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); + } +} + +VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) { + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); + + void *pData; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) { + return res; + } + + VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN); + VmaWriteMagicValue(pData, allocOffset + allocSize); + + Unmap(hAllocator, 1); + + return VK_SUCCESS; +} + +VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) { + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); + + void *pData; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) { + return res; + } + + if (!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN)) { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!"); + } else if (!VmaValidateMagicValue(pData, allocOffset + allocSize)) { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); + } + + Unmap(hAllocator, 1); + + return VK_SUCCESS; +} + +VkResult VmaDeviceMemoryBlock::BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkBuffer hBuffer) { + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + return hAllocator->GetVulkanFunctions().vkBindBufferMemory( + hAllocator->m_hDevice, + hBuffer, + m_hMemory, + hAllocation->GetOffset()); +} + +VkResult VmaDeviceMemoryBlock::BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkImage hImage) { + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + return hAllocator->GetVulkanFunctions().vkBindImageMemory( + hAllocator->m_hDevice, + hImage, + m_hMemory, + hAllocation->GetOffset()); +} + +static void InitStatInfo(VmaStatInfo &outInfo) { + memset(&outInfo, 0, sizeof(outInfo)); + outInfo.allocationSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMin = UINT64_MAX; +} + +// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo. +static void VmaAddStatInfo(VmaStatInfo &inoutInfo, const VmaStatInfo &srcInfo) { + inoutInfo.blockCount += srcInfo.blockCount; + inoutInfo.allocationCount += srcInfo.allocationCount; + inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount; + inoutInfo.usedBytes += srcInfo.usedBytes; + inoutInfo.unusedBytes += srcInfo.unusedBytes; + inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin); + inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax); + inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin); + inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax); +} + +static void VmaPostprocessCalcStatInfo(VmaStatInfo &inoutInfo) { + inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ? + VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : + 0; + inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ? + VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : + 0; +} + +VmaPool_T::VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo &createInfo, + VkDeviceSize preferredBlockSize) : + m_BlockVector( + hAllocator, + this, // hParentPool + createInfo.memoryTypeIndex, + createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, + createInfo.minBlockCount, + createInfo.maxBlockCount, + (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), + createInfo.frameInUseCount, + true, // isCustomPool + createInfo.blockSize != 0, // explicitBlockSize + createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm + m_Id(0) { +} + +VmaPool_T::~VmaPool_T() { +} + +#if VMA_STATS_STRING_ENABLED + +#endif // #if VMA_STATS_STRING_ENABLED + +VmaBlockVector::VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + uint32_t frameInUseCount, + bool isCustomPool, + bool explicitBlockSize, + uint32_t algorithm) : + m_hAllocator(hAllocator), + m_hParentPool(hParentPool), + m_MemoryTypeIndex(memoryTypeIndex), + m_PreferredBlockSize(preferredBlockSize), + m_MinBlockCount(minBlockCount), + m_MaxBlockCount(maxBlockCount), + m_BufferImageGranularity(bufferImageGranularity), + m_FrameInUseCount(frameInUseCount), + m_IsCustomPool(isCustomPool), + m_ExplicitBlockSize(explicitBlockSize), + m_Algorithm(algorithm), + m_HasEmptyBlock(false), + m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock *>(hAllocator->GetAllocationCallbacks())), + m_NextBlockId(0) { +} + +VmaBlockVector::~VmaBlockVector() { + for (size_t i = m_Blocks.size(); i--;) { + m_Blocks[i]->Destroy(m_hAllocator); + vma_delete(m_hAllocator, m_Blocks[i]); + } +} + +VkResult VmaBlockVector::CreateMinBlocks() { + for (size_t i = 0; i < m_MinBlockCount; ++i) { + VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); + if (res != VK_SUCCESS) { + return res; + } + } + return VK_SUCCESS; +} + +void VmaBlockVector::GetPoolStats(VmaPoolStats *pStats) { + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + const size_t blockCount = m_Blocks.size(); + + pStats->size = 0; + pStats->unusedSize = 0; + pStats->allocationCount = 0; + pStats->unusedRangeCount = 0; + pStats->unusedRangeSizeMax = 0; + pStats->blockCount = blockCount; + + for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { + const VmaDeviceMemoryBlock *const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + pBlock->m_pMetadata->AddPoolStats(*pStats); + } +} + +bool VmaBlockVector::IsCorruptionDetectionEnabled() const { + const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + return (VMA_DEBUG_DETECT_CORRUPTION != 0) && + (VMA_DEBUG_MARGIN > 0) && + (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && + (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; +} + +static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; + +VkResult VmaBlockVector::Allocate( + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo &createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation *pAllocations) { + size_t allocIndex; + VkResult res = VK_SUCCESS; + + if (IsCorruptionDetectionEnabled()) { + size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + } + + { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { + res = AllocatePage( + currentFrameIndex, + size, + alignment, + createInfo, + suballocType, + pAllocations + allocIndex); + if (res != VK_SUCCESS) { + break; + } + } + } + + if (res != VK_SUCCESS) { + // Free all already created allocations. + while (allocIndex--) { + Free(pAllocations[allocIndex]); + } + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + } + + return res; +} + +VkResult VmaBlockVector::AllocatePage( + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo &createInfo, + VmaSuballocationType suballocType, + VmaAllocation *pAllocation) { + const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0; + const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; + const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; + const bool canCreateNewBlock = + ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && + (m_Blocks.size() < m_MaxBlockCount); + uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; + + // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer. + // Which in turn is available only when maxBlockCount = 1. + if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1) { + canMakeOtherLost = false; + } + + // Upper address can only be used with linear allocator and within single memory block. + if (isUpperAddress && + (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + // Validate strategy. + switch (strategy) { + case 0: + strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT; + break; + case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT: + case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT: + case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT: + break; + default: + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + // Early reject: requested allocation size is larger that maximum block size for this block vector. + if (size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize) { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + + /* + Under certain condition, this whole section can be skipped for optimization, so + we move on directly to trying to allocate with canMakeOtherLost. That's the case + e.g. for custom pools with linear algorithm. + */ + if (!canMakeOtherLost || canCreateNewBlock) { + // 1. Search existing allocations. Try to allocate without making other allocations lost. + VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags; + allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; + + if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) { + // Use only last block. + if (!m_Blocks.empty()) { + VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks.back(); + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + currentFrameIndex, + size, + alignment, + allocFlagsCopy, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if (res == VK_SUCCESS) { + VMA_DEBUG_LOG(" Returned from last block #%u", (uint32_t)(m_Blocks.size() - 1)); + return VK_SUCCESS; + } + } + } else { + if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { + VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + currentFrameIndex, + size, + alignment, + allocFlagsCopy, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if (res == VK_SUCCESS) { + VMA_DEBUG_LOG(" Returned from existing block #%u", (uint32_t)blockIndex); + return VK_SUCCESS; + } + } + } else // WORST_FIT, FIRST_FIT + { + // Backward order in m_Blocks - prefer blocks with largest amount of free space. + for (size_t blockIndex = m_Blocks.size(); blockIndex--;) { + VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + currentFrameIndex, + size, + alignment, + allocFlagsCopy, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if (res == VK_SUCCESS) { + VMA_DEBUG_LOG(" Returned from existing block #%u", (uint32_t)blockIndex); + return VK_SUCCESS; + } + } + } + } + + // 2. Try to create new block. + if (canCreateNewBlock) { + // Calculate optimal size for new block. + VkDeviceSize newBlockSize = m_PreferredBlockSize; + uint32_t newBlockSizeShift = 0; + const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; + + if (!m_ExplicitBlockSize) { + // Allocate 1/8, 1/4, 1/2 as first blocks. + const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); + for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + } else { + break; + } + } + } + + size_t newBlockIndex = 0; + VkResult res = CreateBlock(newBlockSize, &newBlockIndex); + // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. + if (!m_ExplicitBlockSize) { + while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if (smallerNewBlockSize >= size) { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + res = CreateBlock(newBlockSize, &newBlockIndex); + } else { + break; + } + } + } + + if (res == VK_SUCCESS) { + VmaDeviceMemoryBlock *const pBlock = m_Blocks[newBlockIndex]; + VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); + + res = AllocateFromBlock( + pBlock, + currentFrameIndex, + size, + alignment, + allocFlagsCopy, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if (res == VK_SUCCESS) { + VMA_DEBUG_LOG(" Created new block Size=%llu", newBlockSize); + return VK_SUCCESS; + } else { + // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + } + } + + // 3. Try to allocate from existing blocks with making other allocations lost. + if (canMakeOtherLost) { + uint32_t tryIndex = 0; + for (; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex) { + VmaDeviceMemoryBlock *pBestRequestBlock = VMA_NULL; + VmaAllocationRequest bestRequest = {}; + VkDeviceSize bestRequestCost = VK_WHOLE_SIZE; + + // 1. Search existing allocations. + if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { + VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VmaAllocationRequest currRequest = {}; + if (pCurrBlock->m_pMetadata->CreateAllocationRequest( + currentFrameIndex, + m_FrameInUseCount, + m_BufferImageGranularity, + size, + alignment, + (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, + suballocType, + canMakeOtherLost, + strategy, + &currRequest)) { + const VkDeviceSize currRequestCost = currRequest.CalcCost(); + if (pBestRequestBlock == VMA_NULL || + currRequestCost < bestRequestCost) { + pBestRequestBlock = pCurrBlock; + bestRequest = currRequest; + bestRequestCost = currRequestCost; + + if (bestRequestCost == 0) { + break; + } + } + } + } + } else // WORST_FIT, FIRST_FIT + { + // Backward order in m_Blocks - prefer blocks with largest amount of free space. + for (size_t blockIndex = m_Blocks.size(); blockIndex--;) { + VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VmaAllocationRequest currRequest = {}; + if (pCurrBlock->m_pMetadata->CreateAllocationRequest( + currentFrameIndex, + m_FrameInUseCount, + m_BufferImageGranularity, + size, + alignment, + (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, + suballocType, + canMakeOtherLost, + strategy, + &currRequest)) { + const VkDeviceSize currRequestCost = currRequest.CalcCost(); + if (pBestRequestBlock == VMA_NULL || + currRequestCost < bestRequestCost || + strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) { + pBestRequestBlock = pCurrBlock; + bestRequest = currRequest; + bestRequestCost = currRequestCost; + + if (bestRequestCost == 0 || + strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) { + break; + } + } + } + } + } + + if (pBestRequestBlock != VMA_NULL) { + if (mapped) { + VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL); + if (res != VK_SUCCESS) { + return res; + } + } + + if (pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost( + currentFrameIndex, + m_FrameInUseCount, + &bestRequest)) { + // We no longer have an empty Allocation. + if (pBestRequestBlock->m_pMetadata->IsEmpty()) { + m_HasEmptyBlock = false; + } + // Allocate from this pBlock. + *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(); + (*pAllocation)->Ctor(currentFrameIndex, isUserDataString); + pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation); + (*pAllocation)->InitBlockAllocation(pBestRequestBlock, bestRequest.offset, alignment, size, suballocType, mapped, (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); + VMA_HEAVY_ASSERT(pBestRequestBlock->Validate()); + VMA_DEBUG_LOG(" Returned from existing block"); + (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData); + if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) { + m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + if (IsCorruptionDetectionEnabled()) { + VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); + } + return VK_SUCCESS; + } + // else: Some allocations must have been touched while we are here. Next try. + } else { + // Could not find place in any of the blocks - break outer loop. + break; + } + } + /* Maximum number of tries exceeded - a very unlike event when many other + threads are simultaneously touching allocations making it impossible to make + lost at the same time as we try to allocate. */ + if (tryIndex == VMA_ALLOCATION_TRY_COUNT) { + return VK_ERROR_TOO_MANY_OBJECTS; + } + } + + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +void VmaBlockVector::Free( + VmaAllocation hAllocation) { + VmaDeviceMemoryBlock *pBlockToDelete = VMA_NULL; + + // Scope for lock. + { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + + VmaDeviceMemoryBlock *pBlock = hAllocation->GetBlock(); + + if (IsCorruptionDetectionEnabled()) { + VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); + } + + if (hAllocation->IsPersistentMap()) { + pBlock->Unmap(m_hAllocator, 1); + } + + pBlock->m_pMetadata->Free(hAllocation); + VMA_HEAVY_ASSERT(pBlock->Validate()); + + VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex); + + // pBlock became empty after this deallocation. + if (pBlock->m_pMetadata->IsEmpty()) { + // Already has empty Allocation. We don't want to have two, so delete this one. + if (m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount) { + pBlockToDelete = pBlock; + Remove(pBlock); + } + // We now have first empty block. + else { + m_HasEmptyBlock = true; + } + } + // pBlock didn't become empty, but we have another empty block - find and free that one. + // (This is optional, heuristics.) + else if (m_HasEmptyBlock) { + VmaDeviceMemoryBlock *pLastBlock = m_Blocks.back(); + if (pLastBlock->m_pMetadata->IsEmpty() && m_Blocks.size() > m_MinBlockCount) { + pBlockToDelete = pLastBlock; + m_Blocks.pop_back(); + m_HasEmptyBlock = false; + } + } + + IncrementallySortBlocks(); + } + + // Destruction of a free Allocation. Deferred until this point, outside of mutex + // lock, for performance reason. + if (pBlockToDelete != VMA_NULL) { + VMA_DEBUG_LOG(" Deleted empty allocation"); + pBlockToDelete->Destroy(m_hAllocator); + vma_delete(m_hAllocator, pBlockToDelete); + } +} + +VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const { + VkDeviceSize result = 0; + for (size_t i = m_Blocks.size(); i--;) { + result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); + if (result >= m_PreferredBlockSize) { + break; + } + } + return result; +} + +void VmaBlockVector::Remove(VmaDeviceMemoryBlock *pBlock) { + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { + if (m_Blocks[blockIndex] == pBlock) { + VmaVectorRemove(m_Blocks, blockIndex); + return; + } + } + VMA_ASSERT(0); +} + +void VmaBlockVector::IncrementallySortBlocks() { + if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) { + // Bubble sort only until first swap. + for (size_t i = 1; i < m_Blocks.size(); ++i) { + if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) { + VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); + return; + } + } + } +} + +VkResult VmaBlockVector::AllocateFromBlock( + VmaDeviceMemoryBlock *pBlock, + uint32_t currentFrameIndex, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void *pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation *pAllocation) { + VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0); + const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; + const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; + + VmaAllocationRequest currRequest = {}; + if (pBlock->m_pMetadata->CreateAllocationRequest( + currentFrameIndex, + m_FrameInUseCount, + m_BufferImageGranularity, + size, + alignment, + isUpperAddress, + suballocType, + false, // canMakeOtherLost + strategy, + &currRequest)) { + // Allocate from pCurrBlock. + VMA_ASSERT(currRequest.itemsToMakeLostCount == 0); + + if (mapped) { + VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); + if (res != VK_SUCCESS) { + return res; + } + } + + // We no longer have an empty Allocation. + if (pBlock->m_pMetadata->IsEmpty()) { + m_HasEmptyBlock = false; + } + + *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(); + (*pAllocation)->Ctor(currentFrameIndex, isUserDataString); + pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation); + (*pAllocation)->InitBlockAllocation(pBlock, currRequest.offset, alignment, size, suballocType, mapped, (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); + VMA_HEAVY_ASSERT(pBlock->Validate()); + (*pAllocation)->SetUserData(m_hAllocator, pUserData); + if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) { + m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + if (IsCorruptionDetectionEnabled()) { + VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); + } + return VK_SUCCESS; + } + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t *pNewBlockIndex) { + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.memoryTypeIndex = m_MemoryTypeIndex; + allocInfo.allocationSize = blockSize; + VkDeviceMemory mem = VK_NULL_HANDLE; + VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); + if (res < 0) { + return res; + } + + // New VkDeviceMemory successfully created. + + // Create new Allocation for it. + VmaDeviceMemoryBlock *const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); + pBlock->Init( + m_hAllocator, + m_hParentPool, + m_MemoryTypeIndex, + mem, + allocInfo.allocationSize, + m_NextBlockId++, + m_Algorithm); + + m_Blocks.push_back(pBlock); + if (pNewBlockIndex != VMA_NULL) { + *pNewBlockIndex = m_Blocks.size() - 1; + } + + return VK_SUCCESS; +} + +void VmaBlockVector::ApplyDefragmentationMovesCpu( + class VmaBlockVectorDefragmentationContext *pDefragCtx, + const VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves) { + const size_t blockCount = m_Blocks.size(); + const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex); + + enum BLOCK_FLAG { + BLOCK_FLAG_USED = 0x00000001, + BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002, + }; + + struct BlockInfo { + uint32_t flags; + void *pMappedData; + }; + VmaVector<BlockInfo, VmaStlAllocator<BlockInfo> > + blockInfo(blockCount, VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks())); + memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo)); + + // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. + const size_t moveCount = moves.size(); + for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { + const VmaDefragmentationMove &move = moves[moveIndex]; + blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED; + blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED; + } + + VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); + + // Go over all blocks. Get mapped pointer or map if necessary. + for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) { + BlockInfo &currBlockInfo = blockInfo[blockIndex]; + VmaDeviceMemoryBlock *pBlock = m_Blocks[blockIndex]; + if ((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) { + currBlockInfo.pMappedData = pBlock->GetMappedData(); + // It is not originally mapped - map it. + if (currBlockInfo.pMappedData == VMA_NULL) { + pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData); + if (pDefragCtx->res == VK_SUCCESS) { + currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION; + } + } + } + } + + // Go over all moves. Do actual data transfer. + if (pDefragCtx->res == VK_SUCCESS) { + const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; + VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; + + for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { + const VmaDefragmentationMove &move = moves[moveIndex]; + + const BlockInfo &srcBlockInfo = blockInfo[move.srcBlockIndex]; + const BlockInfo &dstBlockInfo = blockInfo[move.dstBlockIndex]; + + VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData); + + // Invalidate source. + if (isNonCoherent) { + VmaDeviceMemoryBlock *const pSrcBlock = m_Blocks[move.srcBlockIndex]; + memRange.memory = pSrcBlock->GetDeviceMemory(); + memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize); + memRange.size = VMA_MIN( + VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize), + pSrcBlock->m_pMetadata->GetSize() - memRange.offset); + (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); + } + + // THE PLACE WHERE ACTUAL DATA COPY HAPPENS. + memmove( + reinterpret_cast<char *>(dstBlockInfo.pMappedData) + move.dstOffset, + reinterpret_cast<char *>(srcBlockInfo.pMappedData) + move.srcOffset, + static_cast<size_t>(move.size)); + + if (IsCorruptionDetectionEnabled()) { + VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN); + VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size); + } + + // Flush destination. + if (isNonCoherent) { + VmaDeviceMemoryBlock *const pDstBlock = m_Blocks[move.dstBlockIndex]; + memRange.memory = pDstBlock->GetDeviceMemory(); + memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize); + memRange.size = VMA_MIN( + VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize), + pDstBlock->m_pMetadata->GetSize() - memRange.offset); + (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); + } + } + } + + // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation. + // Regardless of pCtx->res == VK_SUCCESS. + for (size_t blockIndex = blockCount; blockIndex--;) { + const BlockInfo &currBlockInfo = blockInfo[blockIndex]; + if ((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) { + VmaDeviceMemoryBlock *pBlock = m_Blocks[blockIndex]; + pBlock->Unmap(m_hAllocator, 1); + } + } +} + +void VmaBlockVector::ApplyDefragmentationMovesGpu( + class VmaBlockVectorDefragmentationContext *pDefragCtx, + const VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkCommandBuffer commandBuffer) { + const size_t blockCount = m_Blocks.size(); + + pDefragCtx->blockContexts.resize(blockCount); + memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext)); + + // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. + const size_t moveCount = moves.size(); + for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { + const VmaDefragmentationMove &move = moves[moveIndex]; + pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; + pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; + } + + VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); + + // Go over all blocks. Create and bind buffer for whole block if necessary. + { + VkBufferCreateInfo bufCreateInfo; + VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo); + + for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) { + VmaBlockDefragmentationContext &currBlockCtx = pDefragCtx->blockContexts[blockIndex]; + VmaDeviceMemoryBlock *pBlock = m_Blocks[blockIndex]; + if ((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) { + bufCreateInfo.size = pBlock->m_pMetadata->GetSize(); + pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)( + m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer); + if (pDefragCtx->res == VK_SUCCESS) { + pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)( + m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0); + } + } + } + } + + // Go over all moves. Post data transfer commands to command buffer. + if (pDefragCtx->res == VK_SUCCESS) { + for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { + const VmaDefragmentationMove &move = moves[moveIndex]; + + const VmaBlockDefragmentationContext &srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex]; + const VmaBlockDefragmentationContext &dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex]; + + VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer); + + VkBufferCopy region = { + move.srcOffset, + move.dstOffset, + move.size + }; + (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)( + commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion); + } + } + + // Save buffers to defrag context for later destruction. + if (pDefragCtx->res == VK_SUCCESS && moveCount > 0) { + pDefragCtx->res = VK_NOT_READY; + } +} + +void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats *pDefragmentationStats) { + m_HasEmptyBlock = false; + for (size_t blockIndex = m_Blocks.size(); blockIndex--;) { + VmaDeviceMemoryBlock *pBlock = m_Blocks[blockIndex]; + if (pBlock->m_pMetadata->IsEmpty()) { + if (m_Blocks.size() > m_MinBlockCount) { + if (pDefragmentationStats != VMA_NULL) { + ++pDefragmentationStats->deviceMemoryBlocksFreed; + pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize(); + } + + VmaVectorRemove(m_Blocks, blockIndex); + pBlock->Destroy(m_hAllocator); + vma_delete(m_hAllocator, pBlock); + } else { + m_HasEmptyBlock = true; + } + } + } +} + +#if VMA_STATS_STRING_ENABLED + +void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter &json) { + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + json.BeginObject(); + + if (m_IsCustomPool) { + json.WriteString("MemoryTypeIndex"); + json.WriteNumber(m_MemoryTypeIndex); + + json.WriteString("BlockSize"); + json.WriteNumber(m_PreferredBlockSize); + + json.WriteString("BlockCount"); + json.BeginObject(true); + if (m_MinBlockCount > 0) { + json.WriteString("Min"); + json.WriteNumber((uint64_t)m_MinBlockCount); + } + if (m_MaxBlockCount < SIZE_MAX) { + json.WriteString("Max"); + json.WriteNumber((uint64_t)m_MaxBlockCount); + } + json.WriteString("Cur"); + json.WriteNumber((uint64_t)m_Blocks.size()); + json.EndObject(); + + if (m_FrameInUseCount > 0) { + json.WriteString("FrameInUseCount"); + json.WriteNumber(m_FrameInUseCount); + } + + if (m_Algorithm != 0) { + json.WriteString("Algorithm"); + json.WriteString(VmaAlgorithmToStr(m_Algorithm)); + } + } else { + json.WriteString("PreferredBlockSize"); + json.WriteNumber(m_PreferredBlockSize); + } + + json.WriteString("Blocks"); + json.BeginObject(); + for (size_t i = 0; i < m_Blocks.size(); ++i) { + json.BeginString(); + json.ContinueString(m_Blocks[i]->GetId()); + json.EndString(); + + m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); + } + json.EndObject(); + + json.EndObject(); +} + +#endif // #if VMA_STATS_STRING_ENABLED + +void VmaBlockVector::Defragment( + class VmaBlockVectorDefragmentationContext *pCtx, + VmaDefragmentationStats *pStats, + VkDeviceSize &maxCpuBytesToMove, uint32_t &maxCpuAllocationsToMove, + VkDeviceSize &maxGpuBytesToMove, uint32_t &maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer) { + pCtx->res = VK_SUCCESS; + + const VkMemoryPropertyFlags memPropFlags = + m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags; + const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; + const bool isHostCoherent = (memPropFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0; + + const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 && + isHostVisible; + const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 && + !IsCorruptionDetectionEnabled() && + ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0; + + // There are options to defragment this memory type. + if (canDefragmentOnCpu || canDefragmentOnGpu) { + bool defragmentOnGpu; + // There is only one option to defragment this memory type. + if (canDefragmentOnGpu != canDefragmentOnCpu) { + defragmentOnGpu = canDefragmentOnGpu; + } + // Both options are available: Heuristics to choose the best one. + else { + defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 || + m_hAllocator->IsIntegratedGpu(); + } + + bool overlappingMoveSupported = !defragmentOnGpu; + + if (m_hAllocator->m_UseMutex) { + m_Mutex.LockWrite(); + pCtx->mutexLocked = true; + } + + pCtx->Begin(overlappingMoveSupported); + + // Defragment. + + const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove; + const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove; + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > moves = + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >(VmaStlAllocator<VmaDefragmentationMove>(m_hAllocator->GetAllocationCallbacks())); + pCtx->res = pCtx->GetAlgorithm()->Defragment(moves, maxBytesToMove, maxAllocationsToMove); + + // Accumulate statistics. + if (pStats != VMA_NULL) { + const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved(); + const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved(); + pStats->bytesMoved += bytesMoved; + pStats->allocationsMoved += allocationsMoved; + VMA_ASSERT(bytesMoved <= maxBytesToMove); + VMA_ASSERT(allocationsMoved <= maxAllocationsToMove); + if (defragmentOnGpu) { + maxGpuBytesToMove -= bytesMoved; + maxGpuAllocationsToMove -= allocationsMoved; + } else { + maxCpuBytesToMove -= bytesMoved; + maxCpuAllocationsToMove -= allocationsMoved; + } + } + + if (pCtx->res >= VK_SUCCESS) { + if (defragmentOnGpu) { + ApplyDefragmentationMovesGpu(pCtx, moves, commandBuffer); + } else { + ApplyDefragmentationMovesCpu(pCtx, moves); + } + } + } +} + +void VmaBlockVector::DefragmentationEnd( + class VmaBlockVectorDefragmentationContext *pCtx, + VmaDefragmentationStats *pStats) { + // Destroy buffers. + for (size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;) { + VmaBlockDefragmentationContext &blockCtx = pCtx->blockContexts[blockIndex]; + if (blockCtx.hBuffer) { + (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)( + m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks()); + } + } + + if (pCtx->res >= VK_SUCCESS) { + FreeEmptyBlocks(pStats); + } + + if (pCtx->mutexLocked) { + VMA_ASSERT(m_hAllocator->m_UseMutex); + m_Mutex.UnlockWrite(); + } +} + +size_t VmaBlockVector::CalcAllocationCount() const { + size_t result = 0; + for (size_t i = 0; i < m_Blocks.size(); ++i) { + result += m_Blocks[i]->m_pMetadata->GetAllocationCount(); + } + return result; +} + +bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const { + if (m_BufferImageGranularity == 1) { + return false; + } + VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE; + for (size_t i = 0, count = m_Blocks.size(); i < count; ++i) { + VmaDeviceMemoryBlock *const pBlock = m_Blocks[i]; + VMA_ASSERT(m_Algorithm == 0); + VmaBlockMetadata_Generic *const pMetadata = (VmaBlockMetadata_Generic *)pBlock->m_pMetadata; + if (pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) { + return true; + } + } + return false; +} + +void VmaBlockVector::MakePoolAllocationsLost( + uint32_t currentFrameIndex, + size_t *pLostAllocationCount) { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + size_t lostAllocationCount = 0; + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { + VmaDeviceMemoryBlock *const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount); + } + if (pLostAllocationCount != VMA_NULL) { + *pLostAllocationCount = lostAllocationCount; + } +} + +VkResult VmaBlockVector::CheckCorruption() { + if (!IsCorruptionDetectionEnabled()) { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { + VmaDeviceMemoryBlock *const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VkResult res = pBlock->CheckCorruption(m_hAllocator); + if (res != VK_SUCCESS) { + return res; + } + } + return VK_SUCCESS; +} + +void VmaBlockVector::AddStats(VmaStats *pStats) { + const uint32_t memTypeIndex = m_MemoryTypeIndex; + const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex); + + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { + const VmaDeviceMemoryBlock *const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + VmaStatInfo allocationStatInfo; + pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo); + VmaAddStatInfo(pStats->total, allocationStatInfo); + VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); + VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); + } +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaDefragmentationAlgorithm_Generic members definition + +VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic( + VmaAllocator hAllocator, + VmaBlockVector *pBlockVector, + uint32_t currentFrameIndex, + bool overlappingMoveSupported) : + VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), + m_AllocationCount(0), + m_AllAllocations(false), + m_BytesMoved(0), + m_AllocationsMoved(0), + m_Blocks(VmaStlAllocator<BlockInfo *>(hAllocator->GetAllocationCallbacks())) { + // Create block info for each block. + const size_t blockCount = m_pBlockVector->m_Blocks.size(); + for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { + BlockInfo *pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks()); + pBlockInfo->m_OriginalBlockIndex = blockIndex; + pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex]; + m_Blocks.push_back(pBlockInfo); + } + + // Sort them by m_pBlock pointer value. + VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess()); +} + +VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() { + for (size_t i = m_Blocks.size(); i--;) { + vma_delete(m_hAllocator, m_Blocks[i]); + } +} + +void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged) { + // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost. + if (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST) { + VmaDeviceMemoryBlock *pBlock = hAlloc->GetBlock(); + BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess()); + if (it != m_Blocks.end() && (*it)->m_pBlock == pBlock) { + AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged); + (*it)->m_Allocations.push_back(allocInfo); + } else { + VMA_ASSERT(0); + } + + ++m_AllocationCount; + } +} + +VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound( + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove) { + if (m_Blocks.empty()) { + return VK_SUCCESS; + } + + // This is a choice based on research. + // Option 1: + uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT; + // Option 2: + //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT; + // Option 3: + //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT; + + size_t srcBlockMinIndex = 0; + // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations. + /* + if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT) + { + const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount(); + if(blocksWithNonMovableCount > 0) + { + srcBlockMinIndex = blocksWithNonMovableCount - 1; + } + } + */ + + size_t srcBlockIndex = m_Blocks.size() - 1; + size_t srcAllocIndex = SIZE_MAX; + for (;;) { + // 1. Find next allocation to move. + // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source". + // 1.2. Then start from last to first m_Allocations. + while (srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) { + if (m_Blocks[srcBlockIndex]->m_Allocations.empty()) { + // Finished: no more allocations to process. + if (srcBlockIndex == srcBlockMinIndex) { + return VK_SUCCESS; + } else { + --srcBlockIndex; + srcAllocIndex = SIZE_MAX; + } + } else { + srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1; + } + } + + BlockInfo *pSrcBlockInfo = m_Blocks[srcBlockIndex]; + AllocationInfo &allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex]; + + const VkDeviceSize size = allocInfo.m_hAllocation->GetSize(); + const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset(); + const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment(); + const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType(); + + // 2. Try to find new place for this allocation in preceding or current block. + for (size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) { + BlockInfo *pDstBlockInfo = m_Blocks[dstBlockIndex]; + VmaAllocationRequest dstAllocRequest; + if (pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest( + m_CurrentFrameIndex, + m_pBlockVector->GetFrameInUseCount(), + m_pBlockVector->GetBufferImageGranularity(), + size, + alignment, + false, // upperAddress + suballocType, + false, // canMakeOtherLost + strategy, + &dstAllocRequest) && + MoveMakesSense( + dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset)) { + VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0); + + // Reached limit on number of allocations or bytes to move. + if ((m_AllocationsMoved + 1 > maxAllocationsToMove) || + (m_BytesMoved + size > maxBytesToMove)) { + return VK_SUCCESS; + } + + VmaDefragmentationMove move; + move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex; + move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex; + move.srcOffset = srcOffset; + move.dstOffset = dstAllocRequest.offset; + move.size = size; + moves.push_back(move); + + pDstBlockInfo->m_pBlock->m_pMetadata->Alloc( + dstAllocRequest, + suballocType, + size, + allocInfo.m_hAllocation); + pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset); + + allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset); + + if (allocInfo.m_pChanged != VMA_NULL) { + *allocInfo.m_pChanged = VK_TRUE; + } + + ++m_AllocationsMoved; + m_BytesMoved += size; + + VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex); + + break; + } + } + + // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round. + + if (srcAllocIndex > 0) { + --srcAllocIndex; + } else { + if (srcBlockIndex > 0) { + --srcBlockIndex; + srcAllocIndex = SIZE_MAX; + } else { + return VK_SUCCESS; + } + } + } +} + +size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const { + size_t result = 0; + for (size_t i = 0; i < m_Blocks.size(); ++i) { + if (m_Blocks[i]->m_HasNonMovableAllocations) { + ++result; + } + } + return result; +} + +VkResult VmaDefragmentationAlgorithm_Generic::Defragment( + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove) { + if (!m_AllAllocations && m_AllocationCount == 0) { + return VK_SUCCESS; + } + + const size_t blockCount = m_Blocks.size(); + for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { + BlockInfo *pBlockInfo = m_Blocks[blockIndex]; + + if (m_AllAllocations) { + VmaBlockMetadata_Generic *pMetadata = (VmaBlockMetadata_Generic *)pBlockInfo->m_pBlock->m_pMetadata; + for (VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end(); + ++it) { + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) { + AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL); + pBlockInfo->m_Allocations.push_back(allocInfo); + } + } + } + + pBlockInfo->CalcHasNonMovableAllocations(); + + // This is a choice based on research. + // Option 1: + pBlockInfo->SortAllocationsByOffsetDescending(); + // Option 2: + //pBlockInfo->SortAllocationsBySizeDescending(); + } + + // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks. + VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination()); + + // This is a choice based on research. + const uint32_t roundCount = 2; + + // Execute defragmentation rounds (the main part). + VkResult result = VK_SUCCESS; + for (uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) { + result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove); + } + + return result; +} + +bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense( + size_t dstBlockIndex, VkDeviceSize dstOffset, + size_t srcBlockIndex, VkDeviceSize srcOffset) { + if (dstBlockIndex < srcBlockIndex) { + return true; + } + if (dstBlockIndex > srcBlockIndex) { + return false; + } + if (dstOffset < srcOffset) { + return true; + } + return false; +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaDefragmentationAlgorithm_Fast + +VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast( + VmaAllocator hAllocator, + VmaBlockVector *pBlockVector, + uint32_t currentFrameIndex, + bool overlappingMoveSupported) : + VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), + m_OverlappingMoveSupported(overlappingMoveSupported), + m_AllocationCount(0), + m_AllAllocations(false), + m_BytesMoved(0), + m_AllocationsMoved(0), + m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks())) { + VMA_ASSERT(VMA_DEBUG_MARGIN == 0); +} + +VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast() { +} + +VkResult VmaDefragmentationAlgorithm_Fast::Defragment( + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove) { + VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount); + + const size_t blockCount = m_pBlockVector->GetBlockCount(); + if (blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) { + return VK_SUCCESS; + } + + PreprocessMetadata(); + + // Sort blocks in order from most destination. + + m_BlockInfos.resize(blockCount); + for (size_t i = 0; i < blockCount; ++i) { + m_BlockInfos[i].origBlockIndex = i; + } + + VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo &lhs, const BlockInfo &rhs) -> bool { + return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() < + m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize(); + }); + + // THE MAIN ALGORITHM + + FreeSpaceDatabase freeSpaceDb; + + size_t dstBlockInfoIndex = 0; + size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock *pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); + VmaBlockMetadata_Generic *pDstMetadata = (VmaBlockMetadata_Generic *)pDstBlock->m_pMetadata; + VkDeviceSize dstBlockSize = pDstMetadata->GetSize(); + VkDeviceSize dstOffset = 0; + + bool end = false; + for (size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) { + const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock *const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex); + VmaBlockMetadata_Generic *const pSrcMetadata = (VmaBlockMetadata_Generic *)pSrcBlock->m_pMetadata; + for (VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin(); + !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end();) { + VmaAllocation_T *const pAlloc = srcSuballocIt->hAllocation; + const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment(); + const VkDeviceSize srcAllocSize = srcSuballocIt->size; + if (m_AllocationsMoved == maxAllocationsToMove || + m_BytesMoved + srcAllocSize > maxBytesToMove) { + end = true; + break; + } + const VkDeviceSize srcAllocOffset = srcSuballocIt->offset; + + // Try to place it in one of free spaces from the database. + size_t freeSpaceInfoIndex; + VkDeviceSize dstAllocOffset; + if (freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize, + freeSpaceInfoIndex, dstAllocOffset)) { + size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock *pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex); + VmaBlockMetadata_Generic *pFreeSpaceMetadata = (VmaBlockMetadata_Generic *)pFreeSpaceBlock->m_pMetadata; + + // Same block + if (freeSpaceInfoIndex == srcBlockInfoIndex) { + VMA_ASSERT(dstAllocOffset <= srcAllocOffset); + + // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. + + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + suballoc.hAllocation->ChangeOffset(dstAllocOffset); + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; + + InsertSuballoc(pFreeSpaceMetadata, suballoc); + + VmaDefragmentationMove move = { + srcOrigBlockIndex, freeSpaceOrigBlockIndex, + srcAllocOffset, dstAllocOffset, + srcAllocSize + }; + moves.push_back(move); + } + // Different block + else { + // MOVE OPTION 2: Move the allocation to a different block. + + VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex); + + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset); + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; + + InsertSuballoc(pFreeSpaceMetadata, suballoc); + + VmaDefragmentationMove move = { + srcOrigBlockIndex, freeSpaceOrigBlockIndex, + srcAllocOffset, dstAllocOffset, + srcAllocSize + }; + moves.push_back(move); + } + } else { + dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment); + + // If the allocation doesn't fit before the end of dstBlock, forward to next block. + while (dstBlockInfoIndex < srcBlockInfoIndex && + dstAllocOffset + srcAllocSize > dstBlockSize) { + // But before that, register remaining free space at the end of dst block. + freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset); + + ++dstBlockInfoIndex; + dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; + pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); + pDstMetadata = (VmaBlockMetadata_Generic *)pDstBlock->m_pMetadata; + dstBlockSize = pDstMetadata->GetSize(); + dstOffset = 0; + dstAllocOffset = 0; + } + + // Same block + if (dstBlockInfoIndex == srcBlockInfoIndex) { + VMA_ASSERT(dstAllocOffset <= srcAllocOffset); + + const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset; + + bool skipOver = overlap; + if (overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) { + // If destination and source place overlap, skip if it would move it + // by only < 1/64 of its size. + skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize; + } + + if (skipOver) { + freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset); + + dstOffset = srcAllocOffset + srcAllocSize; + ++srcSuballocIt; + } + // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. + else { + srcSuballocIt->offset = dstAllocOffset; + srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset); + dstOffset = dstAllocOffset + srcAllocSize; + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + ++srcSuballocIt; + VmaDefragmentationMove move = { + srcOrigBlockIndex, dstOrigBlockIndex, + srcAllocOffset, dstAllocOffset, + srcAllocSize + }; + moves.push_back(move); + } + } + // Different block + else { + // MOVE OPTION 2: Move the allocation to a different block. + + VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex); + VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize); + + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset); + dstOffset = dstAllocOffset + srcAllocSize; + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; + + pDstMetadata->m_Suballocations.push_back(suballoc); + + VmaDefragmentationMove move = { + srcOrigBlockIndex, dstOrigBlockIndex, + srcAllocOffset, dstAllocOffset, + srcAllocSize + }; + moves.push_back(move); + } + } + } + } + + m_BlockInfos.clear(); + + PostprocessMetadata(); + + return VK_SUCCESS; +} + +void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() { + const size_t blockCount = m_pBlockVector->GetBlockCount(); + for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { + VmaBlockMetadata_Generic *const pMetadata = + (VmaBlockMetadata_Generic *)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; + pMetadata->m_FreeCount = 0; + pMetadata->m_SumFreeSize = pMetadata->GetSize(); + pMetadata->m_FreeSuballocationsBySize.clear(); + for (VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end();) { + if (it->type == VMA_SUBALLOCATION_TYPE_FREE) { + VmaSuballocationList::iterator nextIt = it; + ++nextIt; + pMetadata->m_Suballocations.erase(it); + it = nextIt; + } else { + ++it; + } + } + } +} + +void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() { + const size_t blockCount = m_pBlockVector->GetBlockCount(); + for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { + VmaBlockMetadata_Generic *const pMetadata = + (VmaBlockMetadata_Generic *)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; + const VkDeviceSize blockSize = pMetadata->GetSize(); + + // No allocations in this block - entire area is free. + if (pMetadata->m_Suballocations.empty()) { + pMetadata->m_FreeCount = 1; + //pMetadata->m_SumFreeSize is already set to blockSize. + VmaSuballocation suballoc = { + 0, // offset + blockSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE + }; + pMetadata->m_Suballocations.push_back(suballoc); + pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin()); + } + // There are some allocations in this block. + else { + VkDeviceSize offset = 0; + VmaSuballocationList::iterator it; + for (it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end(); + ++it) { + VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(it->offset >= offset); + + // Need to insert preceding free space. + if (it->offset > offset) { + ++pMetadata->m_FreeCount; + const VkDeviceSize freeSize = it->offset - offset; + VmaSuballocation suballoc = { + offset, // offset + freeSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE + }; + VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); + if (freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) { + pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt); + } + } + + pMetadata->m_SumFreeSize -= it->size; + offset = it->offset + it->size; + } + + // Need to insert trailing free space. + if (offset < blockSize) { + ++pMetadata->m_FreeCount; + const VkDeviceSize freeSize = blockSize - offset; + VmaSuballocation suballoc = { + offset, // offset + freeSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE + }; + VMA_ASSERT(it == pMetadata->m_Suballocations.end()); + VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); + if (freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) { + pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt); + } + } + + VMA_SORT( + pMetadata->m_FreeSuballocationsBySize.begin(), + pMetadata->m_FreeSuballocationsBySize.end(), + VmaSuballocationItemSizeLess()); + } + + VMA_HEAVY_ASSERT(pMetadata->Validate()); + } +} + +void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic *pMetadata, const VmaSuballocation &suballoc) { + // TODO: Optimize somehow. Remember iterator instead of searching for it linearly. + VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); + while (it != pMetadata->m_Suballocations.end()) { + if (it->offset < suballoc.offset) { + ++it; + } + } + pMetadata->m_Suballocations.insert(it, suballoc); +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaBlockVectorDefragmentationContext + +VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext( + VmaAllocator hAllocator, + VmaPool hCustomPool, + VmaBlockVector *pBlockVector, + uint32_t currFrameIndex, + uint32_t algorithmFlags) : + res(VK_SUCCESS), + mutexLocked(false), + blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())), + m_hAllocator(hAllocator), + m_hCustomPool(hCustomPool), + m_pBlockVector(pBlockVector), + m_CurrFrameIndex(currFrameIndex), + m_AlgorithmFlags(algorithmFlags), + m_pAlgorithm(VMA_NULL), + m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())), + m_AllAllocations(false) { +} + +VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() { + vma_delete(m_hAllocator, m_pAlgorithm); +} + +void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged) { + AllocInfo info = { hAlloc, pChanged }; + m_Allocations.push_back(info); +} + +void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported) { + const bool allAllocations = m_AllAllocations || + m_Allocations.size() == m_pBlockVector->CalcAllocationCount(); + + /******************************** + HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM. + ********************************/ + + /* + Fast algorithm is supported only when certain criteria are met: + - VMA_DEBUG_MARGIN is 0. + - All allocations in this block vector are moveable. + - There is no possibility of image/buffer granularity conflict. + */ + if (VMA_DEBUG_MARGIN == 0 && + allAllocations && + !m_pBlockVector->IsBufferImageGranularityConflictPossible()) { + m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)( + m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); + } else { + m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)( + m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); + } + + if (allAllocations) { + m_pAlgorithm->AddAll(); + } else { + for (size_t i = 0, count = m_Allocations.size(); i < count; ++i) { + m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged); + } + } +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaDefragmentationContext + +VmaDefragmentationContext_T::VmaDefragmentationContext_T( + VmaAllocator hAllocator, + uint32_t currFrameIndex, + uint32_t flags, + VmaDefragmentationStats *pStats) : + m_hAllocator(hAllocator), + m_CurrFrameIndex(currFrameIndex), + m_Flags(flags), + m_pStats(pStats), + m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext *>(hAllocator->GetAllocationCallbacks())) { + memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts)); +} + +VmaDefragmentationContext_T::~VmaDefragmentationContext_T() { + for (size_t i = m_CustomPoolContexts.size(); i--;) { + VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[i]; + pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats); + vma_delete(m_hAllocator, pBlockVectorCtx); + } + for (size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--;) { + VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[i]; + if (pBlockVectorCtx) { + pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats); + vma_delete(m_hAllocator, pBlockVectorCtx); + } + } +} + +void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, VmaPool *pPools) { + for (uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) { + VmaPool pool = pPools[poolIndex]; + VMA_ASSERT(pool); + // Pools with algorithm other than default are not defragmented. + if (pool->m_BlockVector.GetAlgorithm() == 0) { + VmaBlockVectorDefragmentationContext *pBlockVectorDefragCtx = VMA_NULL; + + for (size_t i = m_CustomPoolContexts.size(); i--;) { + if (m_CustomPoolContexts[i]->GetCustomPool() == pool) { + pBlockVectorDefragCtx = m_CustomPoolContexts[i]; + break; + } + } + + if (!pBlockVectorDefragCtx) { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + pool, + &pool->m_BlockVector, + m_CurrFrameIndex, + m_Flags); + m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + } + + pBlockVectorDefragCtx->AddAll(); + } + } +} + +void VmaDefragmentationContext_T::AddAllocations( + uint32_t allocationCount, + VmaAllocation *pAllocations, + VkBool32 *pAllocationsChanged) { + // Dispatch pAllocations among defragmentators. Create them when necessary. + for (uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { + const VmaAllocation hAlloc = pAllocations[allocIndex]; + VMA_ASSERT(hAlloc); + // DedicatedAlloc cannot be defragmented. + if ((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) && + // Lost allocation cannot be defragmented. + (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)) { + VmaBlockVectorDefragmentationContext *pBlockVectorDefragCtx = VMA_NULL; + + const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool(); + // This allocation belongs to custom pool. + if (hAllocPool != VK_NULL_HANDLE) { + // Pools with algorithm other than default are not defragmented. + if (hAllocPool->m_BlockVector.GetAlgorithm() == 0) { + for (size_t i = m_CustomPoolContexts.size(); i--;) { + if (m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) { + pBlockVectorDefragCtx = m_CustomPoolContexts[i]; + break; + } + } + if (!pBlockVectorDefragCtx) { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + hAllocPool, + &hAllocPool->m_BlockVector, + m_CurrFrameIndex, + m_Flags); + m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + } + } + } + // This allocation belongs to default pool. + else { + const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); + pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; + if (!pBlockVectorDefragCtx) { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + VMA_NULL, // hCustomPool + m_hAllocator->m_pBlockVectors[memTypeIndex], + m_CurrFrameIndex, + m_Flags); + m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx; + } + } + + if (pBlockVectorDefragCtx) { + VkBool32 *const pChanged = (pAllocationsChanged != VMA_NULL) ? + &pAllocationsChanged[allocIndex] : + VMA_NULL; + pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged); + } + } + } +} + +VkResult VmaDefragmentationContext_T::Defragment( + VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, + VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer, VmaDefragmentationStats *pStats) { + if (pStats) { + memset(pStats, 0, sizeof(VmaDefragmentationStats)); + } + + if (commandBuffer == VK_NULL_HANDLE) { + maxGpuBytesToMove = 0; + maxGpuAllocationsToMove = 0; + } + + VkResult res = VK_SUCCESS; + + // Process default pools. + for (uint32_t memTypeIndex = 0; + memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS; + ++memTypeIndex) { + VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; + if (pBlockVectorCtx) { + VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + pStats, + maxCpuBytesToMove, maxCpuAllocationsToMove, + maxGpuBytesToMove, maxGpuAllocationsToMove, + commandBuffer); + if (pBlockVectorCtx->res != VK_SUCCESS) { + res = pBlockVectorCtx->res; + } + } + } + + // Process custom pools. + for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); + customCtxIndex < customCtxCount && res >= VK_SUCCESS; + ++customCtxIndex) { + VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; + VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + pStats, + maxCpuBytesToMove, maxCpuAllocationsToMove, + maxGpuBytesToMove, maxGpuAllocationsToMove, + commandBuffer); + if (pBlockVectorCtx->res != VK_SUCCESS) { + res = pBlockVectorCtx->res; + } + } + + return res; +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaRecorder + +#if VMA_RECORDING_ENABLED + +VmaRecorder::VmaRecorder() : + m_UseMutex(true), + m_Flags(0), + m_File(VMA_NULL), + m_Freq(INT64_MAX), + m_StartCounter(INT64_MAX) { +} + +VkResult VmaRecorder::Init(const VmaRecordSettings &settings, bool useMutex) { + m_UseMutex = useMutex; + m_Flags = settings.flags; + + QueryPerformanceFrequency((LARGE_INTEGER *)&m_Freq); + QueryPerformanceCounter((LARGE_INTEGER *)&m_StartCounter); + + // Open file for writing. + errno_t err = fopen_s(&m_File, settings.pFilePath, "wb"); + if (err != 0) { + return VK_ERROR_INITIALIZATION_FAILED; + } + + // Write header. + fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording"); + fprintf(m_File, "%s\n", "1,5"); + + return VK_SUCCESS; +} + +VmaRecorder::~VmaRecorder() { + if (m_File != VMA_NULL) { + fclose(m_File); + } +} + +void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex); + Flush(); +} + +void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex); + Flush(); +} + +void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo &createInfo, VmaPool pool) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex, + createInfo.memoryTypeIndex, + createInfo.flags, + createInfo.blockSize, + (uint64_t)createInfo.minBlockCount, + (uint64_t)createInfo.maxBlockCount, + createInfo.frameInUseCount, + pool); + Flush(); +} + +void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex, + pool); + Flush(); +} + +void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex, + const VkMemoryRequirements &vkMemReq, + const VmaAllocationCreateInfo &createInfo, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(createInfo.flags, createInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + vkMemReq.size, + vkMemReq.alignment, + vkMemReq.memoryTypeBits, + createInfo.flags, + createInfo.usage, + createInfo.requiredFlags, + createInfo.preferredFlags, + createInfo.memoryTypeBits, + createInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex, + const VkMemoryRequirements &vkMemReq, + const VmaAllocationCreateInfo &createInfo, + uint64_t allocationCount, + const VmaAllocation *pAllocations) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(createInfo.flags, createInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex, + vkMemReq.size, + vkMemReq.alignment, + vkMemReq.memoryTypeBits, + createInfo.flags, + createInfo.usage, + createInfo.requiredFlags, + createInfo.preferredFlags, + createInfo.memoryTypeBits, + createInfo.pool); + PrintPointerList(allocationCount, pAllocations); + fprintf(m_File, ",%s\n", userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex, + const VkMemoryRequirements &vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + const VmaAllocationCreateInfo &createInfo, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(createInfo.flags, createInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + vkMemReq.size, + vkMemReq.alignment, + vkMemReq.memoryTypeBits, + requiresDedicatedAllocation ? 1 : 0, + prefersDedicatedAllocation ? 1 : 0, + createInfo.flags, + createInfo.usage, + createInfo.requiredFlags, + createInfo.preferredFlags, + createInfo.memoryTypeBits, + createInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex, + const VkMemoryRequirements &vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + const VmaAllocationCreateInfo &createInfo, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(createInfo.flags, createInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + vkMemReq.size, + vkMemReq.alignment, + vkMemReq.memoryTypeBits, + requiresDedicatedAllocation ? 1 : 0, + prefersDedicatedAllocation ? 1 : 0, + createInfo.flags, + createInfo.usage, + createInfo.requiredFlags, + createInfo.preferredFlags, + createInfo.memoryTypeBits, + createInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordFreeMemory(uint32_t frameIndex, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex, + uint64_t allocationCount, + const VmaAllocation *pAllocations) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex); + PrintPointerList(allocationCount, pAllocations); + fprintf(m_File, "\n"); + Flush(); +} + +void VmaRecorder::RecordResizeAllocation( + uint32_t frameIndex, + VmaAllocation allocation, + VkDeviceSize newSize) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaResizeAllocation,%p,%llu\n", callParams.threadId, callParams.time, frameIndex, + allocation, newSize); + Flush(); +} + +void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex, + VmaAllocation allocation, + const void *pUserData) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr( + allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0, + pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordMapMemory(uint32_t frameIndex, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex, + VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, + allocation, + offset, + size); + Flush(); +} + +void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex, + VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, + allocation, + offset, + size); + Flush(); +} + +void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex, + const VkBufferCreateInfo &bufCreateInfo, + const VmaAllocationCreateInfo &allocCreateInfo, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + bufCreateInfo.flags, + bufCreateInfo.size, + bufCreateInfo.usage, + bufCreateInfo.sharingMode, + allocCreateInfo.flags, + allocCreateInfo.usage, + allocCreateInfo.requiredFlags, + allocCreateInfo.preferredFlags, + allocCreateInfo.memoryTypeBits, + allocCreateInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordCreateImage(uint32_t frameIndex, + const VkImageCreateInfo &imageCreateInfo, + const VmaAllocationCreateInfo &allocCreateInfo, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); + fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, + imageCreateInfo.flags, + imageCreateInfo.imageType, + imageCreateInfo.format, + imageCreateInfo.extent.width, + imageCreateInfo.extent.height, + imageCreateInfo.extent.depth, + imageCreateInfo.mipLevels, + imageCreateInfo.arrayLayers, + imageCreateInfo.samples, + imageCreateInfo.tiling, + imageCreateInfo.usage, + imageCreateInfo.sharingMode, + imageCreateInfo.initialLayout, + allocCreateInfo.flags, + allocCreateInfo.usage, + allocCreateInfo.requiredFlags, + allocCreateInfo.preferredFlags, + allocCreateInfo.memoryTypeBits, + allocCreateInfo.pool, + allocation, + userDataStr.GetString()); + Flush(); +} + +void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordDestroyImage(uint32_t frameIndex, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex, + VmaAllocation allocation) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex, + allocation); + Flush(); +} + +void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex, + VmaPool pool) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex, + pool); + Flush(); +} + +void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex, + const VmaDefragmentationInfo2 &info, + VmaDefragmentationContext ctx) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex, + info.flags); + PrintPointerList(info.allocationCount, info.pAllocations); + fprintf(m_File, ","); + PrintPointerList(info.poolCount, info.pPools); + fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n", + info.maxCpuBytesToMove, + info.maxCpuAllocationsToMove, + info.maxGpuBytesToMove, + info.maxGpuAllocationsToMove, + info.commandBuffer, + ctx); + Flush(); +} + +void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex, + VmaDefragmentationContext