diff options
author | bruvzg <7645683+bruvzg@users.noreply.github.com> | 2022-02-09 14:20:15 +0200 |
---|---|---|
committer | bruvzg <7645683+bruvzg@users.noreply.github.com> | 2022-02-09 14:24:26 +0200 |
commit | 346a4b4f5043dd99bc9e870dacb32964ee1994b7 (patch) | |
tree | 8bc48ba943291e3387b83d8cfcdfb5cdfbab6749 /thirdparty | |
parent | c768189bd218937e5a754ba02fd41e936f278aba (diff) |
msdfgen: Update to version 1.9.2
Diffstat (limited to 'thirdparty')
-rw-r--r-- | thirdparty/README.md | 2 | ||||
-rw-r--r-- | thirdparty/msdfgen/core/edge-coloring.cpp | 4 | ||||
-rw-r--r-- | thirdparty/msdfgen/core/equation-solver.cpp | 47 |
3 files changed, 24 insertions, 29 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md index d1784b2c57..f467d6a64b 100644 --- a/thirdparty/README.md +++ b/thirdparty/README.md @@ -465,7 +465,7 @@ Collection of single-file libraries used in Godot components. ## msdfgen - Upstream: https://github.com/Chlumsky/msdfgen -- Version: 1.9.1 (1b3b6b985094e6f12751177490add3ad11dd91a9, 2010) +- Version: 1.9.2 (64a91eec3ca3787e6f78b4c99fcd3052ad3e37c0, 2021) - License: MIT Files extracted from the upstream source: diff --git a/thirdparty/msdfgen/core/edge-coloring.cpp b/thirdparty/msdfgen/core/edge-coloring.cpp index 370f9aa38d..914f1769fd 100644 --- a/thirdparty/msdfgen/core/edge-coloring.cpp +++ b/thirdparty/msdfgen/core/edge-coloring.cpp @@ -473,7 +473,7 @@ void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long l edgeMatrix[i] = &edgeMatrixStorage[i*splineCount]; int nextEdge = 0; for (; nextEdge < graphEdgeCount && !*graphEdgeDistances[nextEdge]; ++nextEdge) { - int elem = graphEdgeDistances[nextEdge]-distanceMatrixBase; + int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase); int row = elem/splineCount; int col = elem%splineCount; edgeMatrix[row][col] = 1; @@ -483,7 +483,7 @@ void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long l std::vector<int> coloring(2*splineCount); colorSecondDegreeGraph(&coloring[0], &edgeMatrix[0], splineCount, seed); for (; nextEdge < graphEdgeCount; ++nextEdge) { - int elem = graphEdgeDistances[nextEdge]-distanceMatrixBase; + int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase); tryAddEdge(&coloring[0], &edgeMatrix[0], splineCount, elem/splineCount, elem%splineCount, &coloring[splineCount]); } diff --git a/thirdparty/msdfgen/core/equation-solver.cpp b/thirdparty/msdfgen/core/equation-solver.cpp index fbe906428b..4144fa3340 100644 --- a/thirdparty/msdfgen/core/equation-solver.cpp +++ b/thirdparty/msdfgen/core/equation-solver.cpp @@ -4,17 +4,15 @@ #define _USE_MATH_DEFINES #include <cmath> -#define TOO_LARGE_RATIO 1e12 - namespace msdfgen { int solveQuadratic(double x[2], double a, double b, double c) { - // a = 0 -> linear equation - if (a == 0 || fabs(b)+fabs(c) > TOO_LARGE_RATIO*fabs(a)) { - // a, b = 0 -> no solution - if (b == 0 || fabs(c) > TOO_LARGE_RATIO*fabs(b)) { + // a == 0 -> linear equation + if (a == 0 || fabs(b) > 1e12*fabs(a)) { + // a == 0, b == 0 -> no solution + if (b == 0) { if (c == 0) - return -1; // 0 = 0 + return -1; // 0 == 0 return 0; } x[0] = -c/b; @@ -35,41 +33,38 @@ int solveQuadratic(double x[2], double a, double b, double c) { static int solveCubicNormed(double x[3], double a, double b, double c) { double a2 = a*a; - double q = (a2 - 3*b)/9; - double r = (a*(2*a2-9*b) + 27*c)/54; + double q = 1/9.*(a2-3*b); + double r = 1/54.*(a*(2*a2-9*b)+27*c); double r2 = r*r; double q3 = q*q*q; - double A, B; + a *= 1/3.; if (r2 < q3) { double t = r/sqrt(q3); if (t < -1) t = -1; if (t > 1) t = 1; t = acos(t); - a /= 3; q = -2*sqrt(q); - x[0] = q*cos(t/3)-a; - x[1] = q*cos((t+2*M_PI)/3)-a; - x[2] = q*cos((t-2*M_PI)/3)-a; + q = -2*sqrt(q); + x[0] = q*cos(1/3.*t)-a; + x[1] = q*cos(1/3.*(t+2*M_PI))-a; + x[2] = q*cos(1/3.*(t-2*M_PI))-a; return 3; } else { - A = -pow(fabs(r)+sqrt(r2-q3), 1/3.); - if (r < 0) A = -A; - B = A == 0 ? 0 : q/A; - a /= 3; - x[0] = (A+B)-a; - x[1] = -0.5*(A+B)-a; - x[2] = 0.5*sqrt(3.)*(A-B); - if (fabs(x[2]) < 1e-14) + double u = (r < 0 ? 1 : -1)*pow(fabs(r)+sqrt(r2-q3), 1/3.); + double v = u == 0 ? 0 : q/u; + x[0] = (u+v)-a; + if (u == v || fabs(u-v) < 1e-12*fabs(u+v)) { + x[1] = -.5*(u+v)-a; return 2; + } return 1; } } int solveCubic(double x[3], double a, double b, double c, double d) { if (a != 0) { - double bn = b/a, cn = c/a, dn = d/a; - // Check that a isn't "almost zero" - if (fabs(bn) < TOO_LARGE_RATIO && fabs(cn) < TOO_LARGE_RATIO && fabs(dn) < TOO_LARGE_RATIO) - return solveCubicNormed(x, bn, cn, dn); + double bn = b/a; + if (fabs(bn) < 1e6) // Above this ratio, the numerical error gets larger than if we treated a as zero + return solveCubicNormed(x, bn, c/a, d/a); } return solveQuadratic(x, b, c, d); } |