summaryrefslogtreecommitdiff
path: root/thirdparty
diff options
context:
space:
mode:
authorRémi Verschelde <rverschelde@gmail.com>2019-05-22 10:59:32 +0200
committerGitHub <noreply@github.com>2019-05-22 10:59:32 +0200
commit2dc7be505a2b7bc803d3a3b2d6311d4a435a4234 (patch)
treeb6f641e4d2bf66cb25e0dcacda6571537aa4f2c7 /thirdparty
parent41d3f4787e24dbea3d46d881f80fa406bb05de27 (diff)
parentb7e737639f23e04ed81987a2d9d73feef14d4977 (diff)
Merge pull request #29098 from akien-mga/lf-utf8
Update gitattributes to enforce LF, fix UTF-8 misencoding of thirdparty files
Diffstat (limited to 'thirdparty')
-rw-r--r--thirdparty/assimp/code/res/resource.h14
-rw-r--r--thirdparty/misc/clipper.cpp8
-rw-r--r--thirdparty/xatlas/xatlas.cpp44
3 files changed, 26 insertions, 40 deletions
diff --git a/thirdparty/assimp/code/res/resource.h b/thirdparty/assimp/code/res/resource.h
deleted file mode 100644
index 37d39284fe..0000000000
--- a/thirdparty/assimp/code/res/resource.h
+++ /dev/null
@@ -1,14 +0,0 @@
-//{{NO_DEPENDENCIES}}
-// Microsoft Visual C++ generated include file.
-// Used by assimp.rc
-
-// Nächste Standardwerte für neue Objekte
-//
-#ifdef APSTUDIO_INVOKED
-#ifndef APSTUDIO_READONLY_SYMBOLS
-#define _APS_NEXT_RESOURCE_VALUE 101
-#define _APS_NEXT_COMMAND_VALUE 40001
-#define _APS_NEXT_CONTROL_VALUE 1001
-#define _APS_NEXT_SYMED_VALUE 101
-#endif
-#endif
diff --git a/thirdparty/misc/clipper.cpp b/thirdparty/misc/clipper.cpp
index d3143fe5ab..8c3a59c4ca 100644
--- a/thirdparty/misc/clipper.cpp
+++ b/thirdparty/misc/clipper.cpp
@@ -4329,10 +4329,10 @@ double DistanceFromLineSqrd(
const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2)
{
//The equation of a line in general form (Ax + By + C = 0)
- //given 2 points (x¹,y¹) & (x²,y²) is ...
- //(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0
- //A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹
- //perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
+ //given 2 points (x¹,y¹) & (x²,y²) is ...
+ //(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0
+ //A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹
+ //perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
//see http://en.wikipedia.org/wiki/Perpendicular_distance
double A = double(ln1.Y - ln2.Y);
double B = double(ln2.X - ln1.X);
diff --git a/thirdparty/xatlas/xatlas.cpp b/thirdparty/xatlas/xatlas.cpp
index eb0824a517..2cc2905eee 100644
--- a/thirdparty/xatlas/xatlas.cpp
+++ b/thirdparty/xatlas/xatlas.cpp
@@ -4388,7 +4388,7 @@ private:
class Solver
{
public:
- // Solve the symmetric system: At·A·x = At·b
+ // Solve the symmetric system: At·A·x = At·b
static bool LeastSquaresSolver(const sparse::Matrix &A, const FullVector &b, FullVector &x, float epsilon = 1e-5f)
{
xaDebugAssert(A.width() == x.dimension());
@@ -4477,22 +4477,22 @@ private:
* Gradient method.
*
* Solving sparse linear systems:
- * (1) A·x = b
+ * (1) A·x = b
*
* The conjugate gradient algorithm solves (1) only in the case that A is
* symmetric and positive definite. It is based on the idea of minimizing the
* function
*
- * (2) f(x) = 1/2·x·A·x - b·x
+ * (2) f(x) = 1/2·x·A·x - b·x
*
* This function is minimized when its gradient
*
- * (3) df = A·x - b
+ * (3) df = A·x - b
*
* is zero, which is equivalent to (1). The minimization is carried out by
* generating a succession of search directions p.k and improved minimizers x.k.
- * At each stage a quantity alfa.k is found that minimizes f(x.k + alfa.k·p.k),
- * and x.k+1 is set equal to the new point x.k + alfa.k·p.k. The p.k and x.k are
+ * At each stage a quantity alfa.k is found that minimizes f(x.k + alfa.k·p.k),
+ * and x.k+1 is set equal to the new point x.k + alfa.k·p.k. The p.k and x.k are
* built up in such a way that x.k+1 is also the minimizer of f over the whole
* vector space of directions already taken, {p.1, p.2, . . . , p.k}. After N
* iterations you arrive at the minimizer over the entire vector space, i.e., the
@@ -4520,7 +4520,7 @@ private:
float delta_new;
float alpha;
float beta;
- // r = b - A·x;
+ // r = b - A·x;
sparse::copy(b, r);
sparse::sgemv(-1, A, x, 1, r);
// p = r;
@@ -4529,24 +4529,24 @@ private:
delta_0 = delta_new;
while (i < i_max && delta_new > epsilon * epsilon * delta_0) {
i++;
- // q = A·p
+ // q = A·p
mult(A, p, q);
- // alpha = delta_new / p·q
+ // alpha = delta_new / p·q
alpha = delta_new / sparse::dot( p, q );
- // x = alfa·p + x
+ // x = alfa·p + x
sparse::saxpy(alpha, p, x);
if ((i & 31) == 0) { // recompute r after 32 steps
- // r = b - A·x
+ // r = b - A·x
sparse::copy(b, r);
sparse::sgemv(-1, A, x, 1, r);
} else {
- // r = r - alpha·q
+ // r = r - alpha·q
sparse::saxpy(-alpha, q, r);
}
delta_old = delta_new;
delta_new = sparse::dot( r, r );
beta = delta_new / delta_old;
- // p = beta·p + r
+ // p = beta·p + r
sparse::scal(beta, p);
sparse::saxpy(1, r, p);
}
@@ -4572,35 +4572,35 @@ private:
float delta_new;
float alpha;
float beta;
- // r = b - A·x
+ // r = b - A·x
sparse::copy(b, r);
sparse::sgemv(-1, A, x, 1, r);
- // p = M^-1 · r
+ // p = M^-1 · r
preconditioner.apply(r, p);
delta_new = sparse::dot(r, p);
delta_0 = delta_new;
while (i < i_max && delta_new > epsilon * epsilon * delta_0) {
i++;
- // q = A·p
+ // q = A·p
mult(A, p, q);
- // alpha = delta_new / p·q
+ // alpha = delta_new / p·q
alpha = delta_new / sparse::dot(p, q);
- // x = alfa·p + x
+ // x = alfa·p + x
sparse::saxpy(alpha, p, x);
if ((i & 31) == 0) { // recompute r after 32 steps
- // r = b - A·x
+ // r = b - A·x
sparse::copy(b, r);
sparse::sgemv(-1, A, x, 1, r);
} else {
- // r = r - alfa·q
+ // r = r - alfa·q
sparse::saxpy(-alpha, q, r);
}
- // s = M^-1 · r
+ // s = M^-1 · r
preconditioner.apply(r, s);
delta_old = delta_new;
delta_new = sparse::dot( r, s );
beta = delta_new / delta_old;
- // p = s + beta·p
+ // p = s + beta·p
sparse::scal(beta, p);
sparse::saxpy(1, s, p);
}