diff options
author | Juan Linietsky <reduzio@gmail.com> | 2017-05-26 21:49:49 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2017-05-26 22:31:32 -0300 |
commit | f89641907f8b45941f5e67891936ee8050a3ef92 (patch) | |
tree | a292e88719ad488fe75a7c2f3fe1e49d277f0c70 /thirdparty/tinyexr | |
parent | 41918f328a96f8ef27587c016ca047f8d31f933e (diff) |
-Added EXR supprot for HDR (no BC6 compression yet though)
-Improvements to texture importer
-Proper detection of S3TC compression modes, and added all modes to Image
-Fixes to non-power of 2 compressed textures, which should all be supported by GLES3
Diffstat (limited to 'thirdparty/tinyexr')
-rw-r--r-- | thirdparty/tinyexr/tinyexr.cc | 2 | ||||
-rw-r--r-- | thirdparty/tinyexr/tinyexr.h | 12393 |
2 files changed, 12395 insertions, 0 deletions
diff --git a/thirdparty/tinyexr/tinyexr.cc b/thirdparty/tinyexr/tinyexr.cc new file mode 100644 index 0000000000..969a6d505d --- /dev/null +++ b/thirdparty/tinyexr/tinyexr.cc @@ -0,0 +1,2 @@ +#define TINYEXR_IMPLEMENTATION +#include "tinyexr.h" diff --git a/thirdparty/tinyexr/tinyexr.h b/thirdparty/tinyexr/tinyexr.h new file mode 100644 index 0000000000..44cc287da7 --- /dev/null +++ b/thirdparty/tinyexr/tinyexr.h @@ -0,0 +1,12393 @@ +/* +Copyright (c) 2014 - 2017, Syoyo Fujita +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + * Neither the name of the Syoyo Fujita nor the + names of its contributors may be used to endorse or promote products + derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY +DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +// TinyEXR contains some OpenEXR code, which is licensed under ------------ + +/////////////////////////////////////////////////////////////////////////// +// +// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas +// Digital Ltd. LLC +// +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Industrial Light & Magic nor the names of +// its contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +/////////////////////////////////////////////////////////////////////////// + +// End of OpenEXR license ------------------------------------------------- + +#ifndef TINYEXR_H_ +#define TINYEXR_H_ + +// +// +// Do this: +// #define TINYEXR_IMPLEMENTATION +// before you include this file in *one* C or C++ file to create the +// implementation. +// +// // i.e. it should look like this: +// #include ... +// #include ... +// #include ... +// #define TINYEXR_IMPLEMENTATION +// #include "tinyexr.h" +// +// + +#include <stddef.h> // for size_t +#include <stdint.h> // guess stdint.h is available(C99) + +#ifdef __cplusplus +extern "C" { +#endif + +// Use embedded miniz or not to decode ZIP format pixel. Linking with zlib +// required if this flas is 0. +#ifndef TINYEXR_USE_MINIZ +#define TINYEXR_USE_MINIZ (1) +#endif + +// Disable PIZ comporession when applying cpplint. +#ifndef TINYEXR_USE_PIZ +#define TINYEXR_USE_PIZ (1) +#endif + +#ifndef TINYEXR_USE_ZFP +#define TINYEXR_USE_ZFP (0) // TinyEXR extension. +// http://computation.llnl.gov/projects/floating-point-compression +#endif + +#define TINYEXR_SUCCESS (0) +#define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1) +#define TINYEXR_ERROR_INVALID_EXR_VERSION (-2) +#define TINYEXR_ERROR_INVALID_ARGUMENT (-3) +#define TINYEXR_ERROR_INVALID_DATA (-4) +#define TINYEXR_ERROR_INVALID_FILE (-5) +#define TINYEXR_ERROR_INVALID_PARAMETER (-5) +#define TINYEXR_ERROR_CANT_OPEN_FILE (-6) +#define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-7) +#define TINYEXR_ERROR_INVALID_HEADER (-8) + +// @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf } + +// pixel type: possible values are: UINT = 0 HALF = 1 FLOAT = 2 +#define TINYEXR_PIXELTYPE_UINT (0) +#define TINYEXR_PIXELTYPE_HALF (1) +#define TINYEXR_PIXELTYPE_FLOAT (2) + +#define TINYEXR_MAX_ATTRIBUTES (128) + +#define TINYEXR_COMPRESSIONTYPE_NONE (0) +#define TINYEXR_COMPRESSIONTYPE_RLE (1) +#define TINYEXR_COMPRESSIONTYPE_ZIPS (2) +#define TINYEXR_COMPRESSIONTYPE_ZIP (3) +#define TINYEXR_COMPRESSIONTYPE_PIZ (4) +#define TINYEXR_COMPRESSIONTYPE_ZFP (128) // TinyEXR extension + +#define TINYEXR_ZFP_COMPRESSIONTYPE_RATE (0) +#define TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION (1) +#define TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY (2) + +#define TINYEXR_TILE_ONE_LEVEL (0) +#define TINYEXR_TILE_MIPMAP_LEVELS (1) +#define TINYEXR_TILE_RIPMAP_LEVELS (2) + +#define TINYEXR_TILE_ROUND_DOWN (0) +#define TINYEXR_TILE_ROUND_UP (1) + +typedef struct _EXRVersion { + int version; // this must be 2 + int tiled; // tile format image + int long_name; // long name attribute + int non_image; // deep image(EXR 2.0) + int multipart; // multi-part(EXR 2.0) +} EXRVersion; + +typedef struct _EXRAttribute { + char name[256]; // name and type are up to 255 chars long. + char type[256]; + unsigned char *value; // uint8_t* + int size; + int pad0; +} EXRAttribute; + +typedef struct _EXRChannelInfo { + char name[256]; // less than 255 bytes long + int pixel_type; + int x_sampling; + int y_sampling; + unsigned char p_linear; + unsigned char pad[3]; +} EXRChannelInfo; + +typedef struct _EXRTile { + int offset_x; + int offset_y; + int level_x; + int level_y; + + int width; // actual width in a tile. + int height; // actual height int a tile. + + unsigned char **images; // image[channels][pixels] +} EXRTile; + +typedef struct _EXRHeader { + float pixel_aspect_ratio; + int line_order; + int data_window[4]; + int display_window[4]; + float screen_window_center[2]; + float screen_window_width; + + int chunk_count; + + // Properties for tiled format(`tiledesc`). + int tiled; + int tile_size_x; + int tile_size_y; + int tile_level_mode; + int tile_rounding_mode; + + int long_name; + int non_image; + int multipart; + unsigned int header_len; + + // Custom attributes(exludes required attributes(e.g. `channels`, + // `compression`, etc) + int num_custom_attributes; + EXRAttribute custom_attributes[TINYEXR_MAX_ATTRIBUTES]; + + EXRChannelInfo *channels; // [num_channels] + + int *pixel_types; // Loaded pixel type(TINYEXR_PIXELTYPE_*) of `images` for + // each channel. This is overwritten with `requested_pixel_types` when + // loading. + int num_channels; + + int compression_type; // compression type(TINYEXR_COMPRESSIONTYPE_*) + int *requested_pixel_types; // Filled initially by + // ParseEXRHeaderFrom(Meomory|File), then users + // can edit it(only valid for HALF pixel type + // channel) + +} EXRHeader; + +typedef struct _EXRMultiPartHeader { + int num_headers; + EXRHeader *headers; + +} EXRMultiPartHeader; + +typedef struct _EXRImage { + EXRTile *tiles; // Tiled pixel data. The application must reconstruct image + // from tiles manually. NULL if scanline format. + unsigned char **images; // image[channels][pixels]. NULL if tiled format. + + int width; + int height; + int num_channels; + + // Properties for tile format. + int num_tiles; + +} EXRImage; + +typedef struct _EXRMultiPartImage { + int num_images; + EXRImage *images; + +} EXRMultiPartImage; + +typedef struct _DeepImage { + const char **channel_names; + float ***image; // image[channels][scanlines][samples] + int **offset_table; // offset_table[scanline][offsets] + int num_channels; + int width; + int height; + int pad0; +} DeepImage; + +// @deprecated { to be removed. } +// Loads single-frame OpenEXR image. Assume EXR image contains RGB(A) channels. +// Application must free image data as returned by `out_rgba` +// Result image format is: float x RGBA x width x hight +// Returns negative value and may set error string in `err` when there's an +// error +extern int LoadEXR(float **out_rgba, int *width, int *height, + const char *filename, const char **err); + +// @deprecated { to be removed. } +// Saves single-frame OpenEXR image. Assume EXR image contains RGB(A) channels. +// components must be 3(RGB) or 4(RGBA). +// Result image format is: float x RGB(A) x width x hight +extern int SaveEXR(const float *data, int width, int height, int components, + const char *filename); + +// Initialize EXRHeader struct +extern void InitEXRHeader(EXRHeader *exr_header); + +// Initialize EXRImage struct +extern void InitEXRImage(EXRImage *exr_image); + +// Free's internal data of EXRHeader struct +extern int FreeEXRHeader(EXRHeader *exr_header); + +// Free's internal data of EXRImage struct +extern int FreeEXRImage(EXRImage *exr_image); + +// Parse EXR version header of a file. +extern int ParseEXRVersionFromFile(EXRVersion *version, const char *filename); + +// Parse EXR version header from memory-mapped EXR data. +extern int ParseEXRVersionFromMemory(EXRVersion *version, + const unsigned char *memory, size_t size); + +// Parse single-part OpenEXR header from a file and initialize `EXRHeader`. +extern int ParseEXRHeaderFromFile(EXRHeader *header, const EXRVersion *version, + const char *filename, const char **err); + +// Parse single-part OpenEXR header from a memory and initialize `EXRHeader`. +extern int ParseEXRHeaderFromMemory(EXRHeader *header, + const EXRVersion *version, + const unsigned char *memory, size_t size, + const char **err); + +// Parse multi-part OpenEXR headers from a file and initialize `EXRHeader*` +// array. +extern int ParseEXRMultipartHeaderFromFile(EXRHeader ***headers, + int *num_headers, + const EXRVersion *version, + const char *filename, + const char **err); + +// Parse multi-part OpenEXR headers from a memory and initialize `EXRHeader*` +// array +extern int ParseEXRMultipartHeaderFromMemory(EXRHeader ***headers, + int *num_headers, + const EXRVersion *version, + const unsigned char *memory, + size_t size, const char **err); + +// Loads single-part OpenEXR image from a file. +// Application must setup `ParseEXRHeaderFromFile` before calling this function. +// Application can free EXRImage using `FreeEXRImage` +// Returns negative value and may set error string in `err` when there's an +// error +extern int LoadEXRImageFromFile(EXRImage *image, const EXRHeader *header, + const char *filename, const char **err); + +// Loads single-part OpenEXR image from a memory. +// Application must setup `EXRHeader` with +// `ParseEXRHeaderFromMemory` before calling this function. +// Application can free EXRImage using `FreeEXRImage` +// Returns negative value and may set error string in `err` when there's an +// error +extern int LoadEXRImageFromMemory(EXRImage *image, const EXRHeader *header, + const unsigned char *memory, + const size_t size, const char **err); + +// Loads multi-part OpenEXR image from a file. +// Application must setup `ParseEXRMultipartHeaderFromFile` before calling this +// function. +// Application can free EXRImage using `FreeEXRImage` +// Returns negative value and may set error string in `err` when there's an +// error +extern int LoadEXRMultipartImageFromFile(EXRImage *images, + const EXRHeader **headers, + unsigned int num_parts, + const char *filename, + const char **err); + +// Loads multi-part OpenEXR image from a memory. +// Application must setup `EXRHeader*` array with +// `ParseEXRMultipartHeaderFromMemory` before calling this function. +// Application can free EXRImage using `FreeEXRImage` +// Returns negative value and may set error string in `err` when there's an +// error +extern int LoadEXRMultipartImageFromMemory(EXRImage *images, + const EXRHeader **headers, + unsigned int num_parts, + const unsigned char *memory, + const size_t size, const char **err); + +// Saves multi-channel, single-frame OpenEXR image to a file. +// Returns negative value and may set error string in `err` when there's an +// error +extern int SaveEXRImageToFile(const EXRImage *image, + const EXRHeader *exr_header, const char *filename, + const char **err); + +// Saves multi-channel, single-frame OpenEXR image to a memory. +// Image is compressed using EXRImage.compression value. +// Return the number of bytes if succes. +// Returns negative value and may set error string in `err` when there's an +// error +extern size_t SaveEXRImageToMemory(const EXRImage *image, + const EXRHeader *exr_header, + unsigned char **memory, const char **err); + +// Loads single-frame OpenEXR deep image. +// Application must free memory of variables in DeepImage(image, offset_table) +// Returns negative value and may set error string in `err` when there's an +// error +extern int LoadDeepEXR(DeepImage *out_image, const char *filename, + const char **err); + +// NOT YET IMPLEMENTED: +// Saves single-frame OpenEXR deep image. +// Returns negative value and may set error string in `err` when there's an +// error +// extern int SaveDeepEXR(const DeepImage *in_image, const char *filename, +// const char **err); + +// NOT YET IMPLEMENTED: +// Loads multi-part OpenEXR deep image. +// Application must free memory of variables in DeepImage(image, offset_table) +// extern int LoadMultiPartDeepEXR(DeepImage **out_image, int num_parts, const +// char *filename, +// const char **err); + +// For emscripten. +// Loads single-frame OpenEXR image from memory. Assume EXR image contains +// RGB(A) channels. +// `out_rgba` must have enough memory(at least sizeof(float) x 4(RGBA) x width x +// hight) +// Returns negative value and may set error string in `err` when there's an +// error +extern int LoadEXRFromMemory(float *out_rgba, const unsigned char *memory, + size_t size, const char **err); + +#ifdef __cplusplus +} +#endif + +#endif // TINYEXR_H_ + +#ifdef TINYEXR_IMPLEMENTATION +#ifndef TINYEXR_IMPLEMENTATION_DEIFNED +#define TINYEXR_IMPLEMENTATION_DEIFNED + +#include <algorithm> +#include <cassert> +#include <cstdio> +#include <cstdlib> +#include <cstring> +#include <sstream> + +#include <string> +#include <vector> + +#if __cplusplus > 199711L +// C++11 +#include <cstdint> +#endif // __cplusplus > 199711L + +#ifdef _OPENMP +#include <omp.h> +#endif + +#if TINYEXR_USE_MINIZ +#else +#include "zlib.h" +#endif + +#if TINYEXR_USE_ZFP +#include "zfp.h" +#endif + +namespace tinyexr { + +#if __cplusplus > 199711L +// C++11 +typedef uint64_t tinyexr_uint64; +typedef int64_t tinyexr_int64; +#else +// Although `long long` is not a standard type pre C++11, assume it is defined +// as a compiler's extension. +#ifdef __clang__ +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wc++11-long-long" +#endif +typedef unsigned long long tinyexr_uint64; +typedef long long tinyexr_int64; +#ifdef __clang__ +#pragma clang diagnostic pop +#endif +#endif + +#if TINYEXR_USE_MINIZ + +namespace miniz { + +#ifdef __clang__ +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wc++11-long-long" +#pragma clang diagnostic ignored "-Wold-style-cast" +#pragma clang diagnostic ignored "-Wpadded" +#pragma clang diagnostic ignored "-Wsign-conversion" +#pragma clang diagnostic ignored "-Wc++11-extensions" +#pragma clang diagnostic ignored "-Wconversion" +#ifdef __APPLE__ +#if __clang_major__ >= 8 && __clang__minor__ > 1 +#pragma clang diagnostic ignored "-Wcomma" +#endif +#endif +#pragma clang diagnostic ignored "-Wunused-function" +#endif + +/* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP + reading/writing/appending, PNG writing + See "unlicense" statement at the end of this file. + Rich Geldreich <richgel99@gmail.com>, last updated Oct. 13, 2013 + Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: + http://www.ietf.org/rfc/rfc1951.txt + + Most API's defined in miniz.c are optional. For example, to disable the + archive related functions just define + MINIZ_NO_ARCHIVE_APIS, or to get rid of all stdio usage define MINIZ_NO_STDIO + (see the list below for more macros). + + * Change History + 10/13/13 v1.15 r4 - Interim bugfix release while I work on the next major + release with Zip64 support (almost there!): + - Critical fix for the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY bug + (thanks kahmyong.moon@hp.com) which could cause locate files to not find + files. This bug + would only have occured in earlier versions if you explicitly used this + flag, OR if you used mz_zip_extract_archive_file_to_heap() or + mz_zip_add_mem_to_archive_file_in_place() + (which used this flag). If you can't switch to v1.15 but want to fix + this bug, just remove the uses of this flag from both helper funcs (and of + course don't use the flag). + - Bugfix in mz_zip_reader_extract_to_mem_no_alloc() from kymoon when + pUser_read_buf is not NULL and compressed size is > uncompressed size + - Fixing mz_zip_reader_extract_*() funcs so they don't try to extract + compressed data from directory entries, to account for weird zipfiles which + contain zero-size compressed data on dir entries. + Hopefully this fix won't cause any issues on weird zip archives, + because it assumes the low 16-bits of zip external attributes are DOS + attributes (which I believe they always are in practice). + - Fixing mz_zip_reader_is_file_a_directory() so it doesn't check the + internal attributes, just the filename and external attributes + - mz_zip_reader_init_file() - missing MZ_FCLOSE() call if the seek failed + - Added cmake support for Linux builds which builds all the examples, + tested with clang v3.3 and gcc v4.6. + - Clang fix for tdefl_write_image_to_png_file_in_memory() from toffaletti + - Merged MZ_FORCEINLINE fix from hdeanclark + - Fix <time.h> include before config #ifdef, thanks emil.brink + - Added tdefl_write_image_to_png_file_in_memory_ex(): supports Y flipping + (super useful for OpenGL apps), and explicit control over the compression + level (so you can + set it to 1 for real-time compression). + - Merged in some compiler fixes from paulharris's github repro. + - Retested this build under Windows (VS 2010, including static analysis), + tcc 0.9.26, gcc v4.6 and clang v3.3. + - Added example6.c, which dumps an image of the mandelbrot set to a PNG + file. + - Modified example2 to help test the + MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY flag more. + - In r3: Bugfix to mz_zip_writer_add_file() found during merge: Fix + possible src file fclose() leak if alignment bytes+local header file write + faiiled + - In r4: Minor bugfix to mz_zip_writer_add_from_zip_reader(): + Was pushing the wrong central dir header offset, appears harmless in this + release, but it became a problem in the zip64 branch + 5/20/12 v1.14 - MinGW32/64 GCC 4.6.1 compiler fixes: added MZ_FORCEINLINE, + #include <time.h> (thanks fermtect). + 5/19/12 v1.13 - From jason@cornsyrup.org and kelwert@mtu.edu - Fix + mz_crc32() so it doesn't compute the wrong CRC-32's when mz_ulong is 64-bit. + - Temporarily/locally slammed in "typedef unsigned long mz_ulong" and + re-ran a randomized regression test on ~500k files. + - Eliminated a bunch of warnings when compiling with GCC 32-bit/64. + - Ran all examples, miniz.c, and tinfl.c through MSVC 2008's /analyze + (static analysis) option and fixed all warnings (except for the silly + "Use of the comma-operator in a tested expression.." analysis warning, + which I purposely use to work around a MSVC compiler warning). + - Created 32-bit and 64-bit Codeblocks projects/workspace. Built and + tested Linux executables. The codeblocks workspace is compatible with + Linux+Win32/x64. + - Added miniz_tester solution/project, which is a useful little app + derived from LZHAM's tester app that I use as part of the regression test. + - Ran miniz.c and tinfl.c through another series of regression testing on + ~500,000 files and archives. + - Modified example5.c so it purposely disables a bunch of high-level + functionality (MINIZ_NO_STDIO, etc.). (Thanks to corysama for the + MINIZ_NO_STDIO bug report.) + - Fix ftell() usage in examples so they exit with an error on files which + are too large (a limitation of the examples, not miniz itself). + 4/12/12 v1.12 - More comments, added low-level example5.c, fixed a couple + minor level_and_flags issues in the archive API's. + level_and_flags can now be set to MZ_DEFAULT_COMPRESSION. Thanks to Bruce + Dawson <bruced@valvesoftware.com> for the feedback/bug report. + 5/28/11 v1.11 - Added statement from unlicense.org + 5/27/11 v1.10 - Substantial compressor optimizations: + - Level 1 is now ~4x faster than before. The L1 compressor's throughput + now varies between 70-110MB/sec. on a + - Core i7 (actual throughput varies depending on the type of data, and x64 + vs. x86). + - Improved baseline L2-L9 compression perf. Also, greatly improved + compression perf. issues on some file types. + - Refactored the compression code for better readability and + maintainability. + - Added level 10 compression level (L10 has slightly better ratio than + level 9, but could have a potentially large + drop in throughput on some files). + 5/15/11 v1.09 - Initial stable release. + + * Low-level Deflate/Inflate implementation notes: + + Compression: Use the "tdefl" API's. The compressor supports raw, static, + and dynamic blocks, lazy or + greedy parsing, match length filtering, RLE-only, and Huffman-only streams. + It performs and compresses + approximately as well as zlib. + + Decompression: Use the "tinfl" API's. The entire decompressor is + implemented as a single function + coroutine: see tinfl_decompress(). It supports decompression into a 32KB + (or larger power of 2) wrapping buffer, or into a memory + block large enough to hold the entire file. + + The low-level tdefl/tinfl API's do not make any use of dynamic memory + allocation. + + * zlib-style API notes: + + miniz.c implements a fairly large subset of zlib. There's enough + functionality present for it to be a drop-in + zlib replacement in many apps: + The z_stream struct, optional memory allocation callbacks + deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound + inflateInit/inflateInit2/inflate/inflateEnd + compress, compress2, compressBound, uncompress + CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly + routines. + Supports raw deflate streams or standard zlib streams with adler-32 + checking. + + Limitations: + The callback API's are not implemented yet. No support for gzip headers or + zlib static dictionaries. + I've tried to closely emulate zlib's various flavors of stream flushing + and return status codes, but + there are no guarantees that miniz.c pulls this off perfectly. + + * PNG writing: See the tdefl_write_image_to_png_file_in_memory() function, + originally written by + Alex Evans. Supports 1-4 bytes/pixel images. + + * ZIP archive API notes: + + The ZIP archive API's where designed with simplicity and efficiency in + mind, with just enough abstraction to + get the job done with minimal fuss. There are simple API's to retrieve file + information, read files from + existing archives, create new archives, append new files to existing + archives, or clone archive data from + one archive to another. It supports archives located in memory or the heap, + on disk (using stdio.h), + or you can specify custom file read/write callbacks. + + - Archive reading: Just call this function to read a single file from a + disk archive: + + void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const + char *pArchive_name, + size_t *pSize, mz_uint zip_flags); + + For more complex cases, use the "mz_zip_reader" functions. Upon opening an + archive, the entire central + directory is located and read as-is into memory, and subsequent file access + only occurs when reading individual files. + + - Archives file scanning: The simple way is to use this function to scan a + loaded archive for a specific file: + + int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, + const char *pComment, mz_uint flags); + + The locate operation can optionally check file comments too, which (as one + example) can be used to identify + multiple versions of the same file in an archive. This function uses a + simple linear search through the central + directory, so it's not very fast. + + Alternately, you can iterate through all the files in an archive (using + mz_zip_reader_get_num_files()) and + retrieve detailed info on each file by calling mz_zip_reader_file_stat(). + + - Archive creation: Use the "mz_zip_writer" functions. The ZIP writer + immediately writes compressed file data + to disk and builds an exact image of the central directory in memory. The + central directory image is written + all at once at the end of the archive file when the archive is finalized. + + The archive writer can optionally align each file's local header and file + data to any power of 2 alignment, + which can be useful when the archive will be read from optical media. Also, + the writer supports placing + arbitrary data blobs at the very beginning of ZIP archives. Archives + written using either feature are still + readable by any ZIP tool. + + - Archive appending: The simple way to add a single file to an archive is + to call this function: + + mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, + const char *pArchive_name, + const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 + comment_size, mz_uint level_and_flags); + + The archive will be created if it doesn't already exist, otherwise it'll be + appended to. + Note the appending is done in-place and is not an atomic operation, so if + something goes wrong + during the operation it's possible the archive could be left without a + central directory (although the local + file headers and file data will be fine, so the archive will be + recoverable). + + For more complex archive modification scenarios: + 1. The safest way is to use a mz_zip_reader to read the existing archive, + cloning only those bits you want to + preserve into a new archive using using the + mz_zip_writer_add_from_zip_reader() function (which compiles the + compressed file data as-is). When you're done, delete the old archive and + rename the newly written