ctx) { + CallParams callParams; + GetBasicParams(callParams); + + VmaMutexLock lock(m_FileMutex, m_UseMutex); + fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex, + ctx); + Flush(); +} + +VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void *pUserData) { + if (pUserData != VMA_NULL) { + if ((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0) { + m_Str = (const char *)pUserData; + } else { + sprintf_s(m_PtrStr, "%p", pUserData); + m_Str = m_PtrStr; + } + } else { + m_Str = ""; + } +} + +void VmaRecorder::WriteConfiguration( + const VkPhysicalDeviceProperties &devProps, + const VkPhysicalDeviceMemoryProperties &memProps, + bool dedicatedAllocationExtensionEnabled) { + fprintf(m_File, "Config,Begin\n"); + + fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion); + fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion); + fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID); + fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID); + fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType); + fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName); + + fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount); + fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity); + fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize); + + fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount); + for (uint32_t i = 0; i < memProps.memoryHeapCount; ++i) { + fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size); + fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags); + } + fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount); + for (uint32_t i = 0; i < memProps.memoryTypeCount; ++i) { + fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex); + fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags); + } + + fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0); + + fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0); + fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT); + fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN); + fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0); + fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0); + fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0); + fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY); + fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE); + fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); + + fprintf(m_File, "Config,End\n"); +} + +void VmaRecorder::GetBasicParams(CallParams &outParams) { + outParams.threadId = GetCurrentThreadId(); + + LARGE_INTEGER counter; + QueryPerformanceCounter(&counter); + outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq; +} + +void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation *pItems) { + if (count) { + fprintf(m_File, "%p", pItems[0]); + for (uint64_t i = 1; i < count; ++i) { + fprintf(m_File, " %p", pItems[i]); + } + } +} + +void VmaRecorder::Flush() { + if ((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0) { + fflush(m_File); + } +} + +#endif // #if VMA_RECORDING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// VmaAllocationObjectAllocator + +VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks *pAllocationCallbacks) : + m_Allocator(pAllocationCallbacks, 1024) { +} + +VmaAllocation VmaAllocationObjectAllocator::Allocate() { + VmaMutexLock mutexLock(m_Mutex); + return m_Allocator.Alloc(); +} + +void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) { + VmaMutexLock mutexLock(m_Mutex); + m_Allocator.Free(hAlloc); +} + +//////////////////////////////////////////////////////////////////////////////// +// VmaAllocator_T + +VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo *pCreateInfo) : + m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), + m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), + m_hDevice(pCreateInfo->device), + m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), + m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? + *pCreateInfo->pAllocationCallbacks : + VmaEmptyAllocationCallbacks), + m_AllocationObjectAllocator(&m_AllocationCallbacks), + m_PreferredLargeHeapBlockSize(0), + m_PhysicalDevice(pCreateInfo->physicalDevice), + m_CurrentFrameIndex(0), + m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), + m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks())), + m_NextPoolId(0) +#if VMA_RECORDING_ENABLED + , + m_pRecorder(VMA_NULL) +#endif +{ + if (VMA_DEBUG_DETECT_CORRUPTION) { + // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. + VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); + } + + VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device); + +#if !(VMA_DEDICATED_ALLOCATION) + if ((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); + } +#endif + + memset(&m_DeviceMemoryCallbacks, 0, sizeof(m_DeviceMemoryCallbacks)); + memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); + memset(&m_MemProps, 0, sizeof(m_MemProps)); + + memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); + memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations)); + + for (uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) { + m_HeapSizeLimit[i] = VK_WHOLE_SIZE; + } + + if (pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) { + m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; + m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; + } + + ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); + + (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); + (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); + + VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT)); + VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); + + m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? + pCreateInfo->preferredLargeHeapBlockSize : + static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); + + if (pCreateInfo->pHeapSizeLimit != VMA_NULL) { + for (uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) { + const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; + if (limit != VK_WHOLE_SIZE) { + m_HeapSizeLimit[heapIndex] = limit; + if (limit < m_MemProps.memoryHeaps[heapIndex].size) { + m_MemProps.memoryHeaps[heapIndex].size = limit; + } + } + } + } + + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); + + m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( + this, + VK_NULL_HANDLE, // hParentPool + memTypeIndex, + preferredBlockSize, + 0, + SIZE_MAX, + GetBufferImageGranularity(), + pCreateInfo->frameInUseCount, + false, // isCustomPool + false, // explicitBlockSize + false); // linearAlgorithm + // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, + // becase minBlockCount is 0. + m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks())); + } +} + +VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo *pCreateInfo) { + VkResult res = VK_SUCCESS; + + if (pCreateInfo->pRecordSettings != VMA_NULL && + !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath)) { +#if VMA_RECORDING_ENABLED + m_pRecorder = vma_new(this, VmaRecorder)(); + res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex); + if (res != VK_SUCCESS) { + return res; + } + m_pRecorder->WriteConfiguration( + m_PhysicalDeviceProperties, + m_MemProps, + m_UseKhrDedicatedAllocation); + m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex()); +#else + VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1."); + return VK_ERROR_FEATURE_NOT_PRESENT; +#endif + } + + return res; +} + +VmaAllocator_T::~VmaAllocator_T() { +#if VMA_RECORDING_ENABLED + if (m_pRecorder != VMA_NULL) { + m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex()); + vma_delete(this, m_pRecorder); + } +#endif + + VMA_ASSERT(m_Pools.empty()); + + for (size_t i = GetMemoryTypeCount(); i--;) { + if (m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty()) { + VMA_ASSERT(0 && "Unfreed dedicated allocations found."); + } + + vma_delete(this, m_pDedicatedAllocations[i]); + vma_delete(this, m_pBlockVectors[i]); + } +} + +void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions *pVulkanFunctions) { +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; + m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; + m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; + m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; + m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; + m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; + m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; + m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; + m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; + m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; + m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; + m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; + m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; + m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; + m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; + m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; +#if VMA_DEDICATED_ALLOCATION + if (m_UseKhrDedicatedAllocation) { + m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = + (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR"); + m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = + (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR"); + } +#endif // #if VMA_DEDICATED_ALLOCATION +#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1 + +#define VMA_COPY_IF_NOT_NULL(funcName) \ + if (pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; + + if (pVulkanFunctions != VMA_NULL) { + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); + VMA_COPY_IF_NOT_NULL(vkAllocateMemory); + VMA_COPY_IF_NOT_NULL(vkFreeMemory); + VMA_COPY_IF_NOT_NULL(vkMapMemory); + VMA_COPY_IF_NOT_NULL(vkUnmapMemory); + VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory); + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkCreateBuffer); + VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); + VMA_COPY_IF_NOT_NULL(vkCreateImage); + VMA_COPY_IF_NOT_NULL(vkDestroyImage); + VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); +#if VMA_DEDICATED_ALLOCATION + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); +#endif + } + +#undef VMA_COPY_IF_NOT_NULL + + // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1 + // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions. + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); +#if VMA_DEDICATED_ALLOCATION + if (m_UseKhrDedicatedAllocation) { + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); + } +#endif +} + +VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) { + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; + return isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize; +} + +VkResult VmaAllocator_T::AllocateMemoryOfType( + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + const VmaAllocationCreateInfo &createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation *pAllocations) { + VMA_ASSERT(pAllocations != VMA_NULL); + VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size); + + VmaAllocationCreateInfo finalCreateInfo = createInfo; + + // If memory type is not HOST_VISIBLE, disable MAPPED. + if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && + (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) { + finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; + } + + VmaBlockVector *const blockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(blockVector); + + const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize(); + bool preferDedicatedMemory = + VMA_DEBUG_ALWAYS_DEDICATED_MEMORY || + dedicatedAllocation || + // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. + size > preferredBlockSize / 2; + + if (preferDedicatedMemory && + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && + finalCreateInfo.pool == VK_NULL_HANDLE) { + finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + + if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) { + if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } else { + return AllocateDedicatedMemory( + size, + suballocType, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + finalCreateInfo.pUserData, + dedicatedBuffer, + dedicatedImage, + allocationCount, + pAllocations); + } + } else { + VkResult res = blockVector->Allocate( + m_CurrentFrameIndex.load(), + size, + alignment, + finalCreateInfo, + suballocType, + allocationCount, + pAllocations); + if (res == VK_SUCCESS) { + return res; + } + + // 5. Try dedicated memory. + if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } else { + res = AllocateDedicatedMemory( + size, + suballocType, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + finalCreateInfo.pUserData, + dedicatedBuffer, + dedicatedImage, + allocationCount, + pAllocations); + if (res == VK_SUCCESS) { + // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. + VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); + return VK_SUCCESS; + } else { + // Everything failed: Return error code. + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } + } + } +} + +VkResult VmaAllocator_T::AllocateDedicatedMemory( + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + bool map, + bool isUserDataString, + void *pUserData, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + size_t allocationCount, + VmaAllocation *pAllocations) { + VMA_ASSERT(allocationCount > 0 && pAllocations); + + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.memoryTypeIndex = memTypeIndex; + allocInfo.allocationSize = size; + +#if VMA_DEDICATED_ALLOCATION + VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; + if (m_UseKhrDedicatedAllocation) { + if (dedicatedBuffer != VK_NULL_HANDLE) { + VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); + dedicatedAllocInfo.buffer = dedicatedBuffer; + allocInfo.pNext = &dedicatedAllocInfo; + } else if (dedicatedImage != VK_NULL_HANDLE) { + dedicatedAllocInfo.image = dedicatedImage; + allocInfo.pNext = &dedicatedAllocInfo; + } + } +#endif // #if VMA_DEDICATED_ALLOCATION + + size_t allocIndex; + VkResult res = VK_SUCCESS; + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { + res = AllocateDedicatedMemoryPage( + size, + suballocType, + memTypeIndex, + allocInfo, + map, + isUserDataString, + pUserData, + pAllocations + allocIndex); + if (res != VK_SUCCESS) { + break; + } + } + + if (res == VK_SUCCESS) { + // Register them in m_pDedicatedAllocations. + { + VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); + AllocationVectorType *pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; + VMA_ASSERT(pDedicatedAllocations); + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { + VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, pAllocations[allocIndex]); + } + } + + VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex); + } else { + // Free all already created allocations. + while (allocIndex--) { + VmaAllocation currAlloc = pAllocations[allocIndex]; + VkDeviceMemory hMemory = currAlloc->GetMemory(); + + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(currAlloc->GetMappedData() != VMA_NULL) + { + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ + + FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); + + currAlloc->SetUserData(this, VMA_NULL); + currAlloc->Dtor(); + m_AllocationObjectAllocator.Free(currAlloc); + } + + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + } + + return res; +} + +VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo &allocInfo, + bool map, + bool isUserDataString, + void *pUserData, + VmaAllocation *pAllocation) { + VkDeviceMemory hMemory = VK_NULL_HANDLE; + VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); + if (res < 0) { + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } + + void *pMappedData = VMA_NULL; + if (map) { + res = (*m_VulkanFunctions.vkMapMemory)( + m_hDevice, + hMemory, + 0, + VK_WHOLE_SIZE, + 0, + &pMappedData); + if (res < 0) { + VMA_DEBUG_LOG(" vkMapMemory FAILED"); + FreeVulkanMemory(memTypeIndex, size, hMemory); + return res; + } + } + + *pAllocation = m_AllocationObjectAllocator.Allocate(); + (*pAllocation)->Ctor(m_CurrentFrameIndex.load(), isUserDataString); + (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size); + (*pAllocation)->SetUserData(this, pUserData); + if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) { + FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + + return VK_SUCCESS; +} + +void VmaAllocator_T::GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements &memReq, + bool &requiresDedicatedAllocation, + bool &prefersDedicatedAllocation) const { +#if VMA_DEDICATED_ALLOCATION + if (m_UseKhrDedicatedAllocation) { + VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.buffer = hBuffer; + + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + memReq2.pNext = &memDedicatedReq; + + (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); + + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } else +#endif // #if VMA_DEDICATED_ALLOCATION + { + (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} + +void VmaAllocator_T::GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements &memReq, + bool &requiresDedicatedAllocation, + bool &prefersDedicatedAllocation) const { +#if VMA_DEDICATED_ALLOCATION + if (m_UseKhrDedicatedAllocation) { + VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.image = hImage; + + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + memReq2.pNext = &memDedicatedReq; + + (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); + + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } else +#endif // #if VMA_DEDICATED_ALLOCATION + { + (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} + +VkResult VmaAllocator_T::AllocateMemory( + const VkMemoryRequirements &vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + const VmaAllocationCreateInfo &createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation *pAllocations) { + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + + VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); + + if (vkMemReq.size == 0) { + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if ((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && + (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if ((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && + (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0) { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if (requiresDedicatedAllocation) { + if ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) { + VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if (createInfo.pool != VK_NULL_HANDLE) { + VMA_ASSERT(0 && "Pool specified while dedicated allocation is required."