summaryrefslogtreecommitdiff
path: root/thirdparty
diff options
context:
space:
mode:
authorkobewi <kobewi4e@gmail.com>2021-09-24 13:23:49 +0200
committerkobewi <kobewi4e@gmail.com>2021-09-24 13:47:13 +0200
commit11e7963a146fd61b5049d2194e4a149ff03f8a89 (patch)
treef7fa8bef661d822408a8ae2dab185b0ce9b37c28 /thirdparty
parent5e4a71200e25811d8e570d87f08f0878dabb8bb9 (diff)
Refactor and move easing equations
Diffstat (limited to 'thirdparty')
-rw-r--r--thirdparty/README.md4
-rw-r--r--thirdparty/misc/easing_equations.cpp323
2 files changed, 0 insertions, 327 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md
index 990bd30320..2d24beec15 100644
--- a/thirdparty/README.md
+++ b/thirdparty/README.md
@@ -422,10 +422,6 @@ Collection of single-file libraries used in Godot components.
* Upstream: https://research.activision.com/publications/archives/fast-filtering-of-reflection-probes
File coeffs_const_8.txt (retrieved April 2020)
* License: MIT
-- `easing_equations.cpp`
- * Upstream: http://robertpenner.com/easing/ via https://github.com/jesusgollonet/ofpennereasing (modified to fit Godot types)
- * Version: git (af72c147c3a74e7e872aa28c7e2abfcced04fdce, 2008) + Godot types and style changes
- * License: BSD-3-Clause
- `fastlz.{c,h}`
* Upstream: https://github.com/ariya/FastLZ
* Version: 0.5.0 (4f20f54d46f5a6dd4fae4def134933369b7602d2, 2020)
diff --git a/thirdparty/misc/easing_equations.cpp b/thirdparty/misc/easing_equations.cpp
deleted file mode 100644
index d164e3d560..0000000000
--- a/thirdparty/misc/easing_equations.cpp
+++ /dev/null
@@ -1,323 +0,0 @@
-/**
- * Adapted from Penner Easing equations' C++ port.
- * Source: https://github.com/jesusgollonet/ofpennereasing
- * License: BSD-3-clause
- */
-
-#include "scene/animation/tween.h"
-
-const real_t pi = 3.1415926535898;
-
-///////////////////////////////////////////////////////////////////////////
-// linear
-///////////////////////////////////////////////////////////////////////////
-namespace linear {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- return c * t / d + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- return c * t / d + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- return c * t / d + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return c * t / d + b;
-}
-}; // namespace linear
-///////////////////////////////////////////////////////////////////////////
-// sine
-///////////////////////////////////////////////////////////////////////////
-namespace sine {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- return -c * cos(t / d * (pi / 2)) + c + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- return c * sin(t / d * (pi / 2)) + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- return -c / 2 * (cos(pi * t / d) - 1) + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace sine
-///////////////////////////////////////////////////////////////////////////
-// quint
-///////////////////////////////////////////////////////////////////////////
-namespace quint {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- return c * pow(t / d, 5) + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- return c * (pow(t / d - 1, 5) + 1) + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- t = t / d * 2;
- if (t < 1) return c / 2 * pow(t, 5) + b;
- return c / 2 * (pow(t - 2, 5) + 2) + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace quint
-///////////////////////////////////////////////////////////////////////////
-// quart
-///////////////////////////////////////////////////////////////////////////
-namespace quart {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- return c * pow(t / d, 4) + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- return -c * (pow(t / d - 1, 4) - 1) + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- t = t / d * 2;
- if (t < 1) return c / 2 * pow(t, 4) + b;
- return -c / 2 * (pow(t - 2, 4) - 2) + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace quart
-///////////////////////////////////////////////////////////////////////////
-// quad
-///////////////////////////////////////////////////////////////////////////
-namespace quad {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- return c * pow(t / d, 2) + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- t = t / d;
- return -c * t * (t - 2) + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- t = t / d * 2;
- if (t < 1) return c / 2 * pow(t, 2) + b;
- return -c / 2 * ((t - 1) * (t - 3) - 1) + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace quad
-///////////////////////////////////////////////////////////////////////////
-// expo
-///////////////////////////////////////////////////////////////////////////
-namespace expo {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- if (t == 0) return b;
- return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- if (t == d) return b + c;
- return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- if (t == 0) return b;
- if (t == d) return b + c;
- t = t / d * 2;
- if (t < 1) return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005;
- return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace expo
-///////////////////////////////////////////////////////////////////////////
-// elastic
-///////////////////////////////////////////////////////////////////////////