archive, and + you're done. This is safe but requires a bunch of temporary disk space or + heap memory. + + 2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using + mz_zip_writer_init_from_reader(), + append new files as needed, then finalize the archive which will write an + updated central directory to the + original archive. (This is basically what + mz_zip_add_mem_to_archive_file_in_place() does.) There's a + possibility that the archive's central directory could be lost with this + method if anything goes wrong, though. + + - ZIP archive support limitations: + No zip64 or spanning support. Extraction functions can only handle + unencrypted, stored or deflated files. + Requires streams capable of seeking. + + * This is a header file library, like stb_image.c. To get only a header file, + either cut and paste the + below header, or create miniz.h, #define MINIZ_HEADER_FILE_ONLY, and then + include miniz.c from it. + + * Important: For best perf. be sure to customize the below macros for your + target platform: + #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 + #define MINIZ_LITTLE_ENDIAN 1 + #define MINIZ_HAS_64BIT_REGISTERS 1 + + * On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before + including miniz.c to ensure miniz + uses the 64-bit variants: fopen64(), stat64(), etc. Otherwise you won't be + able to process large files + (i.e. 32-bit stat() fails for me on files > 0x7FFFFFFF bytes). +*/ + +#ifndef MINIZ_HEADER_INCLUDED +#define MINIZ_HEADER_INCLUDED + +//#include <stdlib.h> + +// Defines to completely disable specific portions of miniz.c: +// If all macros here are defined the only functionality remaining will be +// CRC-32, adler-32, tinfl, and tdefl. + +// Define MINIZ_NO_STDIO to disable all usage and any functions which rely on +// stdio for file I/O. +//#define MINIZ_NO_STDIO + +// If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able +// to get the current time, or +// get/set file times, and the C run-time funcs that get/set times won't be +// called. +// The current downside is the times written to your archives will be from 1979. +#define MINIZ_NO_TIME + +// Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's. +#define MINIZ_NO_ARCHIVE_APIS + +// Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive +// API's. +//#define MINIZ_NO_ARCHIVE_WRITING_APIS + +// Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression +// API's. +//#define MINIZ_NO_ZLIB_APIS + +// Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent +// conflicts against stock zlib. +//#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES + +// Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc. +// Note if MINIZ_NO_MALLOC is defined then the user must always provide custom +// user alloc/free/realloc +// callbacks to the zlib and archive API's, and a few stand-alone helper API's +// which don't provide custom user +// functions (such as tdefl_compress_mem_to_heap() and +// tinfl_decompress_mem_to_heap()) won't work. +//#define MINIZ_NO_MALLOC + +#if defined(__TINYC__) && (defined(__linux) || defined(__linux__)) +// TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc +// on Linux +#define MINIZ_NO_TIME +#endif + +#if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS) +//#include <time.h> +#endif + +#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \ + defined(__i386) || defined(__i486__) || defined(__i486) || \ + defined(i386) || defined(__ia64__) || defined(__x86_64__) +// MINIZ_X86_OR_X64_CPU is only used to help set the below macros. +#define MINIZ_X86_OR_X64_CPU 1 +#endif + +#if defined(__sparcv9) +// Big endian +#else +#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU +// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian. +#define MINIZ_LITTLE_ENDIAN 1 +#endif +#endif + +#if MINIZ_X86_OR_X64_CPU +// Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient +// integer loads and stores from unaligned addresses. +//#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 +#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES \ + 0 // disable to suppress compiler warnings +#endif + +#if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || \ + defined(_LP64) || defined(__LP64__) || defined(__ia64__) || \ + defined(__x86_64__) +// Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are +// reasonably fast (and don't involve compiler generated calls to helper +// functions). +#define MINIZ_HAS_64BIT_REGISTERS 1 +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +// ------------------- zlib-style API Definitions. + +// For more compatibility with zlib, miniz.c uses unsigned long for some +// parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits! +typedef unsigned long mz_ulong; + +// mz_free() internally uses the MZ_FREE() macro (which by default calls free() +// unless you've modified the MZ_MALLOC macro) to release a block allocated from +// the heap. +void mz_free(void *p); + +#define MZ_ADLER32_INIT (1) +// mz_adler32() returns the initial adler-32 value to use when called with +// ptr==NULL. +mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len); + +#define MZ_CRC32_INIT (0) +// mz_crc32() returns the initial CRC-32 value to use when called with +// ptr==NULL. +mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len); + +// Compression strategies. +enum { + MZ_DEFAULT_STRATEGY = 0, + MZ_FILTERED = 1, + MZ_HUFFMAN_ONLY = 2, + MZ_RLE = 3, + MZ_FIXED = 4 +}; + +// Method +#define MZ_DEFLATED 8 + +#ifndef MINIZ_NO_ZLIB_APIS + +// Heap allocation callbacks. +// Note that mz_alloc_func parameter types purpsosely differ from zlib's: +// items/size is size_t, not unsigned long. +typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size); +typedef void (*mz_free_func)(void *opaque, void *address); +typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items, + size_t size); + +#define MZ_VERSION "9.1.15" +#define MZ_VERNUM 0x91F0 +#define MZ_VER_MAJOR 9 +#define MZ_VER_MINOR 1 +#define MZ_VER_REVISION 15 +#define MZ_VER_SUBREVISION 0 + +// Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The +// other values are for advanced use (refer to the zlib docs). +enum { + MZ_NO_FLUSH = 0, + MZ_PARTIAL_FLUSH = 1, + MZ_SYNC_FLUSH = 2, + MZ_FULL_FLUSH = 3, + MZ_FINISH = 4, + MZ_BLOCK = 5 +}; + +// Return status codes. MZ_PARAM_ERROR is non-standard. +enum { + MZ_OK = 0, + MZ_STREAM_END = 1, + MZ_NEED_DICT = 2, + MZ_ERRNO = -1, + MZ_STREAM_ERROR = -2, + MZ_DATA_ERROR = -3, + MZ_MEM_ERROR = -4, + MZ_BUF_ERROR = -5, + MZ_VERSION_ERROR = -6, + MZ_PARAM_ERROR = -10000 +}; + +// Compression levels: 0-9 are the standard zlib-style levels, 10 is best +// possible compression (not zlib compatible, and may be very slow), +// MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL. +enum { + MZ_NO_COMPRESSION = 0, + MZ_BEST_SPEED = 1, + MZ_BEST_COMPRESSION = 9, + MZ_UBER_COMPRESSION = 10, + MZ_DEFAULT_LEVEL = 6, + MZ_DEFAULT_COMPRESSION = -1 +}; + +// Window bits +#define MZ_DEFAULT_WINDOW_BITS 15 + +struct mz_internal_state; + +// Compression/decompression stream struct. +typedef struct mz_stream_s { + const unsigned char *next_in; // pointer to next byte to read + unsigned int avail_in; // number of bytes available at next_in + mz_ulong total_in; // total number of bytes consumed so far + + unsigned char *next_out; // pointer to next byte to write + unsigned int avail_out; // number of bytes that can be written to next_out + mz_ulong total_out; // total number of bytes produced so far + + char *msg; // error msg (unused) + struct mz_internal_state *state; // internal state, allocated by zalloc/zfree + + mz_alloc_func + zalloc; // optional heap allocation function (defaults to malloc) + mz_free_func zfree; // optional heap free function (defaults to free) + void *opaque; // heap alloc function user pointer + + int data_type; // data_type (unused) + mz_ulong adler; // adler32 of the source or uncompressed data + mz_ulong reserved; // not used +} mz_stream; + +typedef mz_stream *mz_streamp; + +// Returns the version string of miniz.c. +const char *mz_version(void); + +// mz_deflateInit() initializes a compressor with default options: +// Parameters: +// pStream must point to an initialized mz_stream struct. +// level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION]. +// level 1 enables a specially optimized compression function that's been +// optimized purely for performance, not ratio. +// (This special func. is currently only enabled when +// MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.) +// Return values: +// MZ_OK on success. +// MZ_STREAM_ERROR if the stream is bogus. +// MZ_PARAM_ERROR if the input parameters are bogus. +// MZ_MEM_ERROR on out of memory. +int mz_deflateInit(mz_streamp pStream, int level); + +// mz_deflateInit2() is like mz_deflate(), except with more control: +// Additional parameters: +// method must be MZ_DEFLATED +// window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with +// zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no +// header or footer) +// mem_level must be between [1, 9] (it's checked but ignored by miniz.c) +int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, + int mem_level, int strategy); + +// Quickly resets a compressor without having to reallocate anything. Same as +// calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2(). +int mz_deflateReset(mz_streamp pStream); + +// mz_deflate() compresses the input to output, consuming as much of the input +// and producing as much output as possible. +// Parameters: +// pStream is the stream to read from and write to. You must initialize/update +// the next_in, avail_in, next_out, and avail_out members. +// flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or +// MZ_FINISH. +// Return values: +// MZ_OK on success (when flushing, or if more input is needed but not +// available, and/or there's more output to be written but the output buffer +// is full). +// MZ_STREAM_END if all input has been consumed and all output bytes have been +// written. Don't call mz_deflate() on the stream anymore. +// MZ_STREAM_ERROR if the stream is bogus. +// MZ_PARAM_ERROR if one of the parameters is invalid. +// MZ_BUF_ERROR if no forward progress is possible because the input and/or +// output buffers are empty. (Fill up the input buffer or free up some output +// space and try again.) +int mz_deflate(mz_streamp pStream, int flush); + +// mz_deflateEnd() deinitializes a compressor: +// Return values: +// MZ_OK on success. +// MZ_STREAM_ERROR if the stream is bogus. +int mz_deflateEnd(mz_streamp pStream); + +// mz_deflateBound() returns a (very) conservative upper bound on the amount of +// data that could be generated by deflate(), assuming flush is set to only +// MZ_NO_FLUSH or MZ_FINISH. +mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len); + +// Single-call compression functions mz_compress() and mz_compress2(): +// Returns MZ_OK on success, or one of the error codes from mz_deflate() on +// failure. +int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, + const unsigned char *pSource, mz_ulong source_len); +int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, + const unsigned char *pSource, mz_ulong source_len, int level); + +// mz_compressBound() returns a (very) conservative upper bound on the amount of +// data that could be generated by calling mz_compress(). +mz_ulong mz_compressBound(mz_ulong source_len); + +// Initializes a decompressor. +int mz_inflateInit(mz_streamp pStream); + +// mz_inflateInit2() is like mz_inflateInit() with an additional option that +// controls the window size and whether or not the stream has been wrapped with +// a zlib header/footer: +// window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or +// -MZ_DEFAULT_WINDOW_BITS (raw deflate). +int mz_inflateInit2(mz_streamp pStream, int window_bits); + +// Decompresses the input stream to the output, consuming only as much of the +// input as needed, and writing as much to the output as possible. +// Parameters: +// pStream is the stream to read from and write to. You must initialize/update +// the next_in, avail_in, next_out, and avail_out members. +// flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH. +// On the first call, if flush is MZ_FINISH it's assumed the input and output +// buffers are both sized large enough to decompress the entire stream in a +// single call (this is slightly faster). +// MZ_FINISH implies that there are no more source bytes available beside +// what's already in the input buffer, and that the output buffer is large +// enough to hold the rest of the decompressed data. +// Return values: +// MZ_OK on success. Either more input is needed but not available, and/or +// there's more output to be written but the output buffer is full. +// MZ_STREAM_END if all needed input has been consumed and all output bytes +// have been written. For zlib streams, the adler-32 of the decompressed data +// has also been verified. +// MZ_STREAM_ERROR if the stream is bogus. +// MZ_DATA_ERROR if the deflate stream is invalid. +// MZ_PARAM_ERROR if one of the parameters is invalid. +// MZ_BUF_ERROR if no forward progress is possible because the input buffer is +// empty but the inflater needs more input to continue, or if the output +// buffer is not large enough. Call mz_inflate() again +// with more input data, or with more room in the output buffer (except when +// using single call decompression, described above). +int mz_inflate(mz_streamp pStream, int flush); + +// Deinitializes a decompressor. +int mz_inflateEnd(mz_streamp pStream); + +// Single-call decompression. +// Returns MZ_OK on success, or one of the error codes from mz_inflate() on +// failure. +int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, + const unsigned char *pSource, mz_ulong source_len); + +// Returns a string description of the specified error code, or NULL if the +// error code is invalid. +const char *mz_error(int err); + +// Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used +// as a drop-in replacement for the subset of zlib that miniz.c supports. +// Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you +// use zlib in the same project. +#ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES +typedef unsigned char Byte; +typedef unsigned int uInt; +typedef mz_ulong uLong; +typedef Byte Bytef; +typedef uInt uIntf; +typedef char charf; +typedef int intf; +typedef void *voidpf; +typedef uLong uLongf; +typedef void *voidp; +typedef void *const voidpc; +#define Z_NULL 0 +#define Z_NO_FLUSH MZ_NO_FLUSH +#define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH +#define Z_SYNC_FLUSH MZ_SYNC_FLUSH +#define Z_FULL_FLUSH MZ_FULL_FLUSH +#define Z_FINISH MZ_FINISH +#define Z_BLOCK MZ_BLOCK +#define Z_OK MZ_OK +#define Z_STREAM_END MZ_STREAM_END +#define Z_NEED_DICT MZ_NEED_DICT +#define Z_ERRNO MZ_ERRNO +#define Z_STREAM_ERROR MZ_STREAM_ERROR +#define Z_DATA_ERROR MZ_DATA_ERROR +#define Z_MEM_ERROR MZ_MEM_ERROR +#define Z_BUF_ERROR MZ_BUF_ERROR +#define Z_VERSION_ERROR MZ_VERSION_ERROR +#define Z_PARAM_ERROR MZ_PARAM_ERROR +#define Z_NO_COMPRESSION MZ_NO_COMPRESSION +#define Z_BEST_SPEED MZ_BEST_SPEED +#define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION +#define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION +#define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY +#define Z_FILTERED MZ_FILTERED +#define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY +#define Z_RLE MZ_RLE +#define Z_FIXED MZ_FIXED +#define Z_DEFLATED MZ_DEFLATED +#define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS +#define alloc_func mz_alloc_func +#define free_func mz_free_func +#define internal_state mz_internal_state +#define z_stream mz_stream +#define deflateInit mz_deflateInit +#define deflateInit2 mz_deflateInit2 +#define deflateReset mz_deflateReset +#define deflate mz_deflate +#define deflateEnd mz_deflateEnd +#define deflateBound mz_deflateBound +#define compress mz_compress +#define compress2 mz_compress2 +#define compressBound mz_compressBound +#define inflateInit mz_inflateInit +#define inflateInit2 mz_inflateInit2 +#define inflate mz_inflate +#define inflateEnd mz_inflateEnd +#define uncompress mz_uncompress +#define crc32 mz_crc32 +#define adler32 mz_adler32 +#define MAX_WBITS 15 +#define MAX_MEM_LEVEL 9 +#define zError mz_error +#define ZLIB_VERSION MZ_VERSION +#define ZLIB_VERNUM MZ_VERNUM +#define ZLIB_VER_MAJOR MZ_VER_MAJOR +#define ZLIB_VER_MINOR MZ_VER_MINOR +#define ZLIB_VER_REVISION MZ_VER_REVISION +#define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION +#define zlibVersion mz_version +#define zlib_version mz_version() +#endif // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES + +#endif // MINIZ_NO_ZLIB_APIS + +// ------------------- Types and macros + +typedef unsigned char mz_uint8; +typedef signed short mz_int16; +typedef unsigned short mz_uint16; +typedef unsigned int mz_uint32; +typedef unsigned int mz_uint; +typedef long long mz_int64; +typedef unsigned long long mz_uint64; +typedef int mz_bool; + +#define MZ_FALSE (0) +#define MZ_TRUE (1) + +// An attempt to work around MSVC's spammy "warning C4127: conditional +// expression is constant" message. +#ifdef _MSC_VER +#define MZ_MACRO_END while (0, 0) +#else +#define MZ_MACRO_END while (0) +#endif + +// ------------------- ZIP archive reading/writing + +#ifndef MINIZ_NO_ARCHIVE_APIS + +enum { + MZ_ZIP_MAX_IO_BUF_SIZE = 64 * 1024, + MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260, + MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256 +}; + +typedef struct { + mz_uint32 m_file_index; + mz_uint32 m_central_dir_ofs; + mz_uint16 m_version_made_by; + mz_uint16 m_version_needed; + mz_uint16 m_bit_flag; + mz_uint16 m_method; +#ifndef MINIZ_NO_TIME + time_t m_time; +#endif + mz_uint32 m_crc32; + mz_uint64 m_comp_size; + mz_uint64 m_uncomp_size; + mz_uint16 m_internal_attr; + mz_uint32 m_external_attr; + mz_uint64 m_local_header_ofs; + mz_uint32 m_comment_size; + char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE]; + char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE]; +} mz_zip_archive_file_stat; + +typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs, + void *pBuf, size_t n); +typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs, + const void *pBuf, size_t n); + +struct mz_zip_internal_state_tag; +typedef struct mz_zip_internal_state_tag mz_zip_internal_state; + +typedef enum { + MZ_ZIP_MODE_INVALID = 0, + MZ_ZIP_MODE_READING = 1, + MZ_ZIP_MODE_WRITING = 2, + MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3 +} mz_zip_mode; + +typedef struct mz_zip_archive_tag { + mz_uint64 m_archive_size; + mz_uint64 m_central_directory_file_ofs; + mz_uint m_total_files; + mz_zip_mode m_zip_mode; + + mz_uint m_file_offset_alignment; + + mz_alloc_func m_pAlloc; + mz_free_func m_pFree; + mz_realloc_func m_pRealloc; + void *m_pAlloc_opaque; + + mz_file_read_func m_pRead; + mz_file_write_func m_pWrite; + void *m_pIO_opaque; + + mz_zip_internal_state *m_pState; + +} mz_zip_archive; + +typedef enum { + MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100, + MZ_ZIP_FLAG_IGNORE_PATH = 0x0200, + MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400, + MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800 +} mz_zip_flags; + +// ZIP archive reading + +// Inits a ZIP archive reader. +// These functions read and validate the archive's central directory. +mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, + mz_uint32 flags); +mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, + size_t size, mz_uint32 flags); + +#ifndef MINIZ_NO_STDIO +mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, + mz_uint32 flags); +#endif + +// Returns the total number of files in the archive. +mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip); + +// Returns detailed information about an archive file entry. +mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, + mz_zip_archive_file_stat *pStat); + +// Determines if an archive file entry is a directory entry. +mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, + mz_uint file_index); +mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, + mz_uint file_index); + +// Retrieves the filename of an archive file entry. +// Returns the number of bytes written to pFilename, or if filename_buf_size is +// 0 this function returns the number of bytes needed to fully store the +// filename. +mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, + char *pFilename, mz_uint filename_buf_size); + +// Attempts to locates a file in the archive's central directory. +// Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH +// Returns -1 if the file cannot be found. +int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, + const char *pComment, mz_uint flags); + +// Extracts a archive file to a memory buffer using no memory allocation. +mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, + mz_uint file_index, void *pBuf, + size_t buf_size, mz_uint flags, + void *pUser_read_buf, + size_t user_read_buf_size); +mz_bool mz_zip_reader_extract_file_to_mem_no_alloc( + mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, + mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size); + +// Extracts a archive file to a memory buffer. +mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, + void *pBuf, size_t buf_size, + mz_uint flags); +mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, + const char *pFilename, void *pBuf, + size_t buf_size, mz_uint flags); + +// Extracts a archive file to a dynamically allocated heap buffer. +void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, + size_t *pSize, mz_uint flags); +void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, + const char *pFilename, size_t *pSize, + mz_uint flags); + +// Extracts a archive file using a callback function to output the file's data. +mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, + mz_uint file_index, + mz_file_write_func pCallback, + void *pOpaque, mz_uint flags); +mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, + const char *pFilename, + mz_file_write_func pCallback, + void *pOpaque, mz_uint flags); + +#ifndef MINIZ_NO_STDIO +// Extracts a archive file to a disk file and sets its last accessed and +// modified times. +// This function only extracts files, not archive directory records. +mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, + const char *pDst_filename, mz_uint flags); +mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, + const char *pArchive_filename, + const char *pDst_filename, + mz_uint flags); +#endif + +// Ends archive reading, freeing all allocations, and closing the input archive +// file if mz_zip_reader_init_file() was used. +mz_bool mz_zip_reader_end(mz_zip_archive *pZip); + +// ZIP archive writing + +#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS + +// Inits a ZIP archive writer. +mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size); +mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, + size_t size_to_reserve_at_beginning, + size_t initial_allocation_size); + +#ifndef MINIZ_NO_STDIO +mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, + mz_uint64 size_to_reserve_at_beginning); +#endif + +// Converts a ZIP archive reader object into a writer object, to allow efficient +// in-place file appends to occur on an existing archive. +// For archives opened using mz_zip_reader_init_file, pFilename must be the +// archive's filename so it can be reopened for writing. If the file can't be +// reopened, mz_zip_reader_end() will be called. +// For archives opened using mz_zip_reader_init_mem, the memory block must be +// growable using the realloc callback (which defaults to realloc unless you've +// overridden it). +// Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's +// user provided m_pWrite function cannot be NULL. +// Note: In-place archive modification is not recommended unless you know what +// you're doing, because if execution stops or something goes wrong before +// the archive is finalized the file's central directory will be hosed. +mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, + const char *pFilename); + +// Adds the contents of a memory buffer to an archive. These functions record +// the current local time into the archive. +// To add a directory entry, call this method with an archive name ending in a +// forwardslash with empty buffer. +// level_and_flags - compression level (0-10, see MZ_BEST_SPEED, +// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or +// just set to MZ_DEFAULT_COMPRESSION. +mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, + const void *pBuf, size_t buf_size, + mz_uint level_and_flags); +mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, + const char *pArchive_name, const void *pBuf, + size_t buf_size, const void *pComment, + mz_uint16 comment_size, + mz_uint level_and_flags, mz_uint64 uncomp_size, + mz_uint32 uncomp_crc32); + +#ifndef MINIZ_NO_STDIO +// Adds the contents of a disk file to an archive. This function also records +// the disk file's modified time into the archive. +// level_and_flags - compression level (0-10, see MZ_BEST_SPEED, +// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or +// just set to MZ_DEFAULT_COMPRESSION. +mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, + const char *pSrc_filename, const void *pComment, + mz_uint16 comment_size, mz_uint level_and_flags); +#endif + +// Adds a file to an archive by fully cloning the data from another archive. +// This function fully clones the source file's compressed data (no +// recompression), along with its full filename, extra data, and comment fields. +mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, + mz_zip_archive *pSource_zip, + mz_uint file_index); + +// Finalizes the archive by writing the central directory records followed by +// the end of central directory record. +// After an archive is finalized, the only valid call on the mz_zip_archive +// struct is mz_zip_writer_end(). +// An archive must be manually finalized by calling this function for it to be +// valid. +mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip); +mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf, + size_t *pSize); + +// Ends archive writing, freeing all allocations, and closing the output file if +// mz_zip_writer_init_file() was used. +// Note for the archive to be valid, it must have been finalized before ending. +mz_bool mz_zip_writer_end(mz_zip_archive *pZip); + +// Misc. high-level helper functions: + +// mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically) +// appends a memory blob to a ZIP archive. +// level_and_flags - compression level (0-10, see MZ_BEST_SPEED, +// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or +// just set to MZ_DEFAULT_COMPRESSION. +mz_bool mz_zip_add_mem_to_archive_file_in_place( + const char *pZip_filename, const char *pArchive_name, const void *pBuf, + size_t buf_size, const void *pComment, mz_uint16 comment_size, + mz_uint level_and_flags); + +// Reads a single file from an archive into a heap block. +// Returns NULL on failure. +void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, + const char *pArchive_name, + size_t *pSize, mz_uint zip_flags); + +#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS + +#endif // #ifndef MINIZ_NO_ARCHIVE_APIS + +// ------------------- Low-level Decompression API Definitions + +// Decompression flags used by tinfl_decompress(). +// TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and +// ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the +// input is a raw deflate stream. +// TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available +// beyond the end of the supplied input buffer. If clear, the input buffer +// contains all remaining input. +// TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large +// enough to hold the entire decompressed stream. If clear, the output buffer is +// at least the size of the dictionary (typically 32KB). +// TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the +// decompressed bytes. +enum { + TINFL_FLAG_PARSE_ZLIB_HEADER = 1, + TINFL_FLAG_HAS_MORE_INPUT = 2, + TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4, + TINFL_FLAG_COMPUTE_ADLER32 = 8 +}; + +// High level decompression functions: +// tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block +// allocated via malloc(). +// On entry: +// pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data +// to decompress. +// On return: +// Function returns a pointer to the decompressed data, or NULL on failure. +// *pOut_len will be set to the decompressed data's size, which could be larger +// than src_buf_len on uncompressible data. +// The caller must call mz_free() on the returned block when it's no longer +// needed. +void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, + size_t *pOut_len, int flags); + +// tinfl_decompress_mem_to_mem() decompresses a block in memory to another block +// in memory. +// Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes +// written on success. +#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1)) +size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, + const void *pSrc_buf, size_t src_buf_len, + int flags); + +// tinfl_decompress_mem_to_callback() decompresses a block in memory to an +// internal 32KB buffer, and a user provided callback function will be called to +// flush the buffer. +// Returns 1 on success or 0 on failure. +typedef int (*tinfl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser); +int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, + tinfl_put_buf_func_ptr pPut_buf_func, + void *pPut_buf_user, int flags); + +struct tinfl_decompressor_tag; +typedef struct tinfl_decompressor_tag tinfl_decompressor; + +// Max size of LZ dictionary. +#define TINFL_LZ_DICT_SIZE 32768 + +// Return status. +typedef enum { + TINFL_STATUS_BAD_PARAM = -3, + TINFL_STATUS_ADLER32_MISMATCH = -2, + TINFL_STATUS_FAILED = -1, + TINFL_STATUS_DONE = 0, + TINFL_STATUS_NEEDS_MORE_INPUT = 1, + TINFL_STATUS_HAS_MORE_OUTPUT = 2 +} tinfl_status; + +// Initializes the decompressor to its initial state. +#define tinfl_init(r) \ + do { \ + (r)->m_state = 0; \ + } \ + MZ_MACRO_END +#define tinfl_get_adler32(r) (r)->m_check_adler32 + +// Main low-level decompressor coroutine function. This is the only function +// actually needed for decompression. All the other functions are just +// high-level helpers for improved usability. +// This is a universal API, i.e. it can be used as a building block to build any +// desired higher level decompression API. In the limit case, it can be called +// once per every byte input or output. +tinfl_status tinfl_decompress(tinfl_decompressor *r, + const mz_uint8 *pIn_buf_next, + size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, + mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, + const mz_uint32 decomp_flags); + +// Internal/private bits follow. +enum { + TINFL_MAX_HUFF_TABLES = 3, + TINFL_MAX_HUFF_SYMBOLS_0 = 288, + TINFL_MAX_HUFF_SYMBOLS_1 = 32, + TINFL_MAX_HUFF_SYMBOLS_2 = 19, + TINFL_FAST_LOOKUP_BITS = 10, + TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS +}; + +typedef struct { + mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0]; + mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], + m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2]; +} tinfl_huff_table; + +#if MINIZ_HAS_64BIT_REGISTERS +#define TINFL_USE_64BIT_BITBUF 1 +#endif + +#if TINFL_USE_64BIT_BITBUF +typedef mz_uint64 tinfl_bit_buf_t; +#define TINFL_BITBUF_SIZE (64) +#else +typedef mz_uint32 tinfl_bit_buf_t; +#define TINFL_BITBUF_SIZE (32) +#endif + +struct tinfl_decompressor_tag { + mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, + m_check_adler32, m_dist, m_counter, m_num_extra, + m_table_sizes[TINFL_MAX_HUFF_TABLES]; + tinfl_bit_buf_t m_bit_buf; + size_t m_dist_from_out_buf_start; + tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES]; + mz_uint8 m_raw_header[4], + m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137]; +}; + +// ------------------- Low-level Compression API Definitions + +// Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly +// slower, and raw/dynamic blocks will be output more frequently). +#define TDEFL_LESS_MEMORY 0 + +// tdefl_init() compression flags logically OR'd together (low 12 bits contain +// the max. number of probes per dictionary search): +// TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes +// per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap +// compression), 4095=Huffman+LZ (slowest/best compression). +enum { + TDEFL_HUFFMAN_ONLY = 0, + TDEFL_DEFAULT_MAX_PROBES = 128, + TDEFL_MAX_PROBES_MASK = 0xFFF +}; + +// TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before +// the deflate data, and the Adler-32 of the source data at the end. Otherwise, +// you'll get raw deflate data. +// TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even +// when not writing zlib headers). +// TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more +// efficient lazy parsing. +// TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's +// initialization time to the minimum, but the output may vary from run to run +// given the same input (depending on the contents of memory). +// TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1) +// TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled. +// TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables. +// TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks. +// The low 12 bits are reserved to control the max # of hash probes per +// dictionary lookup (see TDEFL_MAX_PROBES_MASK). +enum { + TDEFL_WRITE_ZLIB_HEADER = 0x01000, + TDEFL_COMPUTE_ADLER32 = 0x02000, + TDEFL_GREEDY_PARSING_FLAG = 0x04000, + TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000, + TDEFL_RLE_MATCHES = 0x10000, + TDEFL_FILTER_MATCHES = 0x20000, + TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000, + TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000 +}; + +// High level compression functions: +// tdefl_compress_mem_to_heap() compresses a block in memory to a heap block +// allocated via malloc(). +// On entry: +// pSrc_buf, src_buf_len: Pointer and size of source block to compress. +// flags: The max match finder probes (default is 128) logically OR'd against +// the above flags. Higher probes are slower but improve compression. +// On return: +// Function returns a pointer to the compressed data, or NULL on failure. +// *pOut_len will be set to the compressed data's size, which could be larger +// than src_buf_len on uncompressible data. +// The caller must free() the returned block when it's no longer needed. +void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, + size_t *pOut_len, int flags); + +// tdefl_compress_mem_to_mem() compresses a block in memory to another block in +// memory. +// Returns 0 on failure. +size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, + const void *pSrc_buf, size_t src_buf_len, + int flags); + +// Compresses an image to a compressed PNG file in memory. +// On entry: +// pImage, w, h, and num_chans describe the image to compress. num_chans may be +// 1, 2, 3, or 4. +// The image pitch in bytes per scanline will be w*num_chans. The leftmost +// pixel on the top scanline is stored first in memory. +// level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED, +// MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL +// If flip is true, the image will be flipped on the Y axis (useful for OpenGL +// apps). +// On return: +// Function returns a pointer to the compressed data, or NULL on failure. +// *pLen_out will be set to the size of the PNG image file. +// The caller must mz_free() the returned heap block (which will typically be +// larger than *pLen_out) when it's no longer needed. +void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, + int h, int num_chans, + size_t *pLen_out, + mz_uint level, mz_bool flip); +void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, + int num_chans, size_t *pLen_out); + +// Output stream interface. The compressor uses this interface to write +// compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time. +typedef mz_bool (*tdefl_put_buf_func_ptr)(const void *pBuf, int len, + void *pUser); + +// tdefl_compress_mem_to_output() compresses a block to an output stream. The +// above helpers use this function internally. +mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, + tdefl_put_buf_func_ptr pPut_buf_func, + void *pPut_buf_user, int flags); + +enum { + TDEFL_MAX_HUFF_TABLES = 3, + TDEFL_MAX_HUFF_SYMBOLS_0 = 288, + TDEFL_MAX_HUFF_SYMBOLS_1 = 32, + TDEFL_MAX_HUFF_SYMBOLS_2 = 19, + TDEFL_LZ_DICT_SIZE = 32768, + TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1, + TDEFL_MIN_MATCH_LEN = 3, + TDEFL_MAX_MATCH_LEN = 258 +}; + +// TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed +// output block (using static/fixed Huffman codes). +#if TDEFL_LESS_MEMORY +enum { + TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024, + TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10, + TDEFL_MAX_HUFF_SYMBOLS = 288, + TDEFL_LZ_HASH_BITS = 12, + TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, + TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, + TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS +}; +#else +enum { + TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024, + TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10, + TDEFL_MAX_HUFF_SYMBOLS = 288, + TDEFL_LZ_HASH_BITS = 15, + TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, + TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, + TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS +}; +#endif + +// The low-level tdefl functions below may be used directly if the above helper +// functions aren't flexible enough. The low-level functions don't make any heap +// allocations, unlike the above helper functions. +typedef enum { + TDEFL_STATUS_BAD_PARAM = -2, + TDEFL_STATUS_PUT_BUF_FAILED = -1, + TDEFL_STATUS_OKAY = 0, + TDEFL_STATUS_DONE = 1 +} tdefl_status; + +// Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums +typedef enum { + TDEFL_NO_FLUSH = 0, + TDEFL_SYNC_FLUSH = 2, + TDEFL_FULL_FLUSH = 3, + TDEFL_FINISH = 4 +} tdefl_flush; + +// tdefl's compression state structure. +typedef struct { + tdefl_put_buf_func_ptr m_pPut_buf_func; + void *m_pPut_buf_user; + mz_uint m_flags, m_max_probes[2]; + int m_greedy_parsing; + mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size; + mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end; + mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in, + m_bit_buffer; + mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit, + m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index, + m_wants_to_finish; + tdefl_status m_prev_return_status; + const void *m_pIn_buf; + void *m_pOut_buf; + size_t *m_pIn_buf_size, *m_pOut_buf_size; + tdefl_flush m_flush; + const mz_uint8 *m_pSrc; + size_t m_src_buf_left, m_out_buf_ofs; + mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1]; + mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; + mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; + mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; + mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE]; + mz_uint16 m_next[TDEFL_LZ_DICT_SIZE]; + mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE]; + mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE]; +} tdefl_compressor; + +// Initializes the compressor. +// There is no corresponding deinit() function because the tdefl API's do not +// dynamically allocate memory. +// pBut_buf_func: If NULL, output data will be supplied to the specified +// callback. In this case, the user should call the tdefl_compress_buffer() API +// for compression. +// If pBut_buf_func is NULL the user should always call the tdefl_compress() +// API. +// flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER, +// etc.) +tdefl_status tdefl_init(tdefl_compressor *d, + tdefl_put_buf_func_ptr pPut_buf_func, + void *pPut_buf_user, int flags); + +// Compresses a block of data, consuming as much of the specified input buffer +// as possible, and writing as much compressed data to the specified output +// buffer as possible. +tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, + size_t *pIn_buf_size, void *pOut_buf, + size_t *pOut_buf_size, tdefl_flush flush); + +// tdefl_compress_buffer() is only usable when the tdefl_init() is called with a +// non-NULL tdefl_put_buf_func_ptr. +// tdefl_compress_buffer() always consumes the entire input buffer. +tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, + size_t in_buf_size, tdefl_flush flush); + +tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d); +mz_uint32 tdefl_get_adler32(tdefl_compressor *d); + +// Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't +// defined, because it uses some of its macros. +#ifndef MINIZ_NO_ZLIB_APIS +// Create tdefl_compress() flags given zlib-style compression parameters. +// level may range from [0,10] (where 10 is absolute max compression, but may be +// much slower on some files) +// window_bits may be -15 (raw deflate) or 15 (zlib) +// strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY, +// MZ_RLE, or MZ_FIXED +mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, + int strategy); +#endif // #ifndef MINIZ_NO_ZLIB_APIS + +#ifdef __cplusplus +} +#endif + +#endif // MINIZ_HEADER_INCLUDED + +// ------------------- End of Header: Implementation follows. (If you only want +// the header, define MINIZ_HEADER_FILE_ONLY.) + +#ifndef MINIZ_HEADER_FILE_ONLY + +typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1]; +typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1]; +typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1]; + +//#include <assert.h> +//#include <string.h> + +#define MZ_ASSERT(x) assert(x) + +#ifdef MINIZ_NO_MALLOC +#define MZ_MALLOC(x) NULL +#define MZ_FREE(x) (void)x, ((void)0) +#define MZ_REALLOC(p, x) NULL +#else +#define MZ_MALLOC(x) malloc(x) +#define MZ_FREE(x) free(x) +#define MZ_REALLOC(p, x) realloc(p, x) +#endif + +#define MZ_MAX(a, b) (((a) > (b)) ? (a) : (b)) +#define MZ_MIN(a, b) (((a) < (b)) ? (a) : (b)) +#define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj)) + +#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN +#define MZ_READ_LE16(p) *((const mz_uint16 *)(p)) +#define MZ_READ_LE32(p) *((const mz_uint32 *)(p)) +#else +#define MZ_READ_LE16(p) \ + ((mz_uint32)(((const mz_uint8 *)(p))[0]) | \ + ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U)) +#define MZ_READ_LE32(p) \ + ((mz_uint32)(((const mz_uint8 *)(p))[0]) | \ + ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | \ + ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | \ + ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U)) +#endif + +#ifdef _MSC_VER +#define MZ_FORCEINLINE __forceinline +#elif defined(__GNUC__) +#define MZ_FORCEINLINE inline __attribute__((__always_inline__)) +#else +#define MZ_FORCEINLINE inline +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +// ------------------- zlib-style API's + +mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len) { + mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16); + size_t block_len = buf_len % 5552; + if (!ptr) return MZ_ADLER32_INIT; + while (buf_len) { + for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { + s1 += ptr[0], s2 += s1; + s1 += ptr[1], s2 += s1; + s1 += ptr[2], s2 += s1; + s1 += ptr[3], s2 += s1; + s1 += ptr[4], s2 += s1; + s1 += ptr[5], s2 += s1; + s1 += ptr[6], s2 += s1; + s1 += ptr[7], s2 += s1; + } + for (; i < block_len; ++i) s1 += *ptr++, s2 += s1; + s1 %= 65521U, s2 %= 65521U; + buf_len -= block_len; + block_len = 5552; + } + return (s2 << 16) + s1; +} + +// Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C +// implementation that balances processor cache usage against speed": +// http://www.geocities.com/malbrain/ +mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len) { + static const mz_uint32 s_crc32[16] = { + 0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, + 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, + 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c}; + mz_uint32 crcu32 = (mz_uint32)crc; + if (!ptr) return MZ_CRC32_INIT; + crcu32 = ~crcu32; + while (buf_len--) { + mz_uint8 b = *ptr++; + crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)]; + crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)]; + } + return ~crcu32; +} + +void mz_free(void *p) { MZ_FREE(p); } + +#ifndef MINIZ_NO_ZLIB_APIS + +static void *def_alloc_func(void *opaque, size_t items, size_t size) { + (void)opaque, (void)items, (void)size; + return MZ_MALLOC(items * size); +} +static void def_free_func(void *opaque, void *address) { + (void)opaque, (void)address; + MZ_FREE(address); +} +static void *def_realloc_func(void *opaque, void *address, size_t items, + size_t size) { + (void)opaque, (void)address, (void)items, (void)size; + return MZ_REALLOC(address, items * size); +} + +const char *mz_version(void) { return MZ_VERSION; } + +int mz_deflateInit(mz_streamp pStream, int level) { + return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9, + MZ_DEFAULT_STRATEGY); +} + +int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, + int mem_level, int strategy) { + tdefl_compressor *pComp; + mz_uint comp_flags = + TDEFL_COMPUTE_ADLER32 | + tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy); + + if (!pStream) return MZ_STREAM_ERROR; + if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) || + ((window_bits != MZ_DEFAULT_WINDOW_BITS) && + (-window_bits != MZ_DEFAULT_WINDOW_BITS))) + return MZ_PARAM_ERROR; + + pStream->data_type = 0; + pStream->adler = MZ_ADLER32_INIT; + pStream->msg = NULL; + pStream->reserved = 0; + pStream->total_in = 0; + pStream->total_out = 0; + if (!pStream->zalloc) pStream->zalloc = def_alloc_func; + if (!pStream->zfree) pStream->zfree = def_free_func; + + pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1, + sizeof(tdefl_compressor)); + if (!pComp) return MZ_MEM_ERROR; + + pStream->state = (struct mz_internal_state *)pComp; + + if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY) { + mz_deflateEnd(pStream); + return MZ_PARAM_ERROR; + } + + return MZ_OK; +} + +int mz_deflateReset(mz_streamp pStream) { + if ((!pStream) || (!pStream->state) || (!pStream->zalloc) || + (!pStream->zfree)) + return MZ_STREAM_ERROR; + pStream->total_in = pStream->total_out = 0; + tdefl_init((tdefl_compressor *)pStream->state, NULL, NULL, + ((tdefl_compressor *)pStream->state)->m_flags); + return MZ_OK; +} + +int mz_deflate(mz_streamp pStream, int flush) { + size_t in_bytes, out_bytes; + mz_ulong orig_total_in, orig_total_out; + int mz_status = MZ_OK; + + if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) || + (!pStream->next_out)) + return MZ_STREAM_ERROR; + if (!pStream->avail_out) return MZ_BUF_ERROR; + + if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH; + + if (((tdefl_compressor *)pStream->state)->m_prev_return_status == + TDEFL_STATUS_DONE) + return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR; + + orig_total_in = pStream->total_in; + orig_total_out = pStream->total_out; + for (;;) { + tdefl_status defl_status; + in_bytes = pStream->avail_in; + out_bytes = pStream->avail_out; + + defl_status = tdefl_compress((tdefl_compressor *)pStream->state, + pStream->next_in, &in_bytes, pStream->next_out, + &out_bytes, (tdefl_flush)flush); + pStream->next_in += (mz_uint)in_bytes; + pStream->avail_in -= (mz_uint)in_bytes; + pStream->total_in += (mz_uint)in_bytes; + pStream->adler = tdefl_get_adler32((tdefl_compressor *)pStream->state); + + pStream->next_out += (mz_uint)out_bytes; + pStream->avail_out -= (mz_uint)out_bytes; + pStream->total_out += (mz_uint)out_bytes; + + if (defl_status < 0) { + mz_status = MZ_STREAM_ERROR; + break; + } else if (defl_status == TDEFL_STATUS_DONE) { + mz_status = MZ_STREAM_END; + break; + } else if (!pStream->avail_out) + break; + else if ((!pStream->avail_in) && (flush != MZ_FINISH)) { + if ((flush) || (pStream->total_in != orig_total_in) || + (pStream->total_out != orig_total_out)) + break; + return MZ_BUF_ERROR; // Can't make forward progress without some input. + } + } + return mz_status; +} + +int mz_deflateEnd(mz_streamp pStream) { + if (!pStream) return MZ_STREAM_ERROR; + if (pStream->state) { + pStream->zfree(pStream->opaque, pStream->state); + pStream->state = NULL; + } + return MZ_OK; +} + +mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len) { + (void)pStream; + // This is really over conservative. (And lame, but it's actually pretty + // tricky to compute a true upper bound given the way tdefl's blocking works.) + return MZ_MAX(128 + (source_len * 110) / 100, + 128 + source_len + ((source_len / (31 * 1024)) + 1) * 5); +} + +int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, + const unsigned char *pSource, mz_ulong source_len, int level) { + int status; + mz_stream stream; + memset(&stream, 0, sizeof(stream)); + + // In case mz_ulong is 64-bits (argh I hate longs). + if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR; + + stream.next_in = pSource; + stream.avail_in = (mz_uint32)source_len; + stream.next_out = pDest; + stream.avail_out = (mz_uint32)*pDest_len; + + status = mz_deflateInit(&stream, level); + if (status != MZ_OK) return status; + + status = mz_deflate(&stream, MZ_FINISH); + if (status != MZ_STREAM_END) { + mz_deflateEnd(&stream); + return (status == MZ_OK) ? MZ_BUF_ERROR : status; + } + + *pDest_len = stream.total_out; + return mz_deflateEnd(&stream); +} + +int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, + const unsigned char *pSource, mz_ulong source_len) { + return mz_compress2(pDest, pDest_len, pSource, source_len, + MZ_DEFAULT_COMPRESSION); +} + +mz_ulong mz_compressBound(mz_ulong source_len) { + return mz_deflateBound(NULL, source_len); +} + +typedef struct { + tinfl_decompressor m_decomp; + mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed; + int m_window_bits; + mz_uint8 m_dict[TINFL_LZ_DICT_SIZE]; + tinfl_status m_last_status; +} inflate_state; + +int mz_inflateInit2(mz_streamp pStream, int window_bits) { + inflate_state *pDecomp; + if (!pStream) return MZ_STREAM_ERROR; + if ((window_bits != MZ_DEFAULT_WINDOW_BITS) && + (-window_bits != MZ_DEFAULT_WINDOW_BITS)) + return MZ_PARAM_ERROR; + + pStream->data_type = 0; + pStream->adler = 0; + pStream->msg = NULL; + pStream->total_in = 0; + pStream->total_out = 0; + pStream->reserved = 0; + if (!pStream->zalloc) pStream->zalloc = def_alloc_func; + if (!pStream->zfree) pStream->zfree = def_free_func; + + pDecomp = (inflate_state *)pStream->zalloc(pStream->opaque, 1, + sizeof(inflate_state)); + if (!pDecomp) return MZ_MEM_ERROR; + + pStream->state = (struct mz_internal_state *)pDecomp; + + tinfl_init(&pDecomp->m_decomp); + pDecomp->m_dict_ofs = 0; + pDecomp->m_dict_avail = 0; + pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT; + pDecomp->m_first_call = 1; + pDecomp->m_has_flushed = 0; + pDecomp->m_window_bits = window_bits; + + return MZ_OK; +} + +int mz_inflateInit(mz_streamp pStream) { + return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS); +} + +int mz_inflate(mz_streamp pStream, int flush) { + inflate_state *pState; + mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32; + size_t in_bytes, out_bytes, orig_avail_in; + tinfl_status status; + + if ((!pStream) || (!pStream->state)) return MZ_STREAM_ERROR; + if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH; + if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH)) + return MZ_STREAM_ERROR; + + pState = (inflate_state *)pStream->state; + if (pState->m_window_bits > 0) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER; + orig_avail_in = pStream->avail_in; + + first_call = pState->m_first_call; + pState->m_first_call = 0; + if (pState->m_last_status < 0) return MZ_DATA_ERROR; + + if (pState->m_has_flushed && (flush != MZ_FINISH)) return MZ_STREAM_ERROR; + pState->m_has_flushed |= (flush == MZ_FINISH); + + if ((flush == MZ_FINISH) && (first_call)) { + // MZ_FINISH on the first call implies that the input and output buffers are + // large enough to hold the entire compressed/decompressed file. + decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; + in_bytes = pStream->avail_in; + out_bytes = pStream->avail_out; + status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, + pStream->next_out, pStream->next_out, &out_bytes, + decomp_flags); + pState->m_last_status = status; + pStream->next_in += (mz_uint)in_bytes; + pStream->avail_in -= (mz_uint)in_bytes; + pStream->total_in += (mz_uint)in_bytes; + pStream->adler = tinfl_get_adler32(&pState->m_decomp); + pStream->next_out += (mz_uint)out_bytes; + pStream->avail_out -= (mz_uint)out_bytes; + pStream->total_out += (mz_uint)out_bytes; + + if (status < 0) + return MZ_DATA_ERROR; + else if (status != TINFL_STATUS_DONE) { + pState->m_last_status = TINFL_STATUS_FAILED; + return MZ_BUF_ERROR; + } + return MZ_STREAM_END; + } + // flush != MZ_FINISH then we must assume there's more input. + if (flush != MZ_FINISH) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT; + + if (pState->m_dict_avail) { + n = MZ_MIN(pState->m_dict_avail, pStream->avail_out); + memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n); + pStream->next_out += n; + pStream->avail_out -= n; + pStream->total_out += n; + pState->m_dict_avail -= n; + pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1); + return ((pState->m_last_status == TINFL_STATUS_DONE) && + (!pState->m_dict_avail)) + ? MZ_STREAM_END + : MZ_OK; + } + + for (;;) { + in_bytes = pStream->avail_in; + out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs; + + status = tinfl_decompress( + &pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict, + pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags); + pState->m_last_status = status; + + pStream->next_in += (mz_uint)in_bytes; + pStream->avail_in -= (mz_uint)in_bytes; + pStream->total_in += (mz_uint)in_bytes; + pStream->adler = tinfl_get_adler32(&pState->m_decomp); + + pState->m_dict_avail = (mz_uint)out_bytes; + + n = MZ_MIN(pState->m_dict_avail, pStream->avail_out); + memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n); + pStream->next_out += n; + pStream->avail_out -= n; + pStream->total_out += n; + pState->m_dict_avail -= n; + pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1); + + if (status < 0) + return MZ_DATA_ERROR; // Stream is corrupted (there could be some + // uncompressed data left in the output dictionary - + // oh well). + else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in)) + return MZ_BUF_ERROR; // Signal caller that we can't make forward progress + // without supplying more input or by setting flush + // to MZ_FINISH. + else if (flush == MZ_FINISH) { + // The output buffer MUST be large to hold the remaining uncompressed data + // when flush==MZ_FINISH. + if (status == TINFL_STATUS_DONE) + return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END; + // status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's + // at least 1 more byte on the way. If there's no more room left in the + // output buffer then something is wrong. + else if (!pStream->avail_out) + return MZ_BUF_ERROR; + } else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) || + (!pStream->avail_out) || (pState->m_dict_avail)) + break; + } + + return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) + ? MZ_STREAM_END + : MZ_OK; +} + +int mz_inflateEnd(mz_streamp pStream) { + if (!pStream) return MZ_STREAM_ERROR; + if (pStream->state) { + pStream->zfree(pStream->opaque, pStream->state); + pStream->state = NULL; + } + return MZ_OK; +} + +int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, + const unsigned char *pSource, mz_ulong source_len) { + mz_stream stream; + int status; + memset(&stream, 0, sizeof(stream)); + + // In case mz_ulong is 64-bits (argh I hate longs). + if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR; + + stream.next_in = pSource; + stream.avail_in = (mz_uint32)source_len; + stream.next_out = pDest; + stream.avail_out = (mz_uint32)*pDest_len; + + status = mz_inflateInit(&stream); + if (status != MZ_OK) return status; + + status = mz_inflate(&stream, MZ_FINISH); + if (status != MZ_STREAM_END) { + mz_inflateEnd(&stream); + return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR + : status; + } + *pDest_len = stream.total_out; + + return mz_inflateEnd(&stream); +} + +const char *mz_error(int err) { + static struct { + int m_err; + const char *m_pDesc; + } s_error_descs[] = {{MZ_OK, ""}, + {MZ_STREAM_END, "stream end"}, + {MZ_NEED_DICT, "need dictionary"}, + {MZ_ERRNO, "file error"}, + {MZ_STREAM_ERROR, "stream error"}, + {MZ_DATA_ERROR, "data error"}, + {MZ_MEM_ERROR, "out of memory"}, + {MZ_BUF_ERROR, "buf error"}, + {MZ_VERSION_ERROR, "version error"}, + {MZ_PARAM_ERROR, "parameter error"}}; + mz_uint i; + for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i) + if (s_error_descs[i].m_err == err) return s_error_descs[i].m_pDesc; + return NULL; +} + +#endif // MINIZ_NO_ZLIB_APIS + +// ------------------- Low-level Decompression (completely independent from all +// compression API's) + +#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l) +#define TINFL_MEMSET(p, c, l) memset(p, c, l) + +#define TINFL_CR_BEGIN \ + switch (r->m_state) { \ + case 0: +#define TINFL_CR_RETURN(state_index, result) \ + do { \ + status = result; \ + r->m_state = state_index; \ + goto common_exit; \ + case state_index:; \ + } \ + MZ_MACRO_END +#define TINFL_CR_RETURN_FOREVER(state_index, result) \ + do { \ + for (;;) { \ + TINFL_CR_RETURN(state_index, result); \ + } \ + } \ + MZ_MACRO_END +#define TINFL_CR_FINISH } + +// TODO: If the caller has indicated that there's no more input, and we attempt +// to read beyond the input buf, then something is wrong with the input because +// the inflator never +// reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of +// the stream with 0's in this scenario. +#define TINFL_GET_BYTE(state_index, c) \ + do { \ + if (pIn_buf_cur >= pIn_buf_end) { \ + for (;;) { \ + if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \ + TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \ + if (pIn_buf_cur < pIn_buf_end) { \ + c = *pIn_buf_cur++; \ + break; \ + } \ + } else { \ + c = 0; \ + break; \ + } \ + } \ + } else \ + c = *pIn_buf_cur++; \ + } \ + MZ_MACRO_END + +#define TINFL_NEED_BITS(state_index, n) \ + do { \ + mz_uint c; \ + TINFL_GET_BYTE(state_index, c); \ + bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \ + num_bits += 8; \ + } while (num_bits < (mz_uint)(n)) +#define TINFL_SKIP_BITS(state_index, n) \ + do { \ + if (num_bits < (mz_uint)(n)) { \ + TINFL_NEED_BITS(state_index, n); \ + } \ + bit_buf >>= (n); \ + num_bits -= (n); \ + } \ + MZ_MACRO_END +#define TINFL_GET_BITS(state_index, b, n) \ + do { \ + if (num_bits < (mz_uint)(n)) { \ + TINFL_NEED_BITS(state_index, n); \ + } \ + b = bit_buf & ((1 << (n)) - 1); \ + bit_buf >>= (n); \ + num_bits -= (n); \ + } \ + MZ_MACRO_END + +// TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes +// remaining in the input buffer falls below 2. +// It reads just enough bytes from the input stream that are needed to decode +// the next Huffman code (and absolutely no more). It works by trying to fully +// decode a +// Huffman code by using whatever bits are currently present in the bit buffer. +// If this fails, it reads another byte, and tries again until it succeeds or +// until the +// bit buffer contains >=15 bits (deflate's max. Huffman code size). +#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \ + do { \ + temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \ + if (temp >= 0) { \ + code_len = temp >> 9; \ + if ((code_len) && (num_bits >= code_len)) break; \ + } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \ + code_len = TINFL_FAST_LOOKUP_BITS; \ + do { \ + temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \ + } while ((temp < 0) && (num_bits >= (code_len + 1))); \ + if (temp >= 0) break; \ + } \ + TINFL_GET_BYTE(state_index, c); \ + bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \ + num_bits += 8; \ + } while (num_bits < 15); + +// TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex +// than you would initially expect because the zlib API expects the decompressor +// to never read +// beyond the final byte of the deflate stream. (In other words, when this macro +// wants to read another byte from the input, it REALLY needs another byte in +// order to fully +// decode the next Huffman code.) Handling this properly is particularly +// important on raw deflate (non-zlib) streams, which aren't followed by a byte +// aligned adler-32. +// The slow path is only executed at the very end of the input buffer. +#define TINFL_HUFF_DECODE(state_index, sym, pHuff) \ + do { \ + int temp; \ + mz_uint code_len, c; \ + if (num_bits < 15) { \ + if ((pIn_buf_end - pIn_buf_cur) < 2) { \ + TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \ + } else { \ + bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | \ + (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); \ + pIn_buf_cur += 2; \ + num_bits += 16; \ + } \ + } \ + if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= \ + 0) \ + code_len = temp >> 9, temp &= 511; \ + else { \ + code_len = TINFL_FAST_LOOKUP_BITS; \ + do { \ + temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \ + } while (temp < 0); \ + } \ + sym = temp; \ + bit_buf >>= code_len; \ + num_bits -= code_len; \ + } \ + MZ_MACRO_END + +tinfl_status tinfl_decompress(tinfl_decompressor *r, + const mz_uint8 *pIn_buf_next, + size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, + mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, + const mz_uint32 decomp_flags) { + static const int s_length_base[31] = { + 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, + 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; + static const int s_length_extra[31] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, + 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, + 4, 4, 5, 5, 5, 5, 0, 0, 0}; + static const int s_dist_base[32] = { + 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, + 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, + 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; + static const int s_dist_extra[32] = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, + 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, + 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; + static const mz_uint8 s_length_dezigzag[19] = { + 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; + static const int s_min_table_sizes[3] = {257, 1, 4}; + + tinfl_status status = TINFL_STATUS_FAILED; + mz_uint32 num_bits, dist, counter, num_extra; + tinfl_bit_buf_t bit_buf; + const mz_uint8 *pIn_buf_cur = pIn_buf_next, + *const pIn_buf_end = pIn_buf_next + *pIn_buf_size; + mz_uint8 *pOut_buf_cur = pOut_buf_next, + *const pOut_buf_end = pOut_buf_next + *pOut_buf_size; + size_t out_buf_size_mask = + (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) + ? (size_t)-1 + : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, + dist_from_out_buf_start; + + // Ensure the output buffer's size is a power of 2, unless the output buffer + // is large enough to hold the entire output file (in which case it doesn't + // matter). + if (((out_buf_size_mask + 1) & out_buf_size_mask) || + (pOut_buf_next < pOut_buf_start)) { + *pIn_buf_size = *pOut_buf_size = 0; + return TINFL_STATUS_BAD_PARAM; + } + + num_bits = r->m_num_bits; + bit_buf = r->m_bit_buf; + dist = r->m_dist; + counter = r->m_counter; + num_extra = r->m_num_extra; + dist_from_out_buf_start = r->m_dist_from_out_buf_start; + TINFL_CR_BEGIN + + bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; + r->m_z_adler32 = r->m_check_adler32 = 1; + if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { + TINFL_GET_BYTE(1, r->m_zhdr0); + TINFL_GET_BYTE(2, r->m_zhdr1); + counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || + (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8)); + if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) + counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || + ((out_buf_size_mask + 1) < + (size_t)(1ULL << (8U + (r->m_zhdr0 >> 4))))); + if (counter) { + TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); + } + } + + do { + TINFL_GET_BITS(3, r->m_final, 3); + r->m_type = r->m_final >> 1; + if (r->m_type == 0) { + TINFL_SKIP_BITS(5, num_bits & 7); + for (counter = 0; counter < 4; ++counter) { + if (num_bits) + TINFL_GET_BITS(6, r->m_raw_header[counter], 8); + else + TINFL_GET_BYTE(7, r->m_raw_header[counter]); + } + if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != + (mz_uint)(0xFFFF ^ + (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { + TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); + } + while ((counter) && (num_bits)) { + TINFL_GET_BITS(51, dist, 8); + while (pOut_buf_cur >= pOut_buf_end) { + TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); + } + *pOut_buf_cur++ = (mz_uint8)dist; + counter--; + } + while (counter) { + size_t n; + while (pOut_buf_cur >= pOut_buf_end) { + TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); + } + while (pIn_buf_cur >= pIn_buf_end) { + if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { + TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT); + } else { + TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED); + } + } + n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), + (size_t)(pIn_buf_end - pIn_buf_cur)), + counter); + TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); + pIn_buf_cur += n; + pOut_buf_cur += n; + counter -= (mz_uint)n; + } + } else if (r->m_type == 3) { + TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED); + } else { + if (r->m_type == 1) { + mz_uint8 *p = r->m_tables[0].m_code_size; + mz_uint i; + r->m_table_sizes[0] = 288; + r->m_table_sizes[1] = 32; + TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32); + for (i = 0; i <= 143; ++i) *p++ = 8; + for (; i <= 255; ++i) *p++ = 9; + for (; i <= 279; ++i) *p++ = 7; + for (; i <= 287; ++i) *p++ = 8; + } else { + for (counter = 0; counter < 3; counter++) { + TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); + r->m_table_sizes[counter] += s_min_table_sizes[counter]; + } + MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); + for (counter = 0; counter < r->m_table_sizes[2]; counter++) { + mz_uint s; + TINFL_GET_BITS(14, s, 3); + r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; + } + r->m_table_sizes[2] = 19; + } + for (; (int)r->m_type >= 0; r->m_type--) { + int tree_next, tree_cur; + tinfl_huff_table *pTable; + mz_uint i, j, used_syms, total, sym_index, next_code[17], + total_syms[16]; + pTable = &r->m_tables[r->m_type]; + MZ_CLEAR_OBJ(total_syms); + MZ_CLEAR_OBJ(pTable->m_look_up); + MZ_CLEAR_OBJ(pTable->m_tree); + for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) + total_syms[pTable->m_code_size[i]]++; + used_syms = 0, total = 0; + next_code[0] = next_code[1] = 0; + for (i = 1; i <= 15; ++i) { + used_syms += total_syms[i]; + next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); + } + if ((65536 != total) && (used_syms > 1)) { + TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED); + } + for (tree_next = -1, sym_index = 0; + sym_index < r->m_table_sizes[r->m_type]; ++sym_index) { + mz_uint rev_code = 0, l, cur_code, + code_size = pTable->m_code_size[sym_index]; + if (!code_size) continue; + cur_code = next_code[code_size]++; + for (l = code_size; l > 0; l--, cur_code >>= 1) + rev_code = (rev_code << 1) | (cur_code & 1); + if (code_size <= TINFL_FAST_LOOKUP_BITS) { + mz_int16 k = (mz_int16)((code_size << 9) | sym_index); + while (rev_code < TINFL_FAST_LOOKUP_SIZE) { + pTable->m_look_up[rev_code] = k; + rev_code += (1 << code_size); + } + continue; + } + if (0 == + (tree_cur = pTable->m_look_up[rev_code & + (TINFL_FAST_LOOKUP_SIZE - 1)])) { + pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = + (mz_int16)tree_next; + tree_cur = tree_next; + tree_next -= 2; + } + rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1); + for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) { + tree_cur -= ((rev_code >>= 1) & 1); + if (!pTable->m_tree[-tree_cur - 1]) { + pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; + tree_cur = tree_next; + tree_next -= 2; + } else + tree_cur = pTable->m_tree[-tree_cur - 1]; + } + tree_cur -= ((rev_code >>= 1) & 1); + pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index; + } + if (r->m_type == 2) { + for (counter = 0; + counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);) { + mz_uint s; + TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); + if (dist < 16) { + r->m_len_codes[counter++] = (mz_uint8)dist; + continue; + } + if ((dist == 16) && (!counter)) { + TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED); + } + num_extra = "\02\03\07"[dist - 16]; + TINFL_GET_BITS(18, s, num_extra); + s += "\03\03\013"[dist - 16]; + TINFL_MEMSET(r->m_len_codes + counter, + (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); + counter += s; + } + if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) { + TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED); + } + TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, + r->m_table_sizes[0]); + TINFL_MEMCPY(r->m_tables[1].m_code_size, + r->m_len_codes + r->m_table_sizes[0], + r->m_table_sizes[1]); + } + } + for (;;) { + mz_uint8 *pSrc; + for (;;) { + if (((pIn_buf_end - pIn_buf_cur) < 4) || + ((pOut_buf_end - pOut_buf_cur) < 2)) { + TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]); + if (counter >= 256) break; + while (pOut_buf_cur >= pOut_buf_end) { + TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); + } + *pOut_buf_cur++ = (mz_uint8)counter; + } else { + int sym2; + mz_uint code_len; +#if TINFL_USE_64BIT_BITBUF + if (num_bits < 30) { + bit_buf |= + (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); + pIn_buf_cur += 4; + num_bits += 32; + } +#else + if (num_bits < 15) { + bit_buf |= + (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); + pIn_buf_cur += 2; + num_bits += 16; + } +#endif + if ((sym2 = + r->m_tables[0] + .m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= + 0) + code_len = sym2 >> 9; + else { + code_len = TINFL_FAST_LOOKUP_BITS; + do { + sym2 = r->m_tables[0] + .m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; + } while (sym2 < 0); + } + counter = sym2; + bit_buf >>= code_len; + num_bits -= code_len; + if (counter & 256) break; + +#if !TINFL_USE_64BIT_BITBUF + if (num_bits < 15) { + bit_buf |= + (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); + pIn_buf_cur += 2; + num_bits += 16; + } +#endif + if ((sym2 = + r->m_tables[0] + .m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= + 0) + code_len = sym2 >> 9; + else { + code_len = TINFL_FAST_LOOKUP_BITS; + do { + sym2 = r->m_tables[0] + .m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; + } while (sym2 < 0); + } + bit_buf >>= code_len; + num_bits -= code_len; + + pOut_buf_cur[0] = (mz_uint8)counter; + if (sym2 & 256) { + pOut_buf_cur++; + counter = sym2; + break; + } + pOut_buf_cur[1] = (mz_uint8)sym2; + pOut_buf_cur += 2; + } + } + if ((counter &= 511) == 256) break; + + num_extra = s_length_extra[counter - 257]; + counter = s_length_base[counter - 257]; + if (num_extra) { + mz_uint extra_bits; + TINFL_GET_BITS(25, extra_bits, num_extra); + counter += extra_bits; + } + + TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]); + num_extra = s_dist_extra[dist]; + dist = s_dist_base[dist]; + if (num_extra) { + mz_uint extra_bits; + TINFL_GET_BITS(27, extra_bits, num_extra); + dist += extra_bits; + } + + dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start; + if ((dist > dist_from_out_buf_start) && + (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) { + TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED); + } + + pSrc = pOut_buf_start + + ((dist_from_out_buf_start - dist) & out_buf_size_mask); + + if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) { + while (counter--) { + while (pOut_buf_cur >= pOut_buf_end) { + TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); + } + *pOut_buf_cur++ = + pOut_buf_start[(dist_from_out_buf_start++ - dist) & + out_buf_size_mask]; + } + continue; + } +#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES + else if ((counter >= 9) && (counter <= dist)) { + const mz_uint8 *pSrc_end = pSrc + (counter & ~7); + do { + ((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0]; + ((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1]; + pOut_buf_cur += 8; + } while ((pSrc += 8) < pSrc_end); + if ((counter &= 7) < 3) { + if (counter) { + pOut_buf_cur[0] = pSrc[0]; + if (counter > 1) pOut_buf_cur[1] = pSrc[1]; + pOut_buf_cur += counter; + } + continue; + } + } +#endif + do { + pOut_buf_cur[0] = pSrc[0]; + pOut_buf_cur[1] = pSrc[1]; + pOut_buf_cur[2] = pSrc[2]; + pOut_buf_cur += 3; + pSrc += 3; + } while ((int)(counter -= 3) > 2); + if ((int)counter > 0) { + pOut_buf_cur[0] = pSrc[0]; + if ((int)counter > 1) pOut_buf_cur[1] = pSrc[1]; + pOut_buf_cur += counter; + } + } + } + } while (!(r->m_final & 1)); + if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { + TINFL_SKIP_BITS(32, num_bits & 7); + for (counter = 0; counter < 4; ++counter) { + mz_uint s; + if (num_bits) + TINFL_GET_BITS(41, s, 8); + else + TINFL_GET_BYTE(42, s); + r->m_z_adler32 = (r->m_z_adler32 << 8) | s; + } + } + TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE); + TINFL_CR_FINISH + +common_exit: + r->m_num_bits = num_bits; + r->m_bit_buf = bit_buf; + r->m_dist = dist; + r->m_counter = counter; + r->m_num_extra = num_extra; + r->m_dist_from_out_buf_start = dist_from_out_buf_start; + *pIn_buf_size = pIn_buf_cur - pIn_buf_next; + *pOut_buf_size = pOut_buf_cur - pOut_buf_next; + if ((decomp_flags & + (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && + (status >= 0)) { + const mz_uint8 *ptr = pOut_buf_next; + size_t buf_len = *pOut_buf_size; + mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, + s2 = r->m_check_adler32 >> 16; + size_t block_len = buf_len % 5552; + while (buf_len) { + for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { + s1 += ptr[0], s2 += s1; + s1 += ptr[1], s2 += s1; + s1 += ptr[2], s2 += s1; + s1 += ptr[3], s2 += s1; + s1 += ptr[4], s2 += s1; + s1 += ptr[5], s2 += s1; + s1 += ptr[6], s2 += s1; + s1 += ptr[7], s2 += s1; + } + for (; i < block_len; ++i) s1 += *ptr++, s2 += s1; + s1 %= 65521U, s2 %= 65521U; + buf_len -= block_len; + block_len = 5552; + } + r->m_check_adler32 = (s2 << 16) + s1; + if ((status == TINFL_STATUS_DONE) && + (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && + (r->m_check_adler32 != r->m_z_adler32)) + status = TINFL_STATUS_ADLER32_MISMATCH; + } + return status; +} + +// Higher level helper functions. +void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, + size_t *pOut_len, int flags) { + tinfl_decompressor decomp; + void *pBuf = NULL, *pNew_buf; + size_t src_buf_ofs = 0, out_buf_capacity = 0; + *pOut_len = 0; + tinfl_init(&decomp); + for (;;) { + size_t src_buf_size = src_buf_len - src_buf_ofs, + dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity; + tinfl_status status = tinfl_decompress( + &decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size, + (mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL, + &dst_buf_size, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | + TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); + if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) { + MZ_FREE(pBuf); + *pOut_len = 0; + return NULL; + } + src_buf_ofs += src_buf_size; + *pOut_len += dst_buf_size; + if (status == TINFL_STATUS_DONE) break; + new_out_buf_capacity = out_buf_capacity * 2; + if (new_out_buf_capacity < 128) new_out_buf_capacity = 128; + pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity); + if (!pNew_buf) { + MZ_FREE(pBuf); + *pOut_len = 0; + return NULL; + } + pBuf = pNew_buf; + out_buf_capacity = new_out_buf_capacity; + } + return pBuf; +} + +size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, + const void *pSrc_buf, size_t src_buf_len, + int flags) { + tinfl_decompressor decomp; + tinfl_status status; + tinfl_init(&decomp); + status = + tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf, &src_buf_len, + (mz_uint8 *)pOut_buf, (mz_uint8 *)pOut_buf, &out_buf_len, + (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | + TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); + return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED + : out_buf_len; +} + +int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, + tinfl_put_buf_func_ptr pPut_buf_func, + void *pPut_buf_user, int flags) { + int result = 0; + tinfl_decompressor decomp; + mz_uint8 *pDict = (mz_uint8 *)MZ_MALLOC(TINFL_LZ_DICT_SIZE); + size_t in_buf_ofs = 0, dict_ofs = 0; + if (!pDict) return TINFL_STATUS_FAILED; + tinfl_init(&decomp); + for (;;) { + size_t in_buf_size = *pIn_buf_size - in_buf_ofs, + dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs; + tinfl_status status = + tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs, + &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size, + (flags & + ~(TINFL_FLAG_HAS_MORE_INPUT | + TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))); + in_buf_ofs += in_buf_size; + if ((dst_buf_size) && + (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user))) + break; + if (status != TINFL_STATUS_HAS_MORE_OUTPUT) { + result = (status == TINFL_STATUS_DONE); + break; + } + dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1); + } + MZ_FREE(pDict); + *pIn_buf_size = in_buf_ofs; + return result; +} + +// ------------------- Low-level Compression (independent from all decompression +// API's) + +// Purposely making these tables static for faster init and thread safety. +static const mz_uint16 s_tdefl_len_sym[256] = { + 257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268, + 268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272, + 272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274, + 274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276, + 276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, + 277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, + 278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279, + 279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280, + 280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281, + 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, + 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282, + 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, + 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283, + 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, + 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284, + 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, + 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, + 285}; + +static const mz_uint8 s_tdefl_len_extra[256] = { + 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0}; + +static const mz_uint8 s_tdefl_small_dist_sym[512] = { + 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, + 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, + 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, + 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, + 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, + 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, + 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, + 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, + 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, + 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, + 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, + 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, + 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, + 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, + 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17}; + +static const mz_uint8 s_tdefl_small_dist_extra[512] = { + 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}; + +static const mz_uint8 s_tdefl_large_dist_sym[128] = { + 0, 0, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, + 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, + 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, + 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, + 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, + 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, + 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29}; + +static const mz_uint8 s_tdefl_large_dist_extra[128] = { + 0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, + 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, + 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, + 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, + 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, + 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13}; + +// Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted +// values. +typedef struct { mz_uint16 m_key, m_sym_index; } tdefl_sym_freq; +static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms, + tdefl_sym_freq *pSyms0, + tdefl_sym_freq *pSyms1) { + mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2]; + tdefl_sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; + MZ_CLEAR_OBJ(hist); + for (i = 0; i < num_syms; i++) { + mz_uint freq = pSyms0[i].m_key; + hist[freq & 0xFF]++; + hist[256 + ((freq >> 8) & 0xFF)]++; + } + while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) + total_passes--; + for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) { + const mz_uint32 *pHist = &hist[pass << 8]; + mz_uint offsets[256], cur_ofs = 0; + for (i = 0; i < 256; i++) { + offsets[i] = cur_ofs; + cur_ofs += pHist[i]; + } + for (i = 0; i < num_syms; i++) + pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = + pCur_syms[i]; + { + tdefl_sym_freq *t = pCur_syms; + pCur_syms = pNew_syms; + pNew_syms = t; + } + } + return pCur_syms; +} + +// tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, +// alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. +static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) { + int root, leaf, next, avbl, used, dpth; + if (n == 0) + return; + else if (n == 1) { + A[0].m_key = 1; + return; + } + A[0].m_key += A[1].m_key; + root = 0; + leaf = 2; + for (next = 1; next < n - 1; next++) { + if (leaf >= n || A[root].m_key < A[leaf].m_key) { + A[next].m_key = A[root].m_key; + A[root++].m_key = (mz_uint16)next; + } else + A[next].m_key = A[leaf++].m_key; + if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) { + A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key); + A[root++].m_key = (mz_uint16)next; + } else + A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key); + } + A[n - 2].m_key = 0; + for (next = n - 3; next >= 0; next--) + A[next].m_key = A[A[next].m_key].m_key + 1; + avbl = 1; + used = dpth = 0; + root = n - 2; + next = n - 1; + while (avbl > 0) { + while (root >= 0 && (int)A[root].m_key == dpth) { + used++; + root--; + } + while (avbl > used) { + A[next--].m_key = (mz_uint16)(dpth); + avbl--; + } + avbl = 2 * used; + dpth++; + used = 0; + } +} + +// Limits canonical Huffman code table's max code size. +enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 }; +static void tdefl_huffman_enforce_max_code_size(int *pNum_codes, + int code_list_len, + int max_code_size) { + int i; + mz_uint32 total = 0; + if (code_list_len <= 1) return; + for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++) + pNum_codes[max_code_size] += pNum_codes[i]; + for (i = max_code_size; i > 0; i--) + total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i)); + while (total != (1UL << max_code_size)) { + pNum_codes[max_code_size]--; + for (i = max_code_size - 1; i > 0; i--) + if (pNum_codes[i]) { + pNum_codes[i]--; + pNum_codes[i + 1] += 2; + break; + } + total--; + } +} + +static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num, + int table_len, int code_size_limit, + int static_table) { + int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; + mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; + MZ_CLEAR_OBJ(num_codes); + if (static_table) { + for (i = 0; i < table_len; i++) + num_codes[d->m_huff_code_sizes[table_num][i]]++; + } else { + tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], + *pSyms; + int num_used_syms = 0; + const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0]; + for (i = 0; i < table_len; i++) + if (pSym_count[i]) { + syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i]; + syms0[num_used_syms++].m_sym_index = (mz_uint16)i; + } + + pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1); + tdefl_calculate_minimum_redundancy(pSyms, num_used_syms); + + for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++; + + tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms, + code_size_limit); + + MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]); + MZ_CLEAR_OBJ(d->m_huff_codes[table_num]); + for (i = 1, j = num_used_syms; i <= code_size_limit; i++) + for (l = num_codes[i]; l > 0; l--) + d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i); + } + + next_code[1] = 0; + for (j = 0, i = 2; i <= code_size_limit; i++) + next_code[i] = j = ((j + num_codes[i - 1]) << 1); + + for (i = 0; i < table_len; i++) { + mz_uint rev_code = 0, code, code_size; + if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue; + code = next_code[code_size]++; + for (l = code_size; l > 0; l--, code >>= 1) + rev_code = (rev_code << 1) | (code & 1); + d->m_huff_codes[table_num][i] = (mz_uint16)rev_code; + } +} + +#define TDEFL_PUT_BITS(b, l) \ + do { \ + mz_uint bits = b; \ + mz_uint len = l; \ + MZ_ASSERT(bits <= ((1U << len) - 1U)); \ + d->m_bit_buffer |= (bits << d->m_bits_in); \ + d->m_bits_in += len; \ + while (d->m_bits_in >= 8) { \ + if (d->m_pOutput_buf < d->m_pOutput_buf_end) \ + *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \ + d->m_bit_buffer >>= 8; \ + d->m_bits_in -= 8; \ + } \ + } \ + MZ_MACRO_END + +#define TDEFL_RLE_PREV_CODE_SIZE() \ + { \ + if (rle_repeat_count) { \ + if (rle_repeat_count < 3) { \ + d->m_huff_count[2][prev_code_size] = (mz_uint16)( \ + d->m_huff_count[2][prev_code_size] + rle_repeat_count); \ + while (rle_repeat_count--) \ + packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \ + } else { \ + d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); \ + packed_code_sizes[num_packed_code_sizes++] = 16; \ + packed_code_sizes[num_packed_code_sizes++] = \ + (mz_uint8)(rle_repeat_count - 3); \ + } \ + rle_repeat_count = 0; \ + } \ + } + +#define TDEFL_RLE_ZERO_CODE_SIZE() \ + { \ + if (rle_z_count) { \ + if (rle_z_count < 3) { \ + d->m_huff_count[2][0] = \ + (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); \ + while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \ + } else if (rle_z_count <= 10) { \ + d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); \ + packed_code_sizes[num_packed_code_sizes++] = 17; \ + packed_code_sizes[num_packed_code_sizes++] = \ + (mz_uint8)(rle_z_count - 3); \ + } else { \ + d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); \ + packed_code_sizes[num_packed_code_sizes++] = 18; \ + packed_code_sizes[num_packed_code_sizes++] = \ + (mz_uint8)(rle_z_count - 11); \ + } \ + rle_z_count = 0; \ + } \ + } + +static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = { + 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; + +static void tdefl_start_dynamic_block(tdefl_compressor *d) { + int num_lit_codes, num_dist_codes, num_bit_lengths; + mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, + rle_repeat_count, packed_code_sizes_index; + mz_uint8 + code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], + packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], + prev_code_size = 0xFF; + + d->m_huff_count[0][256] = 1; + + tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE); + tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE); + + for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--) + if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break; + for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--) + if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break; + + memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes); + memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], + num_dist_codes); + total_code_sizes_to_pack = num_lit_codes + num_dist_codes; + num_packed_code_sizes = 0; + rle_z_count = 0; + rle_repeat_count = 0; + + memset(&d->m_huff_count[2][0], 0, + sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2); + for (i = 0; i < total_code_sizes_to_pack; i++) { + mz_uint8 code_size = code_sizes_to_pack[i]; + if (!code_size) { + TDEFL_RLE_PREV_CODE_SIZE(); + if (++rle_z_count == 138) { + TDEFL_RLE_ZERO_CODE_SIZE(); + } + } else { + TDEFL_RLE_ZERO_CODE_SIZE(); + if (code_size != prev_code_size) { + TDEFL_RLE_PREV_CODE_SIZE(); + d->m_huff_count[2][code_size] = + (mz_uint16)(d->m_huff_count[2][code_size] + 1); + packed_code_sizes[num_packed_code_sizes++] = code_size; + } else if (++rle_repeat_count == 6) { + TDEFL_RLE_PREV_CODE_SIZE(); + } + } + prev_code_size = code_size; + } + if (rle_repeat_count) { + TDEFL_RLE_PREV_CODE_SIZE(); + } else { + TDEFL_RLE_ZERO_CODE_SIZE(); + } + + tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE); + + TDEFL_PUT_BITS(2, 2); + + TDEFL_PUT_BITS(num_lit_codes - 257, 5); + TDEFL_PUT_BITS(num_dist_codes - 1, 5); + + for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--) + if (d->m_huff_code_sizes + [2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]]) + break; + num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1)); + TDEFL_PUT_BITS(num_bit_lengths - 4, 4); + for (i = 0; (int)i < num_bit_lengths; i++) + TDEFL_PUT_BITS( + d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3); + + for (packed_code_sizes_index = 0; + packed_code_sizes_index < num_packed_code_sizes;) { + mz_uint code = packed_code_sizes[packed_code_sizes_index++]; + MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2); + TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]); + if (code >= 16) + TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++], + "\02\03\07"[code - 16]); + } +} + +static void tdefl_start_static_block(tdefl_compressor *d) { + mz_uint i; + mz_uint8 *p = &d->m_huff_code_sizes[0][0]; + + for (i = 0; i <= 143; ++i) *p++ = 8; + for (; i <= 255; ++i) *p++ = 9; + for (; i <= 279; ++i) *p++ = 7; + for (; i <= 287; ++i) *p++ = 8; + + memset(d->m_huff_code_sizes[1], 5, 32); + + tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE); + tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE); + + TDEFL_PUT_BITS(1, 2); +} + +static const mz_uint mz_bitmasks[17] = { + 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, + 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF}; + +#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && \ + MINIZ_HAS_64BIT_REGISTERS +static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { + mz_uint flags; + mz_uint8 *pLZ_codes; + mz_uint8 *pOutput_buf = d->m_pOutput_buf; + mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf; + mz_uint64 bit_buffer = d->m_bit_buffer; + mz_uint bits_in = d->m_bits_in; + +#define TDEFL_PUT_BITS_FAST(b, l) \ + { \ + bit_buffer |= (((mz_uint64)(b)) << bits_in); \ + bits_in += (l); \ + } + + flags = 1; + for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; + flags >>= 1) { + if (flags == 1) flags = *pLZ_codes++ | 0x100; + + if (flags & 1) { + mz_uint s0, s1, n0, n1, sym, num_extra_bits; + mz_uint match_len = pLZ_codes[0], + match_dist = *(const mz_uint16 *)(pLZ_codes + 1); + pLZ_codes += 3; + + MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); + TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], + d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); + TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], + s_tdefl_len_extra[match_len]); + + // This sequence coaxes MSVC into using cmov's vs. jmp's. + s0 = s_tdefl_small_dist_sym[match_dist & 511]; + n0 = s_tdefl_small_dist_extra[match_dist & 511]; + s1 = s_tdefl_large_dist_sym[match_dist >> 8]; + n1 = s_tdefl_large_dist_extra[match_dist >> 8]; + sym = (match_dist < 512) ? s0 : s1; + num_extra_bits = (match_dist < 512) ? n0 : n1; + + MZ_ASSERT(d->m_huff_code_sizes[1][sym]); + TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym], + d->m_huff_code_sizes[1][sym]); + TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits], + num_extra_bits); + } else { + mz_uint lit = *pLZ_codes++; + MZ_ASSERT(d->m_huff_code_sizes[0][lit]); + TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], + d->m_huff_code_sizes[0][lit]); + + if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { + flags >>= 1; + lit = *pLZ_codes++; + MZ_ASSERT(d->m_huff_code_sizes[0][lit]); + TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], + d->m_huff_code_sizes[0][lit]); + + if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { + flags >>= 1; + lit = *pLZ_codes++; + MZ_ASSERT(d->m_huff_code_sizes[0][lit]); + TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], + d->m_huff_code_sizes[0][lit]); + } + } + } + + if (pOutput_buf >= d->m_pOutput_buf_end) return MZ_FALSE; + + *(mz_uint64 *)pOutput_buf = bit_buffer; + pOutput_buf += (bits_in >> 3); + bit_buffer >>= (bits_in & ~7); + bits_in &= 7; + } + +#undef TDEFL_PUT_BITS_FAST + + d->m_pOutput_buf = pOutput_buf; + d->m_bits_in = 0; + d->m_bit_buffer = 0; + + while (bits_in) { + mz_uint32 n = MZ_MIN(bits_in, 16); + TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n); + bit_buffer >>= n; + bits_in -= n; + } + + TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); + + return (d->m_pOutput_buf < d->m_pOutput_buf_end); +} +#else +static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { + mz_uint flags; + mz_uint8 *pLZ_codes; + + flags = 1; + for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; + flags >>= 1) { + if (flags == 1) flags = *pLZ_codes++ | 0x100; + if (flags & 1) { + mz_uint sym, num_extra_bits; + mz_uint match_len = pLZ_codes[0], + match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); + pLZ_codes += 3; + + MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); + TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], + d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); + TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], + s_tdefl_len_extra[match_len]); + + if (match_dist < 512) { + sym = s_tdefl_small_dist_sym[match_dist]; + num_extra_bits = s_tdefl_small_dist_extra[match_dist]; + } else { + sym = s_tdefl_large_dist_sym[match_dist >> 8]; + num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8]; + } + MZ_ASSERT(d->m_huff_code_sizes[1][sym]); + TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]); + TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits); + } else { + mz_uint lit = *pLZ_codes++; + MZ_ASSERT(d->m_huff_code_sizes[0][lit]); + TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); + } + } + + TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); + + return (d->m_pOutput_buf < d->m_pOutput_buf_end); +} +#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && + // MINIZ_HAS_64BIT_REGISTERS + +static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) { + if (static_block) + tdefl_start_static_block(d); + else + tdefl_start_dynamic_block(d); + return tdefl_compress_lz_codes(d); +} + +static int tdefl_flush_block(tdefl_compressor *d, int flush) { + mz_uint saved_bit_buf, saved_bits_in; + mz_uint8 *pSaved_output_buf; + mz_bool comp_block_succeeded = MZ_FALSE; + int n, use_raw_block = + ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) && + (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size; + mz_uint8 *pOutput_buf_start = + ((d->m_pPut_buf_func == NULL) && + ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE)) + ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs) + : d->m_output_buf; + + d->m_pOutput_buf = pOutput_buf_start; + d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16; + + MZ_ASSERT(!d->m_output_flush_remaining); + d->m_output_flush_ofs = 0; + d->m_output_flush_remaining = 0; + + *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left); + d->m_pLZ_code_buf -= (d->m_num_flags_left == 8); + + if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) { + TDEFL_PUT_BITS(0x78, 8); + TDEFL_PUT_BITS(0x01, 8); + } + + TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1); + + pSaved_output_buf = d->m_pOutput_buf; + saved_bit_buf = d->m_bit_buffer; + saved_bits_in = d->m_bits_in; + + if (!use_raw_block) + comp_block_succeeded = + tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) || + (d->m_total_lz_bytes < 48)); + + // If the block gets expanded, forget the current contents of the output + // buffer and send a raw block instead. + if (((use_raw_block) || + ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >= + d->m_total_lz_bytes))) && + ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size)) { + mz_uint i; + d->m_pOutput_buf = pSaved_output_buf; + d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; + TDEFL_PUT_BITS(0, 2); + if (d->m_bits_in) { + TDEFL_PUT_BITS(0, 8 - d->m_bits_in); + } + for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) { + TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16); + } + for (i = 0; i < d->m_total_lz_bytes; ++i) { + TDEFL_PUT_BITS( + d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK], + 8); + } + } + // Check for the extremely unlikely (if not impossible) case of the compressed + // block not fitting into the output buffer when using dynamic codes. + else if (!comp_block_succeeded) { + d->m_pOutput_buf = pSaved_output_buf; + d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; + tdefl_compress_block(d, MZ_TRUE); + } + + if (flush) { + if (flush == TDEFL_FINISH) { + if (d->m_bits_in) { + TDEFL_PUT_BITS(0, 8 - d->m_bits_in); + } + if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) { + mz_uint i, a = d->m_adler32; + for (i = 0; i < 4; i++) { + TDEFL_PUT_BITS((a >> 24) & 0xFF, 8); + a <<= 8; + } + } + } else { + mz_uint i, z = 0; + TDEFL_PUT_BITS(0, 3); + if (d->m_bits_in) { + TDEFL_PUT_BITS(0, 8 - d->m_bits_in); + } + for (i = 2; i; --i, z ^= 0xFFFF) { + TDEFL_PUT_BITS(z & 0xFFFF, 16); + } + } + } + + MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end); + + memset(&d->m_huff_count[0][0], 0, + sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); + memset(&d->m_huff_count[1][0], 0, + sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); + + d->m_pLZ_code_buf = d->m_lz_code_buf + 1; + d->m_pLZ_flags = d->m_lz_code_buf; + d->m_num_flags_left = 8; + d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; + d->m_total_lz_bytes = 0; + d->m_block_index++; + + if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) { + if (d->m_pPut_buf_func) { + *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf; + if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user)) + return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED); + } else if (pOutput_buf_start == d->m_output_buf) { + int bytes_to_copy = (int)MZ_MIN( + (size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs)); + memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, + bytes_to_copy); + d->m_out_buf_ofs += bytes_to_copy; + if ((n -= bytes_to_copy) != 0) { + d->m_output_flush_ofs = bytes_to_copy; + d->m_output_flush_remaining = n; + } + } else { + d->m_out_buf_ofs += n; + } + } + + return d->m_output_flush_remaining; +} + +#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES +#define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16 *)(p) +static MZ_FORCEINLINE void tdefl_find_match( + tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, + mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { + mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, + match_len = *pMatch_len, probe_pos = pos, next_probe_pos, + probe_len; + mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; + const mz_uint16 *s = (const mz_uint16 *)(d->m_dict + pos), *p, *q; + mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]), + s01 = TDEFL_READ_UNALIGNED_WORD(s); + MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); + if (max_match_len <= match_len) return; + for (;;) { + for (;;) { + if (--num_probes_left == 0) return; +#define TDEFL_PROBE \ + next_probe_pos = d->m_next[probe_pos]; \ + if ((!next_probe_pos) || \ + ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \ + return; \ + probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ + if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) \ + break; + TDEFL_PROBE; + TDEFL_PROBE; + TDEFL_PROBE; + } + if (!dist) break; + q = (const mz_uint16 *)(d->m_dict + probe_pos); + if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue; + p = s; + probe_len = 32; + do { + } while ( + (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && + (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && + (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && + (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && + (--probe_len > 0)); + if (!probe_len) { + *pMatch_dist = dist; + *pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN); + break; + } else if ((probe_len = ((mz_uint)(p - s) * 2) + + (mz_uint)(*(const mz_uint8 *)p == + *(const mz_uint8 *)q)) > match_len) { + *pMatch_dist = dist; + if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) == + max_match_len) + break; + c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]); + } + } +} +#else +static MZ_FORCEINLINE void tdefl_find_match( + tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, + mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { + mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, + match_len = *pMatch_len, probe_pos = pos, next_probe_pos, + probe_len; + mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; + const mz_uint8 *s = d->m_dict + pos, *p, *q; + mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1]; + MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); + if (max_match_len <= match_len) return; + for (;;) { + for (;;) { + if (--num_probes_left == 0) return; +#define TDEFL_PROBE \ + next_probe_pos = d->m_next[probe_pos]; \ + if ((!next_probe_pos) || \ + ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \ + return; \ + probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ + if ((d->m_dict[probe_pos + match_len] == c0) && \ + (d->m_dict[probe_pos + match_len - 1] == c1)) \ + break; + TDEFL_PROBE; + TDEFL_PROBE; + TDEFL_PROBE; + } + if (!dist) break; + p = s; + q = d->m_dict + probe_pos; + for (probe_len = 0; probe_len < max_match_len; probe_len++) + if (*p++ != *q++) break; + if (probe_len > match_len) { + *pMatch_dist = dist; + if ((*pMatch_len = match_len = probe_len) == max_match_len) return; + c0 = d->m_dict[pos + match_len]; + c1 = d->m_dict[pos + match_len - 1]; + } + } +} +#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES + +#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN +static mz_bool tdefl_compress_fast(tdefl_compressor *d) { + // Faster, minimally featured LZRW1-style match+parse loop with better + // register utilization. Intended for applications where raw throughput is + // valued more highly than ratio. + mz_uint lookahead_pos = d->m_lookahead_pos, + lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, + total_lz_bytes = d->m_total_lz_bytes, + num_flags_left = d->m_num_flags_left; + mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags; + mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; + + while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) { + const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096; + mz_uint dst_pos = + (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK; + mz_uint num_bytes_to_process = (mz_uint)MZ_MIN( + d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size); + d->m_src_buf_left -= num_bytes_to_process; + lookahead_size += num_bytes_to_process; + + while (num_bytes_to_process) { + mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process); + memcpy(d->m_dict + dst_pos, d->m_pSrc, n); + if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) + memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, + MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos)); + d->m_pSrc += n; + dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK; + num_bytes_to_process -= n; + } + + dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size); + if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE)) + break; + + while (lookahead_size >= 4) { + mz_uint cur_match_dist, cur_match_len = 1; + mz_uint8 *pCur_dict = d->m_dict + cur_pos; + mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF; + mz_uint hash = + (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) & + TDEFL_LEVEL1_HASH_SIZE_MASK; + mz_uint probe_pos = d->m_hash[hash]; + d->m_hash[hash] = (mz_uint16)lookahead_pos; + + if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <= + dict_size) && + ((*(const mz_uint32 *)(d->m_dict + + (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) & + 0xFFFFFF) == first_trigram)) { + const mz_uint16 *p = (const mz_uint16 *)pCur_dict; + const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos); + mz_uint32 probe_len = 32; + do { + } while ((TDEFL_READ_UNALIGNED_WORD(++p) == + TDEFL_READ_UNALIGNED_WORD(++q)) && + (TDEFL_READ_UNALIGNED_WORD(++p) == + TDEFL_READ_UNALIGNED_WORD(++q)) && + (TDEFL_READ_UNALIGNED_WORD(++p) == + TDEFL_READ_UNALIGNED_WORD(++q)) && + (TDEFL_READ_UNALIGNED_WORD(++p) == + TDEFL_READ_UNALIGNED_WORD(++q)) && + (--probe_len > 0)); + cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) + + (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q); + if (!probe_len) + cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0; + + if ((cur_match_len < TDEFL_MIN_MATCH_LEN) || + ((cur_match_len == TDEFL_MIN_MATCH_LEN) && + (cur_match_dist >= 8U * 1024U))) { + cur_match_len = 1; + *pLZ_code_buf++ = (mz_uint8)first_trigram; + *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); + d->m_huff_count[0][(mz_uint8)first_trigram]++; + } else { + mz_uint32 s0, s1; + cur_match_len = MZ_MIN(cur_match_len, lookahead_size); + + MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) && + (cur_match_dist >= 1) && + (cur_match_dist <= TDEFL_LZ_DICT_SIZE)); + + cur_match_dist--; + + pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN); + *(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist; + pLZ_code_buf += 3; + *pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80); + + s0 = s_tdefl_small_dist_sym[cur_match_dist & 511]; + s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8]; + d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++; + + d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - + TDEFL_MIN_MATCH_LEN]]++; + } + } else { + *pLZ_code_buf++ = (mz_uint8)first_trigram; + *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); + d->m_huff_count[0][(mz_uint8)first_trigram]++; + } + + if (--num_flags_left == 0) { + num_flags_left = 8; + pLZ_flags = pLZ_code_buf++; + } + + total_lz_bytes += cur_match_len; + lookahead_pos += cur_match_len; + dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE); + cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK; + MZ_ASSERT(lookahead_size >= cur_match_len); + lookahead_size -= cur_match_len; + + if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { + int n; + d->m_lookahead_pos = lookahead_pos; + d->m_lookahead_size = lookahead_size; + d->m_dict_size = dict_size; + d->m_total_lz_bytes = total_lz_bytes; + d->m_pLZ_code_buf = pLZ_code_buf; + d->m_pLZ_flags = pLZ_flags; + d->m_num_flags_left = num_flags_left; + if ((n = tdefl_flush_block(d, 0)) != 0) + return (n < 0) ? MZ_FALSE : MZ_TRUE; + total_lz_bytes = d->m_total_lz_bytes; + pLZ_code_buf = d->m_pLZ_code_buf; + pLZ_flags = d->m_pLZ_flags; + num_flags_left = d->m_num_flags_left; + } + } + + while (lookahead_size) { + mz_uint8 lit = d->m_dict[cur_pos]; + + total_lz_bytes++; + *pLZ_code_buf++ = lit; + *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); + if (--num_flags_left == 0) { + num_flags_left = 8; + pLZ_flags = pLZ_code_buf++; + } + + d->m_huff_count[0][lit]++; + + lookahead_pos++; + dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE); + cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; + lookahead_size--; + + if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { + int n; + d->m_lookahead_pos = lookahead_pos; + d->m_lookahead_size = lookahead_size; + d->m_dict_size = dict_size; + d->m_total_lz_bytes = total_lz_bytes; + d->m_pLZ_code_buf = pLZ_code_buf; + d->m_pLZ_flags = pLZ_flags; + d->m_num_flags_left = num_flags_left; + if ((n = tdefl_flush_block(d, 0)) != 0) + return (n < 0) ? MZ_FALSE : MZ_TRUE; + total_lz_bytes = d->m_total_lz_bytes; + pLZ_code_buf = d->m_pLZ_code_buf; + pLZ_flags = d->m_pLZ_flags; + num_flags_left = d->m_num_flags_left; + } + } + } + + d->m_lookahead_pos = lookahead_pos; + d->m_lookahead_size = lookahead_size; + d->m_dict_size = dict_size; + d->m_total_lz_bytes = total_lz_bytes; + d->m_pLZ_code_buf = pLZ_code_buf; + d->m_pLZ_flags = pLZ_flags; + d->m_num_flags_left = num_flags_left; + return MZ_TRUE; +} +#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN + +static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d, + mz_uint8 lit) { + d->m_total_lz_bytes++; + *d->m_pLZ_code_buf++ = lit; + *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1); + if (--d->m_num_flags_left == 0) { + d->m_num_flags_left = 8; + d->m_pLZ_flags = d->m_pLZ_code_buf++; + } + d->m_huff_count[0][lit]++; +} + +static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d, + mz_uint match_len, + mz_uint match_dist) { + mz_uint32 s0, s1; + + MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) && + (match_dist <= TDEFL_LZ_DICT_SIZE)); + + d->m_total_lz_bytes += match_len; + + d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN); + + match_dist -= 1; + d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF); + d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8); + d->m_pLZ_code_buf += 3; + + *d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80); + if (--d->m_num_flags_left == 0) { + d->m_num_flags_left = 8; + d->m_pLZ_flags = d->m_pLZ_code_buf++; + } + + s0 = s_tdefl_small_dist_sym[match_dist & 511]; + s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127]; + d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++; + + if (match_len >= TDEFL_MIN_MATCH_LEN) + d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++; +} + +static mz_bool tdefl_compress_normal(tdefl_compressor *d) { + const mz_uint8 *pSrc = d->m_pSrc; + size_t src_buf_left = d->m_src_buf_left; + tdefl_flush flush = d->m_flush; + + while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) { + mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos; + // Update dictionary and hash chains. Keeps the lookahead size equal to + // TDEFL_MAX_MATCH_LEN. + if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) { + mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & + TDEFL_LZ_DICT_SIZE_MASK, + ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2; + mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] + << TDEFL_LZ_HASH_SHIFT) ^ + d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]; + mz_uint num_bytes_to_process = (mz_uint)MZ_MIN( + src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size); + const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process; + src_buf_left -= num_bytes_to_process; + d->m_lookahead_size += num_bytes_to_process; + while (pSrc != pSrc_end) { + mz_uint8 c = *pSrc++; + d->m_dict[dst_pos] = c; + if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) + d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; + hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1); + d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; + d->m_hash[hash] = (mz_uint16)(ins_pos); + dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; + ins_pos++; + } + } else { + while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) { + mz_uint8 c = *pSrc++; + mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & + TDEFL_LZ_DICT_SIZE_MASK; + src_buf_left--; + d->m_dict[dst_pos] = c; + if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) + d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; + if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) { + mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2; + mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] + << (TDEFL_LZ_HASH_SHIFT * 2)) ^ + (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK] + << TDEFL_LZ_HASH_SHIFT) ^ + c) & + (TDEFL_LZ_HASH_SIZE - 1); + d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; + d->m_hash[hash] = (mz_uint16)(ins_pos); + } + } + } + d->m_dict_size = + MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size); + if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) break; + + // Simple lazy/greedy parsing state machine. + len_to_move = 1; + cur_match_dist = 0; + cur_match_len = + d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1); + cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; + if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) { + if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) { + mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK]; + cur_match_len = 0; + while (cur_match_len < d->m_lookahead_size) { + if (d->m_dict[cur_pos + cur_match_len] != c) break; + cur_match_len++; + } + if (cur_match_len < TDEFL_MIN_MATCH_LEN) + cur_match_len = 0; + else + cur_match_dist = 1; + } + } else { + tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size, + d->m_lookahead_size, &cur_match_dist, &cur_match_len); + } + if (((cur_match_len == TDEFL_MIN_MATCH_LEN) && + (cur_match_dist >= 8U * 1024U)) || + (cur_pos == cur_match_dist) || + ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) { + cur_match_dist = cur_match_len = 0; + } + if (d->m_saved_match_len) { + if (cur_match_len > d->m_saved_match_len) { + tdefl_record_literal(d, (mz_uint8)d->m_saved_lit); + if (cur_match_len >= 128) { + tdefl_record_match(d, cur_match_len, cur_match_dist); + d->m_saved_match_len = 0; + len_to_move = cur_match_len; + } else { + d->m_saved_lit = d->m_dict[cur_pos]; + d->m_saved_match_dist = cur_match_dist; + d->m_saved_match_len = cur_match_len; + } + } else { + tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist); + len_to_move = d->m_saved_match_len - 1; + d->m_saved_match_len = 0; + } + } else if (!cur_match_dist) + tdefl_record_literal(d, + d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]); + else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) || + (cur_match_len >= 128)) { + tdefl_record_match(d, cur_match_len, cur_match_dist); + len_to_move = cur_match_len; + } else { + d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]; + d->m_saved_match_dist = cur_match_dist; + d->m_saved_match_len = cur_match_len; + } + // Move the lookahead forward by len_to_move bytes. + d->m_lookahead_pos += len_to_move; + MZ_ASSERT(d->m_lookahead_size >= len_to_move); + d->m_lookahead_size -= len_to_move; + d->m_dict_size = + MZ_MIN(d->m_dict_size + len_to_move, (mz_uint)TDEFL_LZ_DICT_SIZE); + // Check if it's time to flush the current LZ codes to the internal output + // buffer. + if ((d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) || + ((d->m_total_lz_bytes > 31 * 1024) && + (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >= + d->m_total_lz_bytes) || + (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))) { + int n; + d->m_pSrc = pSrc; + d->m_src_buf_left = src_buf_left; + if ((n = tdefl_flush_block(d, 0)) != 0) + return (n < 0) ? MZ_FALSE : MZ_TRUE; + } + } + + d->m_pSrc = pSrc; + d->m_src_buf_left = src_buf_left; + return MZ_TRUE; +} + +static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) { + if (d->m_pIn_buf_size) { + *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf; + } + + if (d->m_pOut_buf_size) { + size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs, + d->m_output_flush_remaining); + memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, + d->m_output_buf + d->m_output_flush_ofs, n); + d->m_output_flush_ofs += (mz_uint)n; + d->m_output_flush_remaining -= (mz_uint)n; + d->m_out_buf_ofs += n; + + *d->m_pOut_buf_size = d->m_out_buf_ofs; + } + + return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE + : TDEFL_STATUS_OKAY; +} + +tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, + size_t *pIn_buf_size, void *pOut_buf, + size_t *pOut_buf_size, tdefl_flush flush) { + if (!d) { + if (pIn_buf_size) *pIn_buf_size = 0; + if (pOut_buf_size) *pOut_buf_size = 0; + return TDEFL_STATUS_BAD_PARAM; + } + + d->m_pIn_buf = pIn_buf; + d->m_pIn_buf_size = pIn_buf_size; + d->m_pOut_buf = pOut_buf; + d->m_pOut_buf_size = pOut_buf_size; + d->m_pSrc = (const mz_uint8 *)(pIn_buf); + d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0; + d->m_out_buf_ofs = 0; + d->m_flush = flush; + + if (((d->m_pPut_buf_func != NULL) == + ((pOut_buf != NULL) || (pOut_buf_size != NULL))) || + (d->m_prev_return_status != TDEFL_STATUS_OKAY) || + (d->m_wants_to_finish && (flush != TDEFL_FINISH)) || + (pIn_buf_size && *pIn_buf_size && !pIn_buf) || + (pOut_buf_size && *pOut_buf_size && !pOut_buf)) { + if (pIn_buf_size) *pIn_buf_size = 0; + if (pOut_buf_size) *pOut_buf_size = 0; + return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM); + } + d->m_wants_to_finish |= (flush == TDEFL_FINISH); + + if ((d->m_output_flush_remaining) || (d->m_finished)) + return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); + +#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN + if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) && + ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) && + ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | + TDEFL_RLE_MATCHES)) == 0)) { + if (!tdefl_compress_fast(d)) return d->m_prev_return_status; + } else +#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN + { + if (!tdefl_compress_normal(d)) return d->m_prev_return_status; + } + + if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) && + (pIn_buf)) + d->m_adler32 = + (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf, + d->m_pSrc - (const mz_uint8 *)pIn_buf); + + if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) && + (!d->m_output_flush_remaining)) { + if (tdefl_flush_block(d, flush) < 0) return d->m_prev_return_status; + d->m_finished = (flush == TDEFL_FINISH); + if (flush == TDEFL_FULL_FLUSH) { + MZ_CLEAR_OBJ(d->m_hash); + MZ_CLEAR_OBJ(d->m_next); + d->m_dict_size = 0; + } + } + + return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); +} + +tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, + size_t in_buf_size, tdefl_flush flush) { + MZ_ASSERT(d->m_pPut_buf_func); + return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush); +} + +tdefl_status tdefl_init(tdefl_compressor *d, + tdefl_put_buf_func_ptr pPut_buf_func, + void *pPut_buf_user, int flags) { + d->m_pPut_buf_func = pPut_buf_func; + d->m_pPut_buf_user = pPut_buf_user; + d->m_flags = (mz_uint)(flags); + d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; + d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0; + d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3; + if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash); + d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = + d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0; + d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = + d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0; + d->m_pLZ_code_buf = d->m_lz_code_buf + 1; + d->m_pLZ_flags = d->m_lz_code_buf; + d->m_num_flags_left = 8; + d->m_pOutput_buf = d->m_output_buf; + d->m_pOutput_buf_end = d->m_output_buf; + d->m_prev_return_status = TDEFL_STATUS_OKAY; + d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; + d->m_adler32 = 1; + d->m_pIn_buf = NULL; + d->m_pOut_buf = NULL; + d->m_pIn_buf_size = NULL; + d->m_pOut_buf_size = NULL; + d->m_flush = TDEFL_NO_FLUSH; + d->m_pSrc = NULL; + d->m_src_buf_left = 0; + d->m_out_buf_ofs = 0; + memset(&d->m_huff_count[0][0], 0, + sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); + memset(&d->m_huff_count[1][0], 0, + sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); + return TDEFL_STATUS_OKAY; +} + +tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d) { + return d->m_prev_return_status; +} + +mz_uint32 tdefl_get_adler32(tdefl_compressor *d) { return d->m_adler32; } + +mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, + tdefl_put_buf_func_ptr pPut_buf_func, + void *pPut_buf_user, int flags) { + tdefl_compressor *pComp; + mz_bool succeeded; + if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE; + pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); + if (!pComp) return MZ_FALSE; + succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) == + TDEFL_STATUS_OKAY); + succeeded = + succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) == + TDEFL_STATUS_DONE); + MZ_FREE(pComp); + return succeeded; +} + +typedef struct { + size_t m_size, m_capacity; + mz_uint8 *m_pBuf; + mz_bool m_expandable; +} tdefl_output_buffer; + +static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len, + void *pUser) { + tdefl_output_buffer *p = (tdefl_output_buffer *)pUser; + size_t new_size = p->m_size + len; + if (new_size > p->m_capacity) { + size_t new_capacity = p->m_capacity; + mz_uint8 *pNew_buf; + if (!p->m_expandable) return MZ_FALSE; + do { + new_capacity = MZ_MAX(128U, new_capacity << 1U); + } while (new_size > new_capacity); + pNew_buf = (mz_uint8 *)MZ_REALLOC(p->m_pBuf, new_capacity); + if (!pNew_buf) return MZ_FALSE; + p->m_pBuf = pNew_buf; + p->m_capacity = new_capacity; + } + memcpy((mz_uint8 *)p->m_pBuf + p->m_size, pBuf, len); + p->m_size = new_size; + return MZ_TRUE; +} + +void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, + size_t *pOut_len, int flags) { + tdefl_output_buffer out_buf; + MZ_CLEAR_OBJ(out_buf); + if (!pOut_len) + return MZ_FALSE; + else + *pOut_len = 0; + out_buf.m_expandable = MZ_TRUE; + if (!tdefl_compress_mem_to_output( + pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) + return NULL; + *pOut_len = out_buf.m_size; + return out_buf.m_pBuf; +} + +size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, + const void *pSrc_buf, size_t src_buf_len, + int flags) { + tdefl_output_buffer out_buf; + MZ_CLEAR_OBJ(out_buf); + if (!pOut_buf) return 0; + out_buf.m_pBuf = (mz_uint8 *)pOut_buf; + out_buf.m_capacity = out_buf_len; + if (!tdefl_compress_mem_to_output( + pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) + return 0; + return out_buf.m_size; +} + +#ifndef MINIZ_NO_ZLIB_APIS +static const mz_uint s_tdefl_num_probes[11] = {0, 1, 6, 32, 16, 32, + 128, 256, 512, 768, 1500}; + +// level may actually range from [0,10] (10 is a "hidden" max level, where we +// want a bit more compression and it's fine if throughput to fall off a cliff +// on some files). +mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, + int strategy) { + mz_uint comp_flags = + s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] | + ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0); + if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER; + + if (!level) + comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS; + else if (strategy == MZ_FILTERED) + comp_flags |= TDEFL_FILTER_MATCHES; + else if (strategy == MZ_HUFFMAN_ONLY) + comp_flags &= ~TDEFL_MAX_PROBES_MASK; + else if (strategy == MZ_FIXED) + comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS; + else if (strategy == MZ_RLE) + comp_flags |= TDEFL_RLE_MATCHES; + + return comp_flags; +} +#endif // MINIZ_NO_ZLIB_APIS + +#ifdef _MSC_VER +#pragma warning(push) +#pragma warning(disable : 4204) // nonstandard extension used : non-constant + // aggregate initializer (also supported by GNU + // C and C99, so no big deal) +#pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to + // 'int', possible loss of data +#pragma warning( \ + disable : 4267) // 'argument': conversion from '__int64' to 'int', + // possible loss of data +#pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is + // deprecated. Instead, use the ISO C and C++ + // conformant name: _strdup. +#endif + +// Simple PNG writer function by Alex Evans, 2011. Released into the public +// domain: https://gist.github.com/908299, more context at +// http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/. +// This is actually a modification of Alex's original code so PNG files +// generated by this function pass pngcheck. +void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, + int h, int num_chans, + size_t *pLen_out, + mz_uint level, mz_bool flip) { + // Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was + // defined. + static const mz_uint s_tdefl_png_num_probes[11] = { + 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500}; + tdefl_compressor *pComp = + (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); + tdefl_output_buffer out_buf; + int i, bpl = w * num_chans, y, z; + mz_uint32 c; + *pLen_out = 0; + if (!pComp) return NULL; + MZ_CLEAR_OBJ(out_buf); + out_buf.m_expandable = MZ_TRUE; + out_buf.m_capacity = 57 + MZ_MAX(64, (1 + bpl) * h); + if (NULL == (out_buf.m_pBuf = (mz_uint8 *)MZ_MALLOC(out_buf.m_capacity))) { + MZ_FREE(pComp); + return NULL; + } + // write dummy header + for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf); + // compress image data + tdefl_init( + pComp, tdefl_output_buffer_putter, &out_buf, + s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER); + for (y = 0; y < h; ++y) { + tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH); + tdefl_compress_buffer(pComp, + (mz_uint8 *)pImage + (flip ? (h - 1 - y) : y) * bpl, + bpl, TDEFL_NO_FLUSH); + } + if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) != + TDEFL_STATUS_DONE) { + MZ_FREE(pComp); + MZ_FREE(out_buf.m_pBuf); + return NULL; + } + // write real header + *pLen_out = out_buf.m_size - 41; + { + static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06}; + mz_uint8 pnghdr[41] = {0x89, + 0x50, + 0x4e, + 0x47, + 0x0d, + 0x0a, + 0x1a, + 0x0a, + 0x00, + 0x00, + 0x00, + 0x0d, + 0x49, + 0x48, + 0x44, + 0x52, + 0, + 0, + (mz_uint8)(w >> 8), + (mz_uint8)w, + 0, + 0, + (mz_uint8)(h >> 8), + (mz_uint8)h, + 8, + chans[num_chans], + 0, + 0, + 0, + 0, + 0, + 0, + 0, + (mz_uint8)(*pLen_out >> 24), + (mz_uint8)(*pLen_out >> 16), + (mz_uint8)(*pLen_out >> 8), + (mz_uint8)*pLen_out, + 0x49, + 0x44, + 0x41, + 0x54}; + c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, pnghdr + 12, 17); + for (i = 0; i < 4; ++i, c <<= 8) + ((mz_uint8 *)(pnghdr + 29))[i] = (mz_uint8)(c >> 24); + memcpy(out_buf.m_pBuf, pnghdr, 41); + } + // write footer (IDAT CRC-32, followed by IEND chunk) + if (!tdefl_output_buffer_putter( + "\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) { + *pLen_out = 0; + MZ_FREE(pComp); + MZ_FREE(out_buf.m_pBuf); + return NULL; + } + c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, out_buf.m_pBuf + 41 - 4, + *pLen_out + 4); + for (i = 0; i < 4; ++i, c <<= 8) + (out_buf.m_pBuf + out_buf.m_size - 16)[i] = (mz_uint8)(c >> 24); + // compute final size of file, grab compressed data buffer and return + *pLen_out += 57; + MZ_FREE(pComp); + return out_buf.m_pBuf; +} +void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, + int num_chans, size_t *pLen_out) { + // Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we + // can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's + // where #defined out) + return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans, + pLen_out, 6, MZ_FALSE); +} + +// ------------------- .ZIP archive reading + +#ifndef MINIZ_NO_ARCHIVE_APIS +#error "No arvhive APIs" + +#ifdef MINIZ_NO_STDIO +#define MZ_FILE void * +#else +#include <stdio.h> +#include <sys/stat.h> + +#if defined(_MSC_VER) || defined(__MINGW64__) +static FILE *mz_fopen(const char *pFilename, const char *pMode) { + FILE *pFile = NULL; + fopen_s(&pFile, pFilename, pMode); + return pFile; +} +static FILE *mz_freopen(const char *pPath, const char *pMode, FILE *pStream) { + FILE *pFile = NULL; + if (freopen_s(&pFile, pPath, pMode, pStream)) return NULL; + return pFile; +} +#ifndef MINIZ_NO_TIME +#include <sys/utime.h> +#endif +#define MZ_FILE FILE +#define MZ_FOPEN mz_fopen +#define MZ_FCLOSE fclose +#define MZ_FREAD fread +#define MZ_FWRITE fwrite +#define MZ_FTELL64 _ftelli64 +#define MZ_FSEEK64 _fseeki64 +#define MZ_FILE_STAT_STRUCT _stat +#define MZ_FILE_STAT _stat +#define MZ_FFLUSH fflush +#define MZ_FREOPEN mz_freopen +#define MZ_DELETE_FILE remove +#elif defined(__MINGW32__) +#ifndef MINIZ_NO_TIME +#include <sys/utime.h> +#endif +#define MZ_FILE FILE +#define MZ_FOPEN(f, m) fopen(f, m) +#define MZ_FCLOSE fclose +#define MZ_FREAD fread +#define MZ_FWRITE fwrite +#define MZ_FTELL64 ftello64 +#define MZ_FSEEK64 fseeko64 +#define MZ_FILE_STAT_STRUCT _stat +#define MZ_FILE_STAT _stat +#define MZ_FFLUSH fflush +#define MZ_FREOPEN(f, m, s) freopen(f, m, s) +#define MZ_DELETE_FILE remove +#elif defined(__TINYC__) +#ifndef MINIZ_NO_TIME +#include <sys/utime.h> +#endif +#define MZ_FILE FILE +#define MZ_FOPEN(f, m) fopen(f, m) +#define MZ_FCLOSE fclose +#define MZ_FREAD fread +#define MZ_FWRITE fwrite +#define MZ_FTELL64 ftell +#define MZ_FSEEK64 fseek +#define MZ_FILE_STAT_STRUCT stat +#define MZ_FILE_STAT stat +#define MZ_FFLUSH fflush +#define MZ_FREOPEN(f, m, s) freopen(f, m, s) +#define MZ_DELETE_FILE remove +#elif defined(__GNUC__) && defined(_LARGEFILE64_SOURCE) && _LARGEFILE64_SOURCE +#ifndef MINIZ_NO_TIME +#include <utime.h> +#endif +#define MZ_FILE FILE +#define MZ_FOPEN(f, m) fopen64(f, m) +#define MZ_FCLOSE fclose +#define MZ_FREAD fread +#define MZ_FWRITE fwrite +#define MZ_FTELL64 ftello64 +#define MZ_FSEEK64 fseeko64 +#define MZ_FILE_STAT_STRUCT stat64 +#define MZ_FILE_STAT stat64 +#define MZ_FFLUSH fflush +#define MZ_FREOPEN(p, m, s) freopen64(p, m, s) +#define MZ_DELETE_FILE remove +#else +#ifndef MINIZ_NO_TIME +#include <utime.h> +#endif +#define MZ_FILE FILE +#define MZ_FOPEN(f, m) fopen(f, m) +#define MZ_FCLOSE fclose +#define MZ_FREAD fread +#define MZ_FWRITE fwrite +#define MZ_FTELL64 ftello +#define MZ_FSEEK64 fseeko +#define MZ_FILE_STAT_STRUCT stat +#define MZ_FILE_STAT stat +#define MZ_FFLUSH fflush +#define MZ_FREOPEN(f, m, s) freopen(f, m, s) +#define MZ_DELETE_FILE remove +#endif // #ifdef _MSC_VER +#endif // #ifdef MINIZ_NO_STDIO + +#define MZ_TOLOWER(c) ((((c) >= 'A') && ((c) <= 'Z')) ? ((c) - 'A' + 'a') : (c)) + +// Various ZIP archive enums. To completely avoid cross platform compiler +// alignment and platform endian issues, miniz.c doesn't use structs for any of +// this stuff. +enum { + // ZIP archive identifiers and record sizes + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06054b50, + MZ_ZIP_CENTRAL_DIR_HEADER_SIG = 0x02014b50, + MZ_ZIP_LOCAL_DIR_HEADER_SIG = 0x04034b50, + MZ_ZIP_LOCAL_DIR_HEADER_SIZE = 30, + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE = 46, + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE = 22, + // Central directory header record offsets + MZ_ZIP_CDH_SIG_OFS = 0, + MZ_ZIP_CDH_VERSION_MADE_BY_OFS = 4, + MZ_ZIP_CDH_VERSION_NEEDED_OFS = 6, + MZ_ZIP_CDH_BIT_FLAG_OFS = 8, + MZ_ZIP_CDH_METHOD_OFS = 10, + MZ_ZIP_CDH_FILE_TIME_OFS = 12, + MZ_ZIP_CDH_FILE_DATE_OFS = 14, + MZ_ZIP_CDH_CRC32_OFS = 16, + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS = 20, + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS = 24, + MZ_ZIP_CDH_FILENAME_LEN_OFS = 28, + MZ_ZIP_CDH_EXTRA_LEN_OFS = 30, + MZ_ZIP_CDH_COMMENT_LEN_OFS = 32, + MZ_ZIP_CDH_DISK_START_OFS = 34, + MZ_ZIP_CDH_INTERNAL_ATTR_OFS = 36, + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS = 38, + MZ_ZIP_CDH_LOCAL_HEADER_OFS = 42, + // Local directory header offsets + MZ_ZIP_LDH_SIG_OFS = 0, + MZ_ZIP_LDH_VERSION_NEEDED_OFS = 4, + MZ_ZIP_LDH_BIT_FLAG_OFS = 6, + MZ_ZIP_LDH_METHOD_OFS = 8, + MZ_ZIP_LDH_FILE_TIME_OFS = 10, + MZ_ZIP_LDH_FILE_DATE_OFS = 12, + MZ_ZIP_LDH_CRC32_OFS = 14, + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS = 18, + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS = 22, + MZ_ZIP_LDH_FILENAME_LEN_OFS = 26, + MZ_ZIP_LDH_EXTRA_LEN_OFS = 28, + // End of central directory offsets + MZ_ZIP_ECDH_SIG_OFS = 0, + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS = 4, + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS = 6, + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 8, + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS = 10, + MZ_ZIP_ECDH_CDIR_SIZE_OFS = 12, + MZ_ZIP_ECDH_CDIR_OFS_OFS = 16, + MZ_ZIP_ECDH_COMMENT_SIZE_OFS = 20, +}; + +typedef struct { + void *m_p; + size_t m_size, m_capacity; + mz_uint m_element_size; +} mz_zip_array; + +struct mz_zip_internal_state_tag { + mz_zip_array m_central_dir; + mz_zip_array m_central_dir_offsets; + mz_zip_array m_sorted_central_dir_offsets; + MZ_FILE *m_pFile; + void *m_pMem; + size_t m_mem_size; + size_t m_mem_capacity; +}; + +#define MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(array_ptr, element_size) \ + (array_ptr)->m_element_size = element_size +#define MZ_ZIP_ARRAY_ELEMENT(array_ptr, element_type, index) \ + ((element_type *)((array_ptr)->m_p))[index] + +static MZ_FORCEINLINE void mz_zip_array_clear(mz_zip_archive *pZip, + mz_zip_array *pArray) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pArray->m_p); + memset(pArray, 0, sizeof(mz_zip_array)); +} + +static mz_bool mz_zip_array_ensure_capacity(mz_zip_archive *pZip, + mz_zip_array *pArray, + size_t min_new_capacity, + mz_uint growing) { + void *pNew_p; + size_t new_capacity = min_new_capacity; + MZ_ASSERT(pArray->m_element_size); + if (pArray->m_capacity >= min_new_capacity) return MZ_TRUE; + if (growing) { + new_capacity = MZ_MAX(1, pArray->m_capacity); + while (new_capacity < min_new_capacity) new_capacity *= 2; + } + if (NULL == (pNew_p = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pArray->m_p, + pArray->m_element_size, new_capacity))) + return MZ_FALSE; + pArray->m_p = pNew_p; + pArray->m_capacity = new_capacity; + return MZ_TRUE; +} + +static MZ_FORCEINLINE mz_bool mz_zip_array_reserve(mz_zip_archive *pZip, + mz_zip_array *pArray, + size_t new_capacity, + mz_uint growing) { + if (new_capacity > pArray->m_capacity) { + if (!mz_zip_array_ensure_capacity(pZip, pArray, new_capacity, growing)) + return MZ_FALSE; + } + return MZ_TRUE; +} + +static MZ_FORCEINLINE mz_bool mz_zip_array_resize(mz_zip_archive *pZip, + mz_zip_array *pArray, + size_t new_size, + mz_uint growing) { + if (new_size > pArray->m_capacity) { + if (!mz_zip_array_ensure_capacity(pZip, pArray, new_size, growing)) + return MZ_FALSE; + } + pArray->m_size = new_size; + return MZ_TRUE; +} + +static MZ_FORCEINLINE mz_bool mz_zip_array_ensure_room(mz_zip_archive *pZip, + mz_zip_array *pArray, + size_t n) { + return mz_zip_array_reserve(pZip, pArray, pArray->m_size + n, MZ_TRUE); +} + +static MZ_FORCEINLINE mz_bool mz_zip_array_push_back(mz_zip_archive *pZip, + mz_zip_array *pArray, + const void *pElements, + size_t n) { + size_t orig_size = pArray->m_size; + if (!mz_zip_array_resize(pZip, pArray, orig_size + n, MZ_TRUE)) + return MZ_FALSE; + memcpy((mz_uint8 *)pArray->m_p + orig_size * pArray->m_element_size, + pElements, n * pArray->m_element_size); + return MZ_TRUE; +} + +#ifndef MINIZ_NO_TIME +static time_t mz_zip_dos_to_time_t(int dos_time, int dos_date) { + struct tm tm; + memset(&tm, 0, sizeof(tm)); + tm.tm_isdst = -1; + tm.tm_year = ((dos_date >> 9) & 127) + 1980 - 1900; + tm.tm_mon = ((dos_date >> 5) & 15) - 1; + tm.tm_mday = dos_date & 31; + tm.tm_hour = (dos_time >> 11) & 31; + tm.tm_min = (dos_time >> 5) & 63; + tm.tm_sec = (dos_time << 1) & 62; + return mktime(&tm); +} + +static void mz_zip_time_to_dos_time(time_t time, mz_uint16 *pDOS_time, + mz_uint16 *pDOS_date) { +#ifdef _MSC_VER + struct tm tm_struct; + struct tm *tm = &tm_struct; + errno_t err = localtime_s(tm, &time); + if (err) { + *pDOS_date = 0; + *pDOS_time = 0; + return; + } +#else + struct tm *tm = localtime(&time); +#endif + *pDOS_time = (mz_uint16)(((tm->tm_hour) << 11) + ((tm->tm_min) << 5) + + ((tm->tm_sec) >> 1)); + *pDOS_date = (mz_uint16)(((tm->tm_year + 1900 - 1980) << 9) + + ((tm->tm_mon + 1) << 5) + tm->tm_mday); +} +#endif + +#ifndef MINIZ_NO_STDIO +static mz_bool mz_zip_get_file_modified_time(const char *pFilename, + mz_uint16 *pDOS_time, + mz_uint16 *pDOS_date) { +#ifdef MINIZ_NO_TIME + (void)pFilename; + *pDOS_date = *pDOS_time = 0; +#else + struct MZ_FILE_STAT_STRUCT file_stat; + // On Linux with x86 glibc, this call will fail on large files (>= 0x80000000 + // bytes) unless you compiled with _LARGEFILE64_SOURCE. Argh. + if (MZ_FILE_STAT(pFilename, &file_stat) != 0) return MZ_FALSE; + mz_zip_time_to_dos_time(file_stat.st_mtime, pDOS_time, pDOS_date); +#endif // #ifdef MINIZ_NO_TIME + return MZ_TRUE; +} + +#ifndef MINIZ_NO_TIME +static mz_bool mz_zip_set_file_times(const char *pFilename, time_t access_time, + time_t modified_time) { + struct utimbuf t; + t.actime = access_time; + t.modtime = modified_time; + return !utime(pFilename, &t); +} +#endif // #ifndef MINIZ_NO_TIME +#endif // #ifndef MINIZ_NO_STDIO + +static mz_bool mz_zip_reader_init_internal(mz_zip_archive *pZip, + mz_uint32 flags) { + (void)flags; + if ((!pZip) || (pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID)) + return MZ_FALSE; + + if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func; + if (!pZip->m_pFree) pZip->m_pFree = def_free_func; + if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func; + + pZip->m_zip_mode = MZ_ZIP_MODE_READING; + pZip->m_archive_size = 0; + pZip->m_central_directory_file_ofs = 0; + pZip->m_total_files = 0; + + if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc( + pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state)))) + return MZ_FALSE; + memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state)); + MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir, + sizeof(mz_uint8)); + MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets, + sizeof(mz_uint32)); + MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets, + sizeof(mz_uint32)); + return MZ_TRUE; +} + +static MZ_FORCEINLINE mz_bool +mz_zip_reader_filename_less(const mz_zip_array *pCentral_dir_array, + const mz_zip_array *pCentral_dir_offsets, + mz_uint l_index, mz_uint r_index) { + const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT( + pCentral_dir_array, mz_uint8, + MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, + l_index)), + *pE; + const mz_uint8 *pR = &MZ_ZIP_ARRAY_ELEMENT( + pCentral_dir_array, mz_uint8, + MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, r_index)); + mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS), + r_len = MZ_READ_LE16(pR + MZ_ZIP_CDH_FILENAME_LEN_OFS); + mz_uint8 l = 0, r = 0; + pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; + pR += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; + pE = pL + MZ_MIN(l_len, r_len); + while (pL < pE) { + if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break; + pL++; + pR++; + } + return (pL == pE) ? (l_len < r_len) : (l < r); +} + +#define MZ_SWAP_UINT32(a, b) \ + do { \ + mz_uint32 t = a; \ + a = b; \ + b = t; \ + } \ + MZ_MACRO_END + +// Heap sort of lowercased filenames, used to help accelerate plain central +// directory searches by mz_zip_reader_locate_file(). (Could also use qsort(), +// but it could allocate memory.) +static void mz_zip_reader_sort_central_dir_offsets_by_filename( + mz_zip_archive *pZip) { + mz_zip_internal_state *pState = pZip->m_pState; + const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets; + const mz_zip_array *pCentral_dir = &pState->m_central_dir; + mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT( + &pState->m_sorted_central_dir_offsets, mz_uint32, 0); + const int size = pZip->m_total_files; + int start = (size - 2) >> 1, end; + while (start >= 0) { + int child, root = start; + for (;;) { + if ((child = (root << 1) + 1) >= size) break; + child += + (((child + 1) < size) && + (mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, + pIndices[child], pIndices[child + 1]))); + if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, + pIndices[root], pIndices[child])) + break; + MZ_SWAP_UINT32(pIndices[root], pIndices[child]); + root = child; + } + start--; + } + + end = size - 1; + while (end > 0) { + int child, root = 0; + MZ_SWAP_UINT32(pIndices[end], pIndices[0]); + for (;;) { + if ((child = (root << 1) + 1) >= end) break; + child += + (((child + 1) < end) && + mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, + pIndices[child], pIndices[child + 1])); + if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, + pIndices[root], pIndices[child])) + break; + MZ_SWAP_UINT32(pIndices[root], pIndices[child]); + root = child; + } + end--; + } +} + +static mz_bool mz_zip_reader_read_central_dir(mz_zip_archive *pZip, + mz_uint32 flags) { + mz_uint cdir_size, num_this_disk, cdir_disk_index; + mz_uint64 cdir_ofs; + mz_int64 cur_file_ofs; + const mz_uint8 *p; + mz_uint32 buf_u32[4096 / sizeof(mz_uint32)]; + mz_uint8 *pBuf = (mz_uint8 *)buf_u32; + mz_bool sort_central_dir = + ((flags & MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY) == 0); + // Basic sanity checks - reject files which are too small, and check the first + // 4 bytes of the file to make sure a local header is there. + if (pZip->m_archive_size < MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) + return MZ_FALSE; + // Find the end of central directory record by scanning the file from the end + // towards the beginning. + cur_file_ofs = + MZ_MAX((mz_int64)pZip->m_archive_size - (mz_int64)sizeof(buf_u32), 0); + for (;;) { + int i, + n = (int)MZ_MIN(sizeof(buf_u32), pZip->m_archive_size - cur_file_ofs); + if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, n) != (mz_uint)n) + return MZ_FALSE; + for (i = n - 4; i >= 0; --i) + if (MZ_READ_LE32(pBuf + i) == MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) break; + if (i >= 0) { + cur_file_ofs += i; + break; + } + if ((!cur_file_ofs) || ((pZip->m_archive_size - cur_file_ofs) >= + (0xFFFF + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE))) + return MZ_FALSE; + cur_file_ofs = MZ_MAX(cur_file_ofs - (sizeof(buf_u32) - 3), 0); + } + // Read and verify the end of central directory record. + if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) != + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) + return MZ_FALSE; + if ((MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_SIG_OFS) != + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) || + ((pZip->m_total_files = + MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS)) != + MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS))) + return MZ_FALSE; + + num_this_disk = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS); + cdir_disk_index = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS); + if (((num_this_disk | cdir_disk_index) != 0) && + ((num_this_disk != 1) || (cdir_disk_index != 1))) + return MZ_FALSE; + + if ((cdir_size = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_SIZE_OFS)) < + pZip->m_total_files * MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) + return MZ_FALSE; + + cdir_ofs = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_OFS_OFS); + if ((cdir_ofs + (mz_uint64)cdir_size) > pZip->m_archive_size) return MZ_FALSE; + + pZip->m_central_directory_file_ofs = cdir_ofs; + + if (pZip->m_total_files) { + mz_uint i, n; + + // Read the entire central directory into a heap block, and allocate another + // heap block to hold the unsorted central dir file record offsets, and + // another to hold the sorted indices. + if ((!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir, cdir_size, + MZ_FALSE)) || + (!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir_offsets, + pZip->m_total_files, MZ_FALSE))) + return MZ_FALSE; + + if (sort_central_dir) { + if (!mz_zip_array_resize(pZip, + &pZip->m_pState->m_sorted_central_dir_offsets, + pZip->m_total_files, MZ_FALSE)) + return MZ_FALSE; + } + + if (pZip->m_pRead(pZip->m_pIO_opaque, cdir_ofs, + pZip->m_pState->m_central_dir.m_p, + cdir_size) != cdir_size) + return MZ_FALSE; + + // Now create an index into the central directory file records, do some + // basic sanity checking on each record, and check for zip64 entries (which + // are not yet supported). + p = (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p; + for (n = cdir_size, i = 0; i < pZip->m_total_files; ++i) { + mz_uint total_header_size, comp_size, decomp_size, disk_index; + if ((n < MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) || + (MZ_READ_LE32(p) != MZ_ZIP_CENTRAL_DIR_HEADER_SIG)) + return MZ_FALSE; + MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, + i) = + (mz_uint32)(p - (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p); + if (sort_central_dir) + MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_sorted_central_dir_offsets, + mz_uint32, i) = i; + comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); + decomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); + if (((!MZ_READ_LE32(p + MZ_ZIP_CDH_METHOD_OFS)) && + (decomp_size != comp_size)) || + (decomp_size && !comp_size) || (decomp_size == 0xFFFFFFFF) || + (comp_size == 0xFFFFFFFF)) + return MZ_FALSE; + disk_index = MZ_READ_LE16(p + MZ_ZIP_CDH_DISK_START_OFS); + if ((disk_index != num_this_disk) && (disk_index != 1)) return MZ_FALSE; + if (((mz_uint64)MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS) + + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + comp_size) > pZip->m_archive_size) + return MZ_FALSE; + if ((total_header_size = MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + + MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + + MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS) + + MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS)) > + n) + return MZ_FALSE; + n -= total_header_size; + p += total_header_size; + } + } + + if (sort_central_dir) + mz_zip_reader_sort_central_dir_offsets_by_filename(pZip); + + return MZ_TRUE; +} + +mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, + mz_uint32 flags) { + if ((!pZip) || (!pZip->m_pRead)) return MZ_FALSE; + if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE; + pZip->m_archive_size = size; + if (!mz_zip_reader_read_central_dir(pZip, flags)) { + mz_zip_reader_end(pZip); + return MZ_FALSE; + } + return MZ_TRUE; +} + +static size_t mz_zip_mem_read_func(void *pOpaque, mz_uint64 file_ofs, + void *pBuf, size_t n) { + mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; + size_t s = (file_ofs >= pZip->m_archive_size) + ? 0 + : (size_t)MZ_MIN(pZip->m_archive_size - file_ofs, n); + memcpy(pBuf, (const mz_uint8 *)pZip->m_pState->m_pMem + file_ofs, s); + return s; +} + +mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, + size_t size, mz_uint32 flags) { + if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE; + pZip->m_archive_size = size; + pZip->m_pRead = mz_zip_mem_read_func; + pZip->m_pIO_opaque = pZip; +#ifdef __cplusplus + pZip->m_pState->m_pMem = const_cast<void *>(pMem); +#else + pZip->m_pState->m_pMem = (void *)pMem; +#endif + pZip->m_pState->m_mem_size = size; + if (!mz_zip_reader_read_central_dir(pZip, flags)) { + mz_zip_reader_end(pZip); + return MZ_FALSE; + } + return MZ_TRUE; +} + +#ifndef MINIZ_NO_STDIO +static size_t mz_zip_file_read_func(void *pOpaque, mz_uint64 file_ofs, + void *pBuf, size_t n) { + mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; + mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile); + if (((mz_int64)file_ofs < 0) || + (((cur_ofs != (mz_int64)file_ofs)) && + (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET)))) + return 0; + return MZ_FREAD(pBuf, 1, n, pZip->m_pState->m_pFile); +} + +mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, + mz_uint32 flags) { + mz_uint64 file_size; + MZ_FILE *pFile = MZ_FOPEN(pFilename, "rb"); + if (!pFile) return MZ_FALSE; + if (MZ_FSEEK64(pFile, 0, SEEK_END)) { + MZ_FCLOSE(pFile); + return MZ_FALSE; + } + file_size = MZ_FTELL64(pFile); + if (!mz_zip_reader_init_internal(pZip, flags)) { + MZ_FCLOSE(pFile); + return MZ_FALSE; + } + pZip->m_pRead = mz_zip_file_read_func; + pZip->m_pIO_opaque = pZip; + pZip->m_pState->m_pFile = pFile; + pZip->m_archive_size = file_size; + if (!mz_zip_reader_read_central_dir(pZip, flags)) { + mz_zip_reader_end(pZip); + return MZ_FALSE; + } + return MZ_TRUE; +} +#endif // #ifndef MINIZ_NO_STDIO + +mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip) { + return pZip ? pZip->m_total_files : 0; +} + +static MZ_FORCEINLINE const mz_uint8 *mz_zip_reader_get_cdh( + mz_zip_archive *pZip, mz_uint file_index) { + if ((!pZip) || (!pZip->m_pState) || (file_index >= pZip->m_total_files) || + (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) + return NULL; + return &MZ_ZIP_ARRAY_ELEMENT( + &pZip->m_pState->m_central_dir, mz_uint8, + MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, + file_index)); +} + +mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, + mz_uint file_index) { + mz_uint m_bit_flag; + const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); + if (!p) return MZ_FALSE; + m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS); + return (m_bit_flag & 1); +} + +mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, + mz_uint file_index) { + mz_uint filename_len, external_attr; + const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); + if (!p) return MZ_FALSE; + + // First see if the filename ends with a '/' character. + filename_len = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); + if (filename_len) { + if (*(p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_len - 1) == '/') + return MZ_TRUE; + } + + // Bugfix: This code was also checking if the internal attribute was non-zero, + // which wasn't correct. + // Most/all zip writers (hopefully) set DOS file/directory attributes in the + // low 16-bits, so check for the DOS directory flag and ignore the source OS + // ID in the created by field. + // FIXME: Remove this check? Is it necessary - we already check the filename. + external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS); + if ((external_attr & 0x10) != 0) return MZ_TRUE; + + return MZ_FALSE; +} + +mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, + mz_zip_archive_file_stat *pStat) { + mz_uint n; + const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); + if ((!p) || (!pStat)) return MZ_FALSE; + + // Unpack the central directory record. + pStat->m_file_index = file_index; + pStat->m_central_dir_ofs = MZ_ZIP_ARRAY_ELEMENT( + &pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index); + pStat->m_version_made_by = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_MADE_BY_OFS); + pStat->m_version_needed = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_NEEDED_OFS); + pStat->m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS); + pStat->m_method = MZ_READ_LE16(p + MZ_ZIP_CDH_METHOD_OFS); +#ifndef MINIZ_NO_TIME + pStat->m_time = + mz_zip_dos_to_time_t(MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_TIME_OFS), + MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_DATE_OFS)); +#endif + pStat->m_crc32 = MZ_READ_LE32(p + MZ_ZIP_CDH_CRC32_OFS); + pStat->m_comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); + pStat->m_uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); + pStat->m_internal_attr = MZ_READ_LE16(p + MZ_ZIP_CDH_INTERNAL_ATTR_OFS); + pStat->m_external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS); + pStat->m_local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS); + + // Copy as much of the filename and comment as possible. + n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); + n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE - 1); + memcpy(pStat->m_filename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n); + pStat->m_filename[n] = '\0'; + + n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS); + n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1); + pStat->m_comment_size = n; + memcpy(pStat->m_comment, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + + MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + + MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS), + n); + pStat->m_comment[n] = '\0'; + + return MZ_TRUE; +} + +mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, + char *pFilename, mz_uint filename_buf_size) { + mz_uint n; + const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); + if (!p) { + if (filename_buf_size) pFilename[0] = '\0'; + return 0; + } + n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); + if (filename_buf_size) { + n = MZ_MIN(n, filename_buf_size - 1); + memcpy(pFilename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n); + pFilename[n] = '\0'; + } + return n + 1; +} + +static MZ_FORCEINLINE mz_bool mz_zip_reader_string_equal(const char *pA, + const char *pB, + mz_uint len, + mz_uint flags) { + mz_uint i; + if (flags & MZ_ZIP_FLAG_CASE_SENSITIVE) return 0 == memcmp(pA, pB, len); + for (i = 0; i < len; ++i) + if (MZ_TOLOWER(pA[i]) != MZ_TOLOWER(pB[i])) return MZ_FALSE; + return MZ_TRUE; +} + +static MZ_FORCEINLINE int mz_zip_reader_filename_compare( + const mz_zip_array *pCentral_dir_array, + const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, const char *pR, + mz_uint r_len) { + const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT( + pCentral_dir_array, mz_uint8, + MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, + l_index)), + *pE; + mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS); + mz_uint8 l = 0, r = 0; + pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; + pE = pL + MZ_MIN(l_len, r_len); + while (pL < pE) { + if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break; + pL++; + pR++; + } + return (pL == pE) ? (int)(l_len - r_len) : (l - r); +} + +static int mz_zip_reader_locate_file_binary_search(mz_zip_archive *pZip, + const char *pFilename) { + mz_zip_internal_state *pState = pZip->m_pState; + const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets; + const mz_zip_array *pCentral_dir = &pState->m_central_dir; + mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT( + &pState->m_sorted_central_dir_offsets, mz_uint32, 0); + const int size = pZip->m_total_files; + const mz_uint filename_len = (mz_uint)strlen(pFilename); + int l = 0, h = size - 1; + while (l <= h) { + int m = (l + h) >> 1, file_index = pIndices[m], + comp = + mz_zip_reader_filename_compare(pCentral_dir, pCentral_dir_offsets, + file_index, pFilename, filename_len); + if (!comp) + return file_index; + else if (comp < 0) + l = m + 1; + else + h = m - 1; + } + return -1; +} + +int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, + const char *pComment, mz_uint flags) { + mz_uint file_index; + size_t name_len, comment_len; + if ((!pZip) || (!pZip->m_pState) || (!pName) || + (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) + return -1; + if (((flags & (MZ_ZIP_FLAG_IGNORE_PATH | MZ_ZIP_FLAG_CASE_SENSITIVE)) == 0) && + (!pComment) && (pZip->m_pState->m_sorted_central_dir_offsets.m_size)) + return mz_zip_reader_locate_file_binary_search(pZip, pName); + name_len = strlen(pName); + if (name_len > 0xFFFF) return -1; + comment_len = pComment ? strlen(pComment) : 0; + if (comment_len > 0xFFFF) return -1; + for (file_index = 0; file_index < pZip->m_total_files; file_index++) { + const mz_uint8 *pHeader = &MZ_ZIP_ARRAY_ELEMENT( + &pZip->m_pState->m_central_dir, mz_uint8, + MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, + file_index)); + mz_uint filename_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_FILENAME_LEN_OFS); + const char *pFilename = + (const char *)pHeader + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; + if (filename_len < name_len) continue; + if (comment_len) { + mz_uint file_extra_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_EXTRA_LEN_OFS), + file_comment_len = + MZ_READ_LE16(pHeader + MZ_ZIP_CDH_COMMENT_LEN_OFS); + const char *pFile_comment = pFilename + filename_len + file_extra_len; + if ((file_comment_len != comment_len) || + (!mz_zip_reader_string_equal(pComment, pFile_comment, + file_comment_len, flags))) + continue; + } + if ((flags & MZ_ZIP_FLAG_IGNORE_PATH) && (filename_len)) { + int ofs = filename_len - 1; + do { + if ((pFilename[ofs] == '/') || (pFilename[ofs] == '\\') || + (pFilename[ofs] == ':')) + break; + } while (--ofs >= 0); + ofs++; + pFilename += ofs; + filename_len -= ofs; + } + if ((filename_len == name_len) && + (mz_zip_reader_string_equal(pName, pFilename, filename_len, flags))) + return file_index; + } + return -1; +} + +mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, + mz_uint file_index, void *pBuf, + size_t buf_size, mz_uint flags, + void *pUser_read_buf, + size_t user_read_buf_size) { + int status = TINFL_STATUS_DONE; + mz_uint64 needed_size, cur_file_ofs, comp_remaining, + out_buf_ofs = 0, read_buf_size, read_buf_ofs = 0, read_buf_avail; + mz_zip_archive_file_stat file_stat; + void *pRead_buf; + mz_uint32 + local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / + sizeof(mz_uint32)]; + mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; + tinfl_decompressor inflator; + + if ((buf_size) && (!pBuf)) return MZ_FALSE; + + if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; + + // Empty file, or a directory (but not always a directory - I've seen odd zips + // with directories that have compressed data which inflates to 0 bytes) + if (!file_stat.m_comp_size) return MZ_TRUE; + + // Entry is a subdirectory (I've seen old zips with dir entries which have + // compressed deflate data which inflates to 0 bytes, but these entries claim + // to uncompress to 512 bytes in the headers). + // I'm torn how to handle this case - should it fail instead? + if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE; + + // Encryption and patch files are not supported. + if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE; + + // This function only supports stored and deflate. + if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) && + (file_stat.m_method != MZ_DEFLATED)) + return MZ_FALSE; + + // Ensure supplied output buffer is large enough. + needed_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? file_stat.m_comp_size + : file_stat.m_uncomp_size; + if (buf_size < needed_size) return MZ_FALSE; + + // Read and parse the local directory entry. + cur_file_ofs = file_stat.m_local_header_ofs; + if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header, + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) + return MZ_FALSE; + if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) + return MZ_FALSE; + + cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE + + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); + if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size) + return MZ_FALSE; + + if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) { + // The file is stored or the caller has requested the compressed data. + if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, + (size_t)needed_size) != needed_size) + return MZ_FALSE; + return ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) != 0) || + (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, + (size_t)file_stat.m_uncomp_size) == file_stat.m_crc32); + } + + // Decompress the file either directly from memory or from a file input + // buffer. + tinfl_init(&inflator); + + if (pZip->m_pState->m_pMem) { + // Read directly from the archive in memory. + pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs; + read_buf_size = read_buf_avail = file_stat.m_comp_size; + comp_remaining = 0; + } else if (pUser_read_buf) { + // Use a user provided read buffer. + if (!user_read_buf_size) return MZ_FALSE; + pRead_buf = (mz_uint8 *)pUser_read_buf; + read_buf_size = user_read_buf_size; + read_buf_avail = 0; + comp_remaining = file_stat.m_comp_size; + } else { + // Temporarily allocate a read buffer. + read_buf_size = + MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE); +#ifdef _MSC_VER + if (((0, sizeof(size_t) == sizeof(mz_uint32))) && + (read_buf_size > 0x7FFFFFFF)) +#else + if (((sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF)) +#endif + return MZ_FALSE; + if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, + (size_t)read_buf_size))) + return MZ_FALSE; + read_buf_avail = 0; + comp_remaining = file_stat.m_comp_size; + } + + do { + size_t in_buf_size, + out_buf_size = (size_t)(file_stat.m_uncomp_size - out_buf_ofs); + if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) { + read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); + if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, + (size_t)read_buf_avail) != read_buf_avail) { + status = TINFL_STATUS_FAILED; + break; + } + cur_file_ofs += read_buf_avail; + comp_remaining -= read_buf_avail; + read_buf_ofs = 0; + } + in_buf_size = (size_t)read_buf_avail; + status = tinfl_decompress( + &inflator, (mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size, + (mz_uint8 *)pBuf, (mz_uint8 *)pBuf + out_buf_ofs, &out_buf_size, + TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | + (comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0)); + read_buf_avail -= in_buf_size; + read_buf_ofs += in_buf_size; + out_buf_ofs += out_buf_size; + } while (status == TINFL_STATUS_NEEDS_MORE_INPUT); + + if (status == TINFL_STATUS_DONE) { + // Make sure the entire file was decompressed, and check its CRC. + if ((out_buf_ofs != file_stat.m_uncomp_size) || + (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, + (size_t)file_stat.m_uncomp_size) != file_stat.m_crc32)) + status = TINFL_STATUS_FAILED; + } + + if ((!pZip->m_pState->m_pMem) && (!pUser_read_buf)) + pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); + + return status == TINFL_STATUS_DONE; +} + +mz_bool mz_zip_reader_extract_file_to_mem_no_alloc( + mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, + mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size) { + int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); + if (file_index < 0) return MZ_FALSE; + return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size, + flags, pUser_read_buf, + user_read_buf_size); +} + +mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, + void *pBuf, size_t buf_size, + mz_uint flags) { + return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size, + flags, NULL, 0); +} + +mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, + const char *pFilename, void *pBuf, + size_t buf_size, mz_uint flags) { + return mz_zip_reader_extract_file_to_mem_no_alloc(pZip, pFilename, pBuf, + buf_size, flags, NULL, 0); +} + +void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, + size_t *pSize, mz_uint flags) { + mz_uint64 comp_size, uncomp_size, alloc_size; + const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); + void *pBuf; + + if (pSize) *pSize = 0; + if (!p) return NULL; + + comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); + uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); + + alloc_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? comp_size : uncomp_size; +#ifdef _MSC_VER + if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF)) +#else + if (((sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF)) +#endif + return NULL; + if (NULL == + (pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)alloc_size))) + return NULL; + + if (!mz_zip_reader_extract_to_mem(pZip, file_index, pBuf, (size_t)alloc_size, + flags)) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); + return NULL; + } + + if (pSize) *pSize = (size_t)alloc_size; + return pBuf; +} + +void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, + const char *pFilename, size_t *pSize, + mz_uint flags) { + int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); + if (file_index < 0) { + if (pSize) *pSize = 0; + return MZ_FALSE; + } + return mz_zip_reader_extract_to_heap(pZip, file_index, pSize, flags); +} + +mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, + mz_uint file_index, + mz_file_write_func pCallback, + void *pOpaque, mz_uint flags) { + int status = TINFL_STATUS_DONE; + mz_uint file_crc32 = MZ_CRC32_INIT; + mz_uint64 read_buf_size, read_buf_ofs = 0, read_buf_avail, comp_remaining, + out_buf_ofs = 0, cur_file_ofs; + mz_zip_archive_file_stat file_stat; + void *pRead_buf = NULL; + void *pWrite_buf = NULL; + mz_uint32 + local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / + sizeof(mz_uint32)]; + mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; + + if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; + + // Empty file, or a directory (but not always a directory - I've seen odd zips + // with directories that have compressed data which inflates to 0 bytes) + if (!file_stat.m_comp_size) return MZ_TRUE; + + // Entry is a subdirectory (I've seen old zips with dir entries which have + // compressed deflate data which inflates to 0 bytes, but these entries claim + // to uncompress to 512 bytes in the headers). + // I'm torn how to handle this case - should it fail instead? + if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE; + + // Encryption and patch files are not supported. + if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE; + + // This function only supports stored and deflate. + if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) && + (file_stat.m_method != MZ_DEFLATED)) + return MZ_FALSE; + + // Read and parse the local directory entry. + cur_file_ofs = file_stat.m_local_header_ofs; + if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header, + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) + return MZ_FALSE; + if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) + return MZ_FALSE; + + cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE + + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); + if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size) + return MZ_FALSE; + + // Decompress the file either directly from memory or from a file input + // buffer. + if (pZip->m_pState->m_pMem) { + pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs; + read_buf_size = read_buf_avail = file_stat.m_comp_size; + comp_remaining = 0; + } else { + read_buf_size = + MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE); + if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, + (size_t)read_buf_size))) + return MZ_FALSE; + read_buf_avail = 0; + comp_remaining = file_stat.m_comp_size; + } + + if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) { + // The file is stored or the caller has requested the compressed data. + if (pZip->m_pState->m_pMem) { +#ifdef _MSC_VER + if (((0, sizeof(size_t) == sizeof(mz_uint32))) && + (file_stat.m_comp_size > 0xFFFFFFFF)) +#else + if (((sizeof(size_t) == sizeof(mz_uint32))) && + (file_stat.m_comp_size > 0xFFFFFFFF)) +#endif + return MZ_FALSE; + if (pCallback(pOpaque, out_buf_ofs, pRead_buf, + (size_t)file_stat.m_comp_size) != file_stat.m_comp_size) + status = TINFL_STATUS_FAILED; + else if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) + file_crc32 = + (mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf, + (size_t)file_stat.m_comp_size); + cur_file_ofs += file_stat.m_comp_size; + out_buf_ofs += file_stat.m_comp_size; + comp_remaining = 0; + } else { + while (comp_remaining) { + read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); + if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, + (size_t)read_buf_avail) != read_buf_avail) { + status = TINFL_STATUS_FAILED; + break; + } + + if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) + file_crc32 = (mz_uint32)mz_crc32( + file_crc32, (const mz_uint8 *)pRead_buf, (size_t)read_buf_avail); + + if (pCallback(pOpaque, out_buf_ofs, pRead_buf, + (size_t)read_buf_avail) != read_buf_avail) { + status = TINFL_STATUS_FAILED; + break; + } + cur_file_ofs += read_buf_avail; + out_buf_ofs += read_buf_avail; + comp_remaining -= read_buf_avail; + } + } + } else { + tinfl_decompressor inflator; + tinfl_init(&inflator); + + if (NULL == (pWrite_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, + TINFL_LZ_DICT_SIZE))) + status = TINFL_STATUS_FAILED; + else { + do { + mz_uint8 *pWrite_buf_cur = + (mz_uint8 *)pWrite_buf + (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1)); + size_t in_buf_size, + out_buf_size = + TINFL_LZ_DICT_SIZE - (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1)); + if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) { + read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); + if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, + (size_t)read_buf_avail) != read_buf_avail) { + status = TINFL_STATUS_FAILED; + break; + } + cur_file_ofs += read_buf_avail; + comp_remaining -= read_buf_avail; + read_buf_ofs = 0; + } + + in_buf_size = (size_t)read_buf_avail; + status = tinfl_decompress( + &inflator, (const mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size, + (mz_uint8 *)pWrite_buf, pWrite_buf_cur, &out_buf_size, + comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0); + read_buf_avail -= in_buf_size; + read_buf_ofs += in_buf_size; + + if (out_buf_size) { + if (pCallback(pOpaque, out_buf_ofs, pWrite_buf_cur, out_buf_size) != + out_buf_size) { + status = TINFL_STATUS_FAILED; + break; + } + file_crc32 = + (mz_uint32)mz_crc32(file_crc32, pWrite_buf_cur, out_buf_size); + if ((out_buf_ofs += out_buf_size) > file_stat.m_uncomp_size) { + status = TINFL_STATUS_FAILED; + break; + } + } + } while ((status == TINFL_STATUS_NEEDS_MORE_INPUT) || + (status == TINFL_STATUS_HAS_MORE_OUTPUT)); + } + } + + if ((status == TINFL_STATUS_DONE) && + (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))) { + // Make sure the entire file was decompressed, and check its CRC. + if ((out_buf_ofs != file_stat.m_uncomp_size) || + (file_crc32 != file_stat.m_crc32)) + status = TINFL_STATUS_FAILED; + } + + if (!pZip->m_pState->m_pMem) pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); + if (pWrite_buf) pZip->m_pFree(pZip->m_pAlloc_opaque, pWrite_buf); + + return status == TINFL_STATUS_DONE; +} + +mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, + const char *pFilename, + mz_file_write_func pCallback, + void *pOpaque, mz_uint flags) { + int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); + if (file_index < 0) return MZ_FALSE; + return mz_zip_reader_extract_to_callback(pZip, file_index, pCallback, pOpaque, + flags); +} + +#ifndef MINIZ_NO_STDIO +static size_t mz_zip_file_write_callback(void *pOpaque, mz_uint64 ofs, + const void *pBuf, size_t n) { + (void)ofs; + return MZ_FWRITE(pBuf, 1, n, (MZ_FILE *)pOpaque); +} + +mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, + const char *pDst_filename, + mz_uint flags) { + mz_bool status; + mz_zip_archive_file_stat file_stat; + MZ_FILE *pFile; + if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; + pFile = MZ_FOPEN(pDst_filename, "wb"); + if (!pFile) return MZ_FALSE; + status = mz_zip_reader_extract_to_callback( + pZip, file_index, mz_zip_file_write_callback, pFile, flags); + if (MZ_FCLOSE(pFile) == EOF) return MZ_FALSE; +#ifndef MINIZ_NO_TIME + if (status) + mz_zip_set_file_times(pDst_filename, file_stat.m_time, file_stat.m_time); +#endif + return status; +} +#endif // #ifndef MINIZ_NO_STDIO + +mz_bool mz_zip_reader_end(mz_zip_archive *pZip) { + if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) || + (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) + return MZ_FALSE; + + if (pZip->m_pState) { + mz_zip_internal_state *pState = pZip->m_pState; + pZip->m_pState = NULL; + mz_zip_array_clear(pZip, &pState->m_central_dir); + mz_zip_array_clear(pZip, &pState->m_central_dir_offsets); + mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets); + +#ifndef MINIZ_NO_STDIO + if (pState->m_pFile) { + MZ_FCLOSE(pState->m_pFile); + pState->m_pFile = NULL; + } +#endif // #ifndef MINIZ_NO_STDIO + + pZip->m_pFree(pZip->m_pAlloc_opaque, pState); + } + pZip->m_zip_mode = MZ_ZIP_MODE_INVALID; + + return MZ_TRUE; +} + +#ifndef MINIZ_NO_STDIO +mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, + const char *pArchive_filename, + const char *pDst_filename, + mz_uint flags) { + int file_index = + mz_zip_reader_locate_file(pZip, pArchive_filename, NULL, flags); + if (file_index < 0) return MZ_FALSE; + return mz_zip_reader_extract_to_file(pZip, file_index, pDst_filename, flags); +} +#endif + +// ------------------- .ZIP archive writing + +#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS + +static void mz_write_le16(mz_uint8 *p, mz_uint16 v) { + p[0] = (mz_uint8)v; + p[1] = (mz_uint8)(v >> 8); +} +static void mz_write_le32(mz_uint8 *p, mz_uint32 v) { + p[0] = (mz_uint8)v; + p[1] = (mz_uint8)(v >> 8); + p[2] = (mz_uint8)(v >> 16); + p[3] = (mz_uint8)(v >> 24); +} +#define MZ_WRITE_LE16(p, v) mz_write_le16((mz_uint8 *)(p), (mz_uint16)(v)) +#define MZ_WRITE_LE32(p, v) mz_write_le32((mz_uint8 *)(p), (mz_uint32)(v)) + +mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size) { + if ((!pZip) || (pZip->m_pState) || (!pZip->m_pWrite) || + (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID)) + return MZ_FALSE; + + if (pZip->m_file_offset_alignment) { + // Ensure user specified file offset alignment is a power of 2. + if (pZip->m_file_offset_alignment & (pZip->m_file_offset_alignment - 1)) + return MZ_FALSE; + } + + if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func; + if (!pZip->m_pFree) pZip->m_pFree = def_free_func; + if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func; + + pZip->m_zip_mode = MZ_ZIP_MODE_WRITING; + pZip->m_archive_size = existing_size; + pZip->m_central_directory_file_ofs = 0; + pZip->m_total_files = 0; + + if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc( + pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state)))) + return MZ_FALSE; + memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state)); + MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir, + sizeof(mz_uint8)); + MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets, + sizeof(mz_uint32)); + MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets, + sizeof(mz_uint32)); + return MZ_TRUE; +} + +static size_t mz_zip_heap_write_func(void *pOpaque, mz_uint64 file_ofs, + const void *pBuf, size_t n) { + mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; + mz_zip_internal_state *pState = pZip->m_pState; + mz_uint64 new_size = MZ_MAX(file_ofs + n, pState->m_mem_size); +#ifdef _MSC_VER + if ((!n) || + ((0, sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF))) +#else + if ((!n) || + ((sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF))) +#endif + return 0; + if (new_size > pState->m_mem_capacity) { + void *pNew_block; + size_t new_capacity = MZ_MAX(64, pState->m_mem_capacity); + while (new_capacity < new_size) new_capacity *= 2; + if (NULL == (pNew_block = pZip->m_pRealloc( + pZip->m_pAlloc_opaque, pState->m_pMem, 1, new_capacity))) + return 0; + pState->m_pMem = pNew_block; + pState->m_mem_capacity = new_capacity; + } + memcpy((mz_uint8 *)pState->m_pMem + file_ofs, pBuf, n); + pState->m_mem_size = (size_t)new_size; + return n; +} + +mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, + size_t size_to_reserve_at_beginning, + size_t initial_allocation_size) { + pZip->m_pWrite = mz_zip_heap_write_func; + pZip->m_pIO_opaque = pZip; + if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE; + if (0 != (initial_allocation_size = MZ_MAX(initial_allocation_size, + size_to_reserve_at_beginning))) { + if (NULL == (pZip->m_pState->m_pMem = pZip->m_pAlloc( + pZip->m_pAlloc_opaque, 1, initial_allocation_size))) { + mz_zip_writer_end(pZip); + return MZ_FALSE; + } + pZip->m_pState->m_mem_capacity = initial_allocation_size; + } + return MZ_TRUE; +} + +#ifndef MINIZ_NO_STDIO +static size_t mz_zip_file_write_func(void *pOpaque, mz_uint64 file_ofs, + const void *pBuf, size_t n) { + mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; + mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile); + if (((mz_int64)file_ofs < 0) || + (((cur_ofs != (mz_int64)file_ofs)) && + (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET)))) + return 0; + return MZ_FWRITE(pBuf, 1, n, pZip->m_pState->m_pFile); +} + +mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, + mz_uint64 size_to_reserve_at_beginning) { + MZ_FILE *pFile; + pZip->m_pWrite = mz_zip_file_write_func; + pZip->m_pIO_opaque = pZip; + if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE; + if (NULL == (pFile = MZ_FOPEN(pFilename, "wb"))) { + mz_zip_writer_end(pZip); + return MZ_FALSE; + } + pZip->m_pState->m_pFile = pFile; + if (size_to_reserve_at_beginning) { + mz_uint64 cur_ofs = 0; + char buf[4096]; + MZ_CLEAR_OBJ(buf); + do { + size_t n = (size_t)MZ_MIN(sizeof(buf), size_to_reserve_at_beginning); + if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_ofs, buf, n) != n) { + mz_zip_writer_end(pZip); + return MZ_FALSE; + } + cur_ofs += n; + size_to_reserve_at_beginning -= n; + } while (size_to_reserve_at_beginning); + } + return MZ_TRUE; +} +#endif // #ifndef MINIZ_NO_STDIO + +mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, + const char *pFilename) { + mz_zip_internal_state *pState; + if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) + return MZ_FALSE; + // No sense in trying to write to an archive that's already at the support max + // size + if ((pZip->m_total_files == 0xFFFF) || + ((pZip->m_archive_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) > 0xFFFFFFFF)) + return MZ_FALSE; + + pState = pZip->m_pState; + + if (pState->m_pFile) { +#ifdef MINIZ_NO_STDIO + pFilename; + return MZ_FALSE; +#else + // Archive is being read from stdio - try to reopen as writable. + if (pZip->m_pIO_opaque != pZip) return MZ_FALSE; + if (!pFilename) return MZ_FALSE; + pZip->m_pWrite = mz_zip_file_write_func; + if (NULL == + (pState->m_pFile = MZ_FREOPEN(pFilename, "r+b", pState->m_pFile))) { + // The mz_zip_archive is now in a bogus state because pState->m_pFile is + // NULL, so just close it. + mz_zip_reader_end(pZip); + return MZ_FALSE; + } +#endif // #ifdef MINIZ_NO_STDIO + } else if (pState->m_pMem) { + // Archive lives in a memory block. Assume it's from the heap that we can + // resize using the realloc callback. + if (pZip->m_pIO_opaque != pZip) return MZ_FALSE; + pState->m_mem_capacity = pState->m_mem_size; + pZip->m_pWrite = mz_zip_heap_write_func; + } + // Archive is being read via a user provided read function - make sure the + // user has specified a write function too. + else if (!pZip->m_pWrite) + return MZ_FALSE; + + // Start writing new files at the archive's current central directory + // location. + pZip->m_archive_size = pZip->m_central_directory_file_ofs; + pZip->m_zip_mode = MZ_ZIP_MODE_WRITING; + pZip->m_central_directory_file_ofs = 0; + + return MZ_TRUE; +} + +mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, + const void *pBuf, size_t buf_size, + mz_uint level_and_flags) { + return mz_zip_writer_add_mem_ex(pZip, pArchive_name, pBuf, buf_size, NULL, 0, + level_and_flags, 0, 0); +} + +typedef struct { + mz_zip_archive *m_pZip; + mz_uint64 m_cur_archive_file_ofs; + mz_uint64 m_comp_size; +} mz_zip_writer_add_state; + +static mz_bool mz_zip_writer_add_put_buf_callback(const void *pBuf, int len, + void *pUser) { + mz_zip_writer_add_state *pState = (mz_zip_writer_add_state *)pUser; + if ((int)pState->m_pZip->m_pWrite(pState->m_pZip->m_pIO_opaque, + pState->m_cur_archive_file_ofs, pBuf, + len) != len) + return MZ_FALSE; + pState->m_cur_archive_file_