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + if ((createInfo.pool != VK_NULL_HANDLE) && + ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0)) { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid."); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + + if (createInfo.pool != VK_NULL_HANDLE) { + const VkDeviceSize alignmentForPool = VMA_MAX( + vkMemReq.alignment, + GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex())); + return createInfo.pool->m_BlockVector.Allocate( + m_CurrentFrameIndex.load(), + vkMemReq.size, + alignmentForPool, + createInfo, + suballocType, + allocationCount, + pAllocations); + } else { + // Bit mask of memory Vulkan types acceptable for this allocation. + uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; + uint32_t memTypeIndex = UINT32_MAX; + VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); + if (res == VK_SUCCESS) { + VkDeviceSize alignmentForMemType = VMA_MAX( + vkMemReq.alignment, + GetMemoryTypeMinAlignment(memTypeIndex)); + + res = AllocateMemoryOfType( + vkMemReq.size, + alignmentForMemType, + requiresDedicatedAllocation || prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedImage, + createInfo, + memTypeIndex, + suballocType, + allocationCount, + pAllocations); + // Succeeded on first try. + if (res == VK_SUCCESS) { + return res; + } + // Allocation from this memory type failed. Try other compatible memory types. + else { + for (;;) { + // Remove old memTypeIndex from list of possibilities. + memoryTypeBits &= ~(1u << memTypeIndex); + // Find alternative memTypeIndex. + res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); + if (res == VK_SUCCESS) { + alignmentForMemType = VMA_MAX( + vkMemReq.alignment, + GetMemoryTypeMinAlignment(memTypeIndex)); + + res = AllocateMemoryOfType( + vkMemReq.size, + alignmentForMemType, + requiresDedicatedAllocation || prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedImage, + createInfo, + memTypeIndex, + suballocType, + allocationCount, + pAllocations); + // Allocation from this alternative memory type succeeded. + if (res == VK_SUCCESS) { + return res; + } + // else: Allocation from this memory type failed. Try next one - next loop iteration. + } + // No other matching memory type index could be found. + else { + // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + } + } + // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. + else + return res; + } +} + +void VmaAllocator_T::FreeMemory( + size_t allocationCount, + const VmaAllocation *pAllocations) { + VMA_ASSERT(pAllocations); + + for (size_t allocIndex = allocationCount; allocIndex--;) { + VmaAllocation allocation = pAllocations[allocIndex]; + + if (allocation != VK_NULL_HANDLE) { + if (TouchAllocation(allocation)) { + if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) { + FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); + } + + switch (allocation->GetType()) { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { + VmaBlockVector *pBlockVector = VMA_NULL; + VmaPool hPool = allocation->GetBlock()->GetParentPool(); + if (hPool != VK_NULL_HANDLE) { + pBlockVector = &hPool->m_BlockVector; + } else { + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + pBlockVector = m_pBlockVectors[memTypeIndex]; + } + pBlockVector->Free(allocation); + } break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + FreeDedicatedMemory(allocation); + break; + default: + VMA_ASSERT(0); + } + } + + allocation->SetUserData(this, VMA_NULL); + allocation->Dtor(); + m_AllocationObjectAllocator.Free(allocation); + } + } +} + +VkResult VmaAllocator_T::ResizeAllocation( + const VmaAllocation alloc, + VkDeviceSize newSize) { + if (newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST) { + return VK_ERROR_VALIDATION_FAILED_EXT; + } + if (newSize == alloc->GetSize()) { + return VK_SUCCESS; + } + + switch (alloc->GetType()) { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + return VK_ERROR_FEATURE_NOT_PRESENT; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + if (alloc->GetBlock()->m_pMetadata->ResizeAllocation(alloc, newSize)) { + alloc->ChangeSize(newSize); + VMA_HEAVY_ASSERT(alloc->GetBlock()->m_pMetadata->Validate()); + return VK_SUCCESS; + } else { + return VK_ERROR_OUT_OF_POOL_MEMORY; + } + default: + VMA_ASSERT(0); + return VK_ERROR_VALIDATION_FAILED_EXT; + } +} + +void VmaAllocator_T::CalculateStats(VmaStats *pStats) { + // Initialize. + InitStatInfo(pStats->total); + for (size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) + InitStatInfo(pStats->memoryType[i]); + for (size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) + InitStatInfo(pStats->memoryHeap[i]); + + // Process default pools. + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { + VmaBlockVector *const pBlockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(pBlockVector); + pBlockVector->AddStats(pStats); + } + + // Process custom pools. + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for (size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) { + m_Pools[poolIndex]->m_BlockVector.AddStats(pStats); + } + } + + // Process dedicated allocations. + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { + const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); + AllocationVectorType *const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; + VMA_ASSERT(pDedicatedAllocVector); + for (size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex) { + VmaStatInfo allocationStatInfo; + (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo); + VmaAddStatInfo(pStats->total, allocationStatInfo); + VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); + VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); + } + } + + // Postprocess. + VmaPostprocessCalcStatInfo(pStats->total); + for (size_t i = 0; i < GetMemoryTypeCount(); ++i) + VmaPostprocessCalcStatInfo(pStats->memoryType[i]); + for (size_t i = 0; i < GetMemoryHeapCount(); ++i) + VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]); +} + +static const uint32_t VMA_VENDOR_ID_AMD = 4098; + +VkResult VmaAllocator_T::DefragmentationBegin( + const VmaDefragmentationInfo2 &info, + VmaDefragmentationStats *pStats, + VmaDefragmentationContext *pContext) { + if (info.pAllocationsChanged != VMA_NULL) { + memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32)); + } + + *pContext = vma_new(this, VmaDefragmentationContext_T)( + this, m_CurrentFrameIndex.load(), info.flags, pStats); + + (*pContext)->AddPools(info.poolCount, info.pPools); + (*pContext)->AddAllocations( + info.allocationCount, info.pAllocations, info.pAllocationsChanged); + + VkResult res = (*pContext)->Defragment( + info.maxCpuBytesToMove, info.maxCpuAllocationsToMove, + info.maxGpuBytesToMove, info.maxGpuAllocationsToMove, + info.commandBuffer, pStats); + + if (res != VK_NOT_READY) { + vma_delete(this, *pContext); + *pContext = VMA_NULL; + } + + return res; +} + +VkResult VmaAllocator_T::DefragmentationEnd( + VmaDefragmentationContext context) { + vma_delete(this, context); + return VK_SUCCESS; +} + +void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo *pAllocationInfo) { + if (hAllocation->CanBecomeLost()) { + /* + Warning: This is a carefully designed algorithm. + Do not modify unless you really know what you're doing :) + */ + const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); + uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); + for (;;) { + if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) { + pAllocationInfo->memoryType = UINT32_MAX; + pAllocationInfo->deviceMemory = VK_NULL_HANDLE; + pAllocationInfo->offset = 0; + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = VMA_NULL; + pAllocationInfo->pUserData = hAllocation->GetUserData(); + return; + } else if (localLastUseFrameIndex == localCurrFrameIndex) { + pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); + pAllocationInfo->deviceMemory = hAllocation->GetMemory(); + pAllocationInfo->offset = hAllocation->GetOffset(); + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = VMA_NULL; + pAllocationInfo->pUserData = hAllocation->GetUserData(); + return; + } else // Last use time earlier than current time. + { + if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) { + localLastUseFrameIndex = localCurrFrameIndex; + } + } + } + } else { +#if VMA_STATS_STRING_ENABLED + uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); + uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); + for (;;) { + VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); + if (localLastUseFrameIndex == localCurrFrameIndex) { + break; + } else // Last use time earlier than current time. + { + if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) { + localLastUseFrameIndex = localCurrFrameIndex; + } + } + } +#endif + + pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); + pAllocationInfo->deviceMemory = hAllocation->GetMemory(); + pAllocationInfo->offset = hAllocation->GetOffset(); + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = hAllocation->GetMappedData(); + pAllocationInfo->pUserData = hAllocation->GetUserData(); + } +} + +bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation) { + // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo. + if (hAllocation->CanBecomeLost()) { + uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); + uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); + for (;;) { + if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) { + return false; + } else if (localLastUseFrameIndex == localCurrFrameIndex) { + return true; + } else // Last use time earlier than current time. + { + if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) { + localLastUseFrameIndex = localCurrFrameIndex; + } + } + } + } else { +#if VMA_STATS_STRING_ENABLED + uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); + uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); + for (;;) { + VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); + if (localLastUseFrameIndex == localCurrFrameIndex) { + break; + } else // Last use time earlier than current time. + { + if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) { + localLastUseFrameIndex = localCurrFrameIndex; + } + } + } +#endif + + return true; + } +} + +VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo *pCreateInfo, VmaPool *pPool) { + VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags); + + VmaPoolCreateInfo newCreateInfo = *pCreateInfo; + + if (newCreateInfo.maxBlockCount == 0) { + newCreateInfo.maxBlockCount = SIZE_MAX; + } + if (newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) { + return VK_ERROR_INITIALIZATION_FAILED; + } + + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); + + *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); + + VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); + if (res != VK_SUCCESS) { + vma_delete(this, *pPool); + *pPool = VMA_NULL; + return res; + } + + // Add to m_Pools. + { + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + (*pPool)->SetId(m_NextPoolId++); + VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool); + } + + return VK_SUCCESS; +} + +void VmaAllocator_T::DestroyPool(VmaPool pool) { + // Remove from m_Pools. + { + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool); + VMA_ASSERT(success && "Pool not found in Allocator."); + } + + vma_delete(this, pool); +} + +void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats *pPoolStats) { + pool->m_BlockVector.GetPoolStats(pPoolStats); +} + +void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) { + m_CurrentFrameIndex.store(frameIndex); +} + +void VmaAllocator_T::MakePoolAllocationsLost( + VmaPool hPool, + size_t *pLostAllocationCount) { + hPool->m_BlockVector.MakePoolAllocationsLost( + m_CurrentFrameIndex.load(), + pLostAllocationCount); +} + +VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) { + return hPool->m_BlockVector.CheckCorruption(); +} + +VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) { + VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; + + // Process default pools. + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { + if (((1u << memTypeIndex) & memoryTypeBits) != 0) { + VmaBlockVector *const pBlockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(pBlockVector); + VkResult localRes = pBlockVector->CheckCorruption(); + switch (localRes) { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } + } + } + + // Process custom pools. + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for (size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) { + if (((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) { + VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption(); + switch (localRes) { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } + } + } + } + + return finalRes; +} + +void VmaAllocator_T::CreateLostAllocation(VmaAllocation *pAllocation) { + *pAllocation = m_AllocationObjectAllocator.Allocate(); + (*pAllocation)->Ctor(VMA_FRAME_INDEX_LOST, false); + (*pAllocation)->InitLost(); +} + +VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo *pAllocateInfo, VkDeviceMemory *pMemory) { + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); + + VkResult res; + if (m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE) { + VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex); + if (m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize) { + res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); + if (res == VK_SUCCESS) { + m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize; + } + } else { + res = VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } else { + res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); + } + + if (res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) { + (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize); + } + + return res; +} + +void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) { + if (m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) { + (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size); + } + + (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); + + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType); + if (m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE) { + VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex); + m_HeapSizeLimit[heapIndex] += size; + } +} + +VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void **ppData) { + if (hAllocation->CanBecomeLost()) { + return VK_ERROR_MEMORY_MAP_FAILED; + } + + switch (hAllocation->GetType()) { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { + VmaDeviceMemoryBlock *const pBlock = hAllocation->GetBlock(); + char *pBytes = VMA_NULL; + VkResult res = pBlock->Map(this, 1, (void **)&pBytes); + if (res == VK_SUCCESS) { + *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); + hAllocation->BlockAllocMap(); + } + return res; + } + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + return hAllocation->DedicatedAllocMap(this, ppData); + default: + VMA_ASSERT(0); + return VK_ERROR_MEMORY_MAP_FAILED; + } +} + +void VmaAllocator_T::Unmap(VmaAllocation hAllocation) { + switch (hAllocation->GetType()) { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { + VmaDeviceMemoryBlock *const pBlock = hAllocation->GetBlock(); + hAllocation->BlockAllocUnmap(); + pBlock->Unmap(this, 1); + } break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + hAllocation->DedicatedAllocUnmap(this); + break; + default: + VMA_ASSERT(0); + } +} + +VkResult VmaAllocator_T::BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer) { + VkResult res = VK_SUCCESS; + switch (hAllocation->GetType()) { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = GetVulkanFunctions().vkBindBufferMemory( + m_hDevice, + hBuffer, + hAllocation->GetMemory(), + 0); //memoryOffset + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { + VmaDeviceMemoryBlock *pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?"); + res = pBlock->BindBufferMemory(this, hAllocation, hBuffer); + break; + } + default: + VMA_ASSERT(0); + } + return res; +} + +VkResult VmaAllocator_T::BindImageMemory(VmaAllocation hAllocation, VkImage hImage) { + VkResult res = VK_SUCCESS; + switch (hAllocation->GetType()) { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = GetVulkanFunctions().vkBindImageMemory( + m_hDevice, + hImage, + hAllocation->GetMemory(), + 0); //memoryOffset + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { + VmaDeviceMemoryBlock *pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?"); + res = pBlock->BindImageMemory(this, hAllocation, hImage); + break; + } + default: + VMA_ASSERT(0); + } + return res; +} + +void VmaAllocator_T::FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op) { + const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex(); + if (size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) { + const VkDeviceSize allocationSize = hAllocation->GetSize(); + VMA_ASSERT(offset <= allocationSize); + + const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; + + VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; + memRange.memory = hAllocation->GetMemory(); + + switch (hAllocation->GetType()) { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if (size == VK_WHOLE_SIZE) { + memRange.size = allocationSize - memRange.offset; + } else { + VMA_ASSERT(offset + size <= allocationSize); + memRange.size = VMA_MIN( + VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize), + allocationSize - memRange.offset); + } + break; + + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { + // 1. Still within this allocation. + memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if (size == VK_WHOLE_SIZE) { + size = allocationSize - offset; + } else { + VMA_ASSERT(offset + size <= allocationSize); + } + memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize); + + // 2. Adjust to whole block. + const VkDeviceSize allocationOffset = hAllocation->GetOffset(); + VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); + const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize(); + memRange.offset += allocationOffset; + memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset); + + break; + } + + default: + VMA_ASSERT(0); + } + + switch (op) { + case VMA_CACHE_FLUSH: + (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + case VMA_CACHE_INVALIDATE: + (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + default: + VMA_ASSERT(0); + } + } + // else: Just ignore this call. +} + +void VmaAllocator_T::FreeDedicatedMemory(VmaAllocation allocation) { + VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + { + VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); + AllocationVectorType *const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; + VMA_ASSERT(pDedicatedAllocations); + bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation); + VMA_ASSERT(success); + } + + VkDeviceMemory hMemory = allocation->GetMemory(); + + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(allocation->GetMappedData() != VMA_NULL) + { + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ + + FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); + + VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex); +} + +uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const { + VkBufferCreateInfo dummyBufCreateInfo; + VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); + + uint32_t memoryTypeBits = 0; + + // Create buffer. + VkBuffer buf = VMA_NULL; + VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( + m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); + if (res == VK_SUCCESS) { + // Query for supported memory types. + VkMemoryRequirements memReq; + (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); + memoryTypeBits = memReq.memoryTypeBits; + + // Destroy buffer. + (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); + } + + return memoryTypeBits; +} + +void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) { + if (VMA_DEBUG_INITIALIZE_ALLOCATIONS && + !hAllocation->CanBecomeLost() && + (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) { + void *pData = VMA_NULL; + VkResult res = Map(hAllocation, &pData); + if (res == VK_SUCCESS) { + memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); + FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); + Unmap(hAllocation); + } else { + VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); + } + } +} + +uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() { + uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); + if (memoryTypeBits == UINT32_MAX) { + memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); + m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); + } + return memoryTypeBits; +} + +#if VMA_STATS_STRING_ENABLED + +void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter &json) { + bool dedicatedAllocationsStarted = false; + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { + VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); + AllocationVectorType *const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; + VMA_ASSERT(pDedicatedAllocVector); + if (pDedicatedAllocVector->empty() == false) { + if (dedicatedAllocationsStarted == false) { + dedicatedAllocationsStarted = true; + json.WriteString("DedicatedAllocations"); + json.BeginObject(); + } + + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + + json.BeginArray(); + + for (size_t i = 0; i < pDedicatedAllocVector->size(); ++i) { + json.BeginObject(true); + const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i]; + hAlloc->PrintParameters(json); + json.EndObject(); + } + + json.EndArray(); + } + } + if (dedicatedAllocationsStarted) { + json.EndObject(); + } + + { + bool allocationsStarted = false; + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { + if (m_pBlockVectors[memTypeIndex]->IsEmpty() == false) { + if (allocationsStarted == false) { + allocationsStarted = true; + json.WriteString("DefaultPools"); + json.BeginObject(); + } + + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + + m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json); + } + } + if (allocationsStarted) { + json.EndObject(); + } + } + + // Custom pools + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + const size_t poolCount = m_Pools.size(); + if (poolCount > 0) { + json.WriteString("Pools"); + json.BeginObject(); + for (size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) { + json.BeginString(); + json.ContinueString(m_Pools[poolIndex]->GetId()); + json.EndString(); + + m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json); + } + json.EndObject(); + } + } +} + +#endif // #if VMA_STATS_STRING_ENABLED + +//////////////////////////////////////////////////////////////////////////////// +// Public interface + +VkResult vmaCreateAllocator( + const VmaAllocatorCreateInfo *pCreateInfo, + VmaAllocator *pAllocator) { + VMA_ASSERT(pCreateInfo && pAllocator); + VMA_DEBUG_LOG("vmaCreateAllocator"); + *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); + return (*pAllocator)->Init(pCreateInfo); +} + +void vmaDestroyAllocator( + VmaAllocator allocator) { + if (allocator != VK_NULL_HANDLE) { + VMA_DEBUG_LOG("vmaDestroyAllocator"); + VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; + vma_delete(&allocationCallbacks, allocator); + } +} + +void vmaGetPhysicalDeviceProperties( + VmaAllocator allocator, + const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) { + VMA_ASSERT(allocator && ppPhysicalDeviceProperties); + *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; +} + +void vmaGetMemoryProperties( + VmaAllocator allocator, + const VkPhysicalDeviceMemoryProperties **ppPhysicalDeviceMemoryProperties) { + VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); + *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; +} + +void vmaGetMemoryTypeProperties( + VmaAllocator allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags *pFlags) { + VMA_ASSERT(allocator && pFlags); + VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); + *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; +} + +void vmaSetCurrentFrameIndex( + VmaAllocator allocator, + uint32_t frameIndex) { + VMA_ASSERT(allocator); + VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->SetCurrentFrameIndex(frameIndex); +} + +void vmaCalculateStats( + VmaAllocator allocator, + VmaStats *pStats) { + VMA_ASSERT(allocator && pStats); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->CalculateStats(pStats); +} + +#if VMA_STATS_STRING_ENABLED + +void vmaBuildStatsString( + VmaAllocator allocator, + char **ppStatsString, + VkBool32 detailedMap) { + VMA_ASSERT(allocator && ppStatsString); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VmaStringBuilder sb(allocator); + { + VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); + json.BeginObject(); + + VmaStats stats; + allocator->CalculateStats(&stats); + + json.WriteString("Total"); + VmaPrintStatInfo(json, stats.total); + + for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) { + json.BeginString("Heap "); + json.ContinueString(heapIndex); + json.EndString(); + json.BeginObject(); + + json.WriteString("Size"); + json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size); + + json.WriteString("Flags"); + json.BeginArray(true); + if ((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) { + json.WriteString("DEVICE_LOCAL"); + } + json.EndArray(); + + if (stats.memoryHeap[heapIndex].blockCount > 0) { + json.WriteString("Stats"); + VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]); + } + + for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) { + if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) { + json.BeginString("Type "); + json.ContinueString(typeIndex); + json.EndString(); + + json.BeginObject(); + + json.WriteString("Flags"); + json.BeginArray(true); + VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; + if ((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) { + json.WriteString("DEVICE_LOCAL"); + } + if ((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) { + json.WriteString("HOST_VISIBLE"); + } + if ((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) { + json.WriteString("HOST_COHERENT"); + } + if ((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) { + json.WriteString("HOST_CACHED"); + } + if ((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) { + json.WriteString("LAZILY_ALLOCATED"); + } + json.EndArray(); + + if (stats.memoryType[typeIndex].blockCount > 0) { + json.WriteString("Stats"); + VmaPrintStatInfo(json, stats.memoryType[typeIndex]); + } + + json.EndObject(); + } + } + + json.EndObject(); + } + if (detailedMap == VK_TRUE) { + allocator->PrintDetailedMap(json); + } + + json.EndObject(); + } + + const size_t len = sb.GetLength(); + char *const pChars = vma_new_array(allocator, char, len + 1); + if (len > 0) { + memcpy(pChars, sb.GetData(), len); + } + pChars[len] = '\0'; + *ppStatsString = pChars; +} + +void vmaFreeStatsString( + VmaAllocator allocator, + char *pStatsString) { + if (pStatsString != VMA_NULL) { + VMA_ASSERT(allocator); + size_t len = strlen(pStatsString); + vma_delete_array(allocator, pStatsString, len + 1); + } +} + +#endif // #if VMA_STATS_STRING_ENABLED + +/* +This function is not protected by any mutex because it just reads immutable data. +*/ +VkResult vmaFindMemoryTypeIndex( + VmaAllocator allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + uint32_t *pMemoryTypeIndex) { + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + if (pAllocationCreateInfo->memoryTypeBits != 0) { + memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; + } + + uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags; + uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags; + + // Convert usage to requiredFlags and preferredFlags. + switch (pAllocationCreateInfo->usage) { + case VMA_MEMORY_USAGE_UNKNOWN: + break; + case VMA_MEMORY_USAGE_GPU_ONLY: + if (!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) { + preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_CPU_ONLY: + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + break; + case VMA_MEMORY_USAGE_CPU_TO_GPU: + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + if (!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) { + preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_GPU_TO_CPU: + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + break; + default: + break; + } + + *pMemoryTypeIndex = UINT32_MAX; + uint32_t minCost = UINT32_MAX; + for (uint32_t memTypeIndex = 0, memTypeBit = 1; + memTypeIndex < allocator->GetMemoryTypeCount(); + ++memTypeIndex, memTypeBit <<= 1) { + // This memory type is acceptable according to memoryTypeBits bitmask. + if ((memTypeBit & memoryTypeBits) != 0) { + const VkMemoryPropertyFlags currFlags = + allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; + // This memory type contains requiredFlags. + if ((requiredFlags & ~currFlags) == 0) { + // Calculate cost as number of bits from preferredFlags not present in this memory type. + uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags); + // Remember memory type with lowest cost. + if (currCost < minCost) { + *pMemoryTypeIndex = memTypeIndex; + if (currCost == 0) { + return VK_SUCCESS; + } + minCost = currCost; + } + } + } + } + return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; +} + +VkResult vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator allocator, + const VkBufferCreateInfo *pBufferCreateInfo, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + uint32_t *pMemoryTypeIndex) { + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pBufferCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + VkBuffer hBuffer = VK_NULL_HANDLE; + VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer( + hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); + if (res == VK_SUCCESS) { + VkMemoryRequirements memReq = {}; + allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements( + hDev, hBuffer, &memReq); + + res = vmaFindMemoryTypeIndex( + allocator, + memReq.memoryTypeBits, + pAllocationCreateInfo, + pMemoryTypeIndex); + + allocator->GetVulkanFunctions().vkDestroyBuffer( + hDev, hBuffer, allocator->GetAllocationCallbacks()); + } + return res; +} + +VkResult vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator allocator, + const VkImageCreateInfo *pImageCreateInfo, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + uint32_t *pMemoryTypeIndex) { + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pImageCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + VkImage hImage = VK_NULL_HANDLE; + VkResult res = allocator->GetVulkanFunctions().vkCreateImage( + hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); + if (res == VK_SUCCESS) { + VkMemoryRequirements memReq = {}; + allocator->GetVulkanFunctions().vkGetImageMemoryRequirements( + hDev, hImage, &memReq); + + res = vmaFindMemoryTypeIndex( + allocator, + memReq.memoryTypeBits, + pAllocationCreateInfo, + pMemoryTypeIndex); + + allocator->GetVulkanFunctions().vkDestroyImage( + hDev, hImage, allocator->GetAllocationCallbacks()); + } + return res; +} + +VkResult vmaCreatePool( + VmaAllocator allocator, + const VmaPoolCreateInfo *pCreateInfo, + VmaPool *pPool) { + VMA_ASSERT(allocator && pCreateInfo && pPool); + + VMA_DEBUG_LOG("vmaCreatePool"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult res = allocator->CreatePool(pCreateInfo, pPool); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool); + } +#endif + + return res; +} + +void vmaDestroyPool( + VmaAllocator allocator, + VmaPool pool) { + VMA_ASSERT(allocator); + + if (pool == VK_NULL_HANDLE) { + return; + } + + VMA_DEBUG_LOG("vmaDestroyPool"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool); + } +#endif + + allocator->DestroyPool(pool); +} + +void vmaGetPoolStats( + VmaAllocator allocator, + VmaPool pool, + VmaPoolStats *pPoolStats) { + VMA_ASSERT(allocator && pool && pPoolStats); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->GetPoolStats(pool, pPoolStats); +} + +void vmaMakePoolAllocationsLost( + VmaAllocator allocator, + VmaPool pool, + size_t *pLostAllocationCount) { + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool); + } +#endif + + allocator->MakePoolAllocationsLost(pool, pLostAllocationCount); +} + +VkResult vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) { + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VMA_DEBUG_LOG("vmaCheckPoolCorruption"); + + return allocator->CheckPoolCorruption(pool); +} + +VkResult vmaAllocateMemory( + VmaAllocator allocator, + const VkMemoryRequirements *pVkMemoryRequirements, + const VmaAllocationCreateInfo *pCreateInfo, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo) { + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordAllocateMemory( + allocator->GetCurrentFrameIndex(), + *pVkMemoryRequirements, + *pCreateInfo, + *pAllocation); + } +#endif + + if (pAllocationInfo != VMA_NULL && result == VK_SUCCESS) { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VkResult vmaAllocateMemoryPages( + VmaAllocator allocator, + const VkMemoryRequirements *pVkMemoryRequirements, + const VmaAllocationCreateInfo *pCreateInfo, + size_t allocationCount, + VmaAllocation *pAllocations, + VmaAllocationInfo *pAllocationInfo) { + if (allocationCount == 0) { + return VK_SUCCESS; + } + + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); + + VMA_DEBUG_LOG("vmaAllocateMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + allocationCount, + pAllocations); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordAllocateMemoryPages( + allocator->GetCurrentFrameIndex(), + *pVkMemoryRequirements, + *pCreateInfo, + (uint64_t)allocationCount, + pAllocations); + } +#endif + + if (pAllocationInfo != VMA_NULL && result == VK_SUCCESS) { + for (size_t i = 0; i < allocationCount; ++i) { + allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); + } + } + + return result; +} + +VkResult vmaAllocateMemoryForBuffer( + VmaAllocator allocator, + VkBuffer buffer, + const VmaAllocationCreateInfo *pCreateInfo, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo) { + VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(buffer, vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + buffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordAllocateMemoryForBuffer( + allocator->GetCurrentFrameIndex(), + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pCreateInfo, + *pAllocation); + } +#endif + + if (pAllocationInfo && result == VK_SUCCESS) { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VkResult vmaAllocateMemoryForImage( + VmaAllocator allocator, + VkImage image, + const VmaAllocationCreateInfo *pCreateInfo, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo) { + VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(image, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + image, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordAllocateMemoryForImage( + allocator->GetCurrentFrameIndex(), + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pCreateInfo, + *pAllocation); + } +#endif + + if (pAllocationInfo && result == VK_SUCCESS) { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +void vmaFreeMemory( + VmaAllocator allocator, + VmaAllocation allocation) { + VMA_ASSERT(allocator); + + if (allocation == VK_NULL_HANDLE) { + return; + } + + VMA_DEBUG_LOG("vmaFreeMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordFreeMemory( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + allocator->FreeMemory( + 1, // allocationCount + &allocation); +} + +void vmaFreeMemoryPages( + VmaAllocator allocator, + size_t allocationCount, + VmaAllocation *pAllocations) { + if (allocationCount == 0) { + return; + } + + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaFreeMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordFreeMemoryPages( + allocator->GetCurrentFrameIndex(), + (uint64_t)allocationCount, + pAllocations); + } +#endif + + allocator->FreeMemory(allocationCount, pAllocations); +} + +VkResult vmaResizeAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize newSize) { + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaResizeAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordResizeAllocation( + allocator->GetCurrentFrameIndex(), + allocation, + newSize); + } +#endif + + return allocator->ResizeAllocation(allocation, newSize); +} + +void vmaGetAllocationInfo( + VmaAllocator allocator, + VmaAllocation allocation, + VmaAllocationInfo *pAllocationInfo) { + VMA_ASSERT(allocator && allocation && pAllocationInfo); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordGetAllocationInfo( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + allocator->GetAllocationInfo(allocation, pAllocationInfo); +} + +VkBool32 vmaTouchAllocation( + VmaAllocator allocator, + VmaAllocation allocation) { + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordTouchAllocation( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + return allocator->TouchAllocation(allocation); +} + +void vmaSetAllocationUserData( + VmaAllocator allocator, + VmaAllocation allocation, + void *pUserData) { + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocation->SetUserData(allocator, pUserData); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordSetAllocationUserData( + allocator->GetCurrentFrameIndex(), + allocation, + pUserData); + } +#endif +} + +void vmaCreateLostAllocation( + VmaAllocator allocator, + VmaAllocation *pAllocation) { + VMA_ASSERT(allocator && pAllocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + + allocator->CreateLostAllocation(pAllocation); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordCreateLostAllocation( + allocator->GetCurrentFrameIndex(), + *pAllocation); + } +#endif +} + +VkResult vmaMapMemory( + VmaAllocator allocator, + VmaAllocation allocation, + void **ppData) { + VMA_ASSERT(allocator && allocation && ppData); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult res = allocator->Map(allocation, ppData); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordMapMemory( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + return res; +} + +void vmaUnmapMemory( + VmaAllocator allocator, + VmaAllocation allocation) { + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordUnmapMemory( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + allocator->Unmap(allocation); +} + +void vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) { + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaFlushAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordFlushAllocation( + allocator->GetCurrentFrameIndex(), + allocation, offset, size); + } +#endif +} + +void vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) { + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaInvalidateAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordInvalidateAllocation( + allocator->GetCurrentFrameIndex(), + allocation, offset, size); + } +#endif +} + +VkResult vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits) { + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaCheckCorruption"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CheckCorruption(memoryTypeBits); +} + +VkResult vmaDefragment( + VmaAllocator allocator, + VmaAllocation *pAllocations, + size_t allocationCount, + VkBool32 *pAllocationsChanged, + const VmaDefragmentationInfo *pDefragmentationInfo, + VmaDefragmentationStats *pDefragmentationStats) { + // Deprecated interface, reimplemented using new one. + + VmaDefragmentationInfo2 info2 = {}; + info2.allocationCount = (uint32_t)allocationCount; + info2.pAllocations = pAllocations; + info2.pAllocationsChanged = pAllocationsChanged; + if (pDefragmentationInfo != VMA_NULL) { + info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove; + info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove; + } else { + info2.maxCpuAllocationsToMove = UINT32_MAX; + info2.maxCpuBytesToMove = VK_WHOLE_SIZE; + } + // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero. + + VmaDefragmentationContext ctx; + VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx); + if (res == VK_NOT_READY) { + res = vmaDefragmentationEnd(allocator, ctx); + } + return res; +} + +VkResult vmaDefragmentationBegin( + VmaAllocator allocator, + const VmaDefragmentationInfo2 *pInfo, + VmaDefragmentationStats *pStats, + VmaDefragmentationContext *pContext) { + VMA_ASSERT(allocator && pInfo && pContext); + + // Degenerate case: Nothing to defragment. + if (pInfo->allocationCount == 0 && pInfo->poolCount == 0) { + return VK_SUCCESS; + } + + VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL); + VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL); + VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations)); + VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools)); + + VMA_DEBUG_LOG("vmaDefragmentationBegin"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordDefragmentationBegin( + allocator->GetCurrentFrameIndex(), *pInfo, *pContext); + } +#endif + + return res; +} + +VkResult vmaDefragmentationEnd( + VmaAllocator allocator, + VmaDefragmentationContext context) { + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaDefragmentationEnd"); + + if (context != VK_NULL_HANDLE) { + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordDefragmentationEnd( + allocator->GetCurrentFrameIndex(), context); + } +#endif + + return allocator->DefragmentationEnd(context); + } else { + return VK_SUCCESS; + } +} + +VkResult vmaBindBufferMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkBuffer buffer) { + VMA_ASSERT(allocator && allocation && buffer); + + VMA_DEBUG_LOG("vmaBindBufferMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindBufferMemory(allocation, buffer); +} + +VkResult vmaBindImageMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkImage image) { + VMA_ASSERT(allocator && allocation && image); + + VMA_DEBUG_LOG("vmaBindImageMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindImageMemory(allocation, image); +} + +VkResult vmaCreateBuffer( + VmaAllocator allocator, + const VkBufferCreateInfo *pBufferCreateInfo, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + VkBuffer *pBuffer, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo) { + VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); + + if (pBufferCreateInfo->size == 0) { + return VK_ERROR_VALIDATION_FAILED_EXT; + } + + VMA_DEBUG_LOG("vmaCreateBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pBuffer = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if (res >= 0) { + // 2. vkGetBufferMemoryRequirements. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + // Make sure alignment requirements for specific buffer usages reported + // in Physical Device Properties are included in alignment reported by memory requirements. + if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0) { + VMA_ASSERT(vkMemReq.alignment % + allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == + 0); + } + if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0) { + VMA_ASSERT(vkMemReq.alignment % + allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == + 0); + } + if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0) { + VMA_ASSERT(vkMemReq.alignment % + allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == + 0); + } + + // 3. Allocate memory using allocator. + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pBuffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + *pAllocationCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordCreateBuffer( + allocator->GetCurrentFrameIndex(), + *pBufferCreateInfo, + *pAllocationCreateInfo, + *pAllocation); + } +#endif + + if (res >= 0) { + // 3. Bind buffer with memory. + if ((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) { + res = allocator->BindBufferMemory(*pAllocation, *pBuffer); + } + if (res >= 0) { +// All steps succeeded. +#if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); +#endif + if (pAllocationInfo != VMA_NULL) { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + return res; +} + +void vmaDestroyBuffer( + VmaAllocator allocator, + VkBuffer buffer, + VmaAllocation allocation) { + VMA_ASSERT(allocator); + + if (buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) { + return; + } + + VMA_DEBUG_LOG("vmaDestroyBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordDestroyBuffer( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + if (buffer != VK_NULL_HANDLE) { + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); + } + + if (allocation != VK_NULL_HANDLE) { + allocator->FreeMemory( + 1, // allocationCount + &allocation); + } +} + +VkResult vmaCreateImage( + VmaAllocator allocator, + const VkImageCreateInfo *pImageCreateInfo, + const VmaAllocationCreateInfo *pAllocationCreateInfo, + VkImage *pImage, + VmaAllocation *pAllocation, + VmaAllocationInfo *pAllocationInfo) { + VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); + + if (pImageCreateInfo->extent.width == 0 || + pImageCreateInfo->extent.height == 0 || + pImageCreateInfo->extent.depth == 0 || + pImageCreateInfo->mipLevels == 0 || + pImageCreateInfo->arrayLayers == 0) { + return VK_ERROR_VALIDATION_FAILED_EXT; + } + + VMA_DEBUG_LOG("vmaCreateImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pImage = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkImage. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( + allocator->m_hDevice, + pImageCreateInfo, + allocator->GetAllocationCallbacks(), + pImage); + if (res >= 0) { + VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; + + // 2. Allocate memory using allocator. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(*pImage, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + *pImage, // dedicatedImage + *pAllocationCreateInfo, + suballocType, + 1, // allocationCount + pAllocation); + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordCreateImage( + allocator->GetCurrentFrameIndex(), + *pImageCreateInfo, + *pAllocationCreateInfo, + *pAllocation); + } +#endif + + if (res >= 0) { + // 3. Bind image with memory. + if ((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) { + res = allocator->BindImageMemory(*pAllocation, *pImage); + } + if (res >= 0) { +// All steps succeeded. +#if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); +#endif + if (pAllocationInfo != VMA_NULL) { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; + } + return res; +} + +void vmaDestroyImage( + VmaAllocator allocator, + VkImage image, + VmaAllocation allocation) { + VMA_ASSERT(allocator); + + if (image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) { + return; + } + + VMA_DEBUG_LOG("vmaDestroyImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + +#if VMA_RECORDING_ENABLED + if (allocator->GetRecorder() != VMA_NULL) { + allocator->GetRecorder()->RecordDestroyImage( + allocator->GetCurrentFrameIndex(), + allocation); + } +#endif + + if (image != VK_NULL_HANDLE) { + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); + } + if (allocation != VK_NULL_HANDLE) { + allocator->FreeMemory( + 1, // allocationCount + &allocation); + } +} + +#endif // #ifdef VMA_IMPLEMENTATION |