-namespace elastic {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- if (t == 0) return b;
- if ((t /= d) == 1) return b + c;
- float p = d * 0.3f;
- float a = c;
- float s = p / 4;
- float postFix = a * pow(2, 10 * (t -= 1)); // this is a fix, again, with post-increment operators
- return -(postFix * sin((t * d - s) * (2 * pi) / p)) + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- if (t == 0) return b;
- if ((t /= d) == 1) return b + c;
- float p = d * 0.3f;
- float a = c;
- float s = p / 4;
- return (a * pow(2, -10 * t) * sin((t * d - s) * (2 * pi) / p) + c + b);
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- if (t == 0) return b;
- if ((t /= d / 2) == 2) return b + c;
- float p = d * (0.3f * 1.5f);
- float a = c;
- float s = p / 4;
-
- if (t < 1) {
- float postFix = a * pow(2, 10 * (t -= 1)); // postIncrement is evil
- return -0.5f * (postFix * sin((t * d - s) * (2 * pi) / p)) + b;
- }
- float postFix = a * pow(2, -10 * (t -= 1)); // postIncrement is evil
- return postFix * sin((t * d - s) * (2 * pi) / p) * 0.5f + c + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace elastic
-///////////////////////////////////////////////////////////////////////////
-// cubic
-///////////////////////////////////////////////////////////////////////////
-namespace cubic {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- t /= d;
- return c * t * t * t + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- t = t / d - 1;
- return c * (t * t * t + 1) + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- t /= d / 2;
- if (t < 1) return c / 2 * t * t * t + b;
- t -= 2;
- return c / 2 * (t * t * t + 2) + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace cubic
-///////////////////////////////////////////////////////////////////////////
-// circ
-///////////////////////////////////////////////////////////////////////////
-namespace circ {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- t /= d;
- return -c * (sqrt(1 - t * t) - 1) + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- t = t / d - 1;
- return c * sqrt(1 - t * t) + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- t /= d / 2;
- if (t < 1) {
- return -c / 2 * (sqrt(1 - t * t) - 1) + b;
- }
- t -= 2;
- return c / 2 * (sqrt(1 - t * t) + 1) + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace circ
-///////////////////////////////////////////////////////////////////////////
-// bounce
-///////////////////////////////////////////////////////////////////////////
-namespace bounce {
-static real_t out(real_t t, real_t b, real_t c, real_t d);
-
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- return c - out(d - t, 0, c, d) + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- if ((t /= d) < (1 / 2.75f)) {
- return c * (7.5625f * t * t) + b;
- } else if (t < (2 / 2.75f)) {
- float postFix = t -= (1.5f / 2.75f);
- return c * (7.5625f * (postFix)*t + .75f) + b;
- } else if (t < (2.5 / 2.75)) {
- float postFix = t -= (2.25f / 2.75f);
- return c * (7.5625f * (postFix)*t + .9375f) + b;
- } else {
- float postFix = t -= (2.625f / 2.75f);
- return c * (7.5625f * (postFix)*t + .984375f) + b;
- }
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? in(t * 2, b, c / 2, d) : out((t * 2) - d, b + c / 2, c / 2, d);
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace bounce
-///////////////////////////////////////////////////////////////////////////
-// back
-///////////////////////////////////////////////////////////////////////////
-namespace back {
-static real_t in(real_t t, real_t b, real_t c, real_t d) {
- float s = 1.70158f;
- float postFix = t /= d;
- return c * (postFix)*t * ((s + 1) * t - s) + b;
-}
-
-static real_t out(real_t t, real_t b, real_t c, real_t d) {
- float s = 1.70158f;
- t = t / d - 1;
- return c * (t * t * ((s + 1) * t + s) + 1) + b;
-}
-
-static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
- float s = 1.70158f * 1.525f;
- t /= d / 2;
- if (t < 1) return c / 2 * (t * t * ((s + 1) * t - s)) + b;
- t -= 2;
- return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b;
-}
-
-static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
- return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
-}
-}; // namespace back
-
-Tween::interpolater Tween::interpolaters[Tween::TRANS_MAX][Tween::EASE_MAX] = {
- { &linear::in, &linear::out, &linear::in_out, &linear::out_in },
- { &sine::in, &sine::out, &sine::in_out, &sine::out_in },
- { &quint::in, &quint::out, &quint::in_out, &quint::out_in },
- { &quart::in, &quart::out, &quart::in_out, &quart::out_in },
- { &quad::in, &quad::out, &quad::in_out, &quad::out_in },
- { &expo::in, &expo::out, &expo::in_out, &expo::out_in },
- { &elastic::in, &elastic::out, &elastic::in_out, &elastic::out_in },
- { &cubic::in, &cubic::out, &cubic::in_out, &cubic::out_in },
- { &circ::in, &circ::out, &circ::in_out, &circ::out_in },
- { &bounce::in, &bounce::out, &bounce::in_out, &bounce::out_in },
- { &back::in, &back::out, &back::in_out, &back::out_in },
-};
-
-real_t Tween::run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t t, real_t b, real_t c, real_t d) {
- if (d == 0) {
- // Special case to avoid dividing by 0 in equations.
- return b + c;
- }
-
- interpolater cb = interpolaters[p_trans_type][p_ease_type];
- ERR_FAIL_COND_V(cb == NULL, b);
- return cb(t, b, c, d);
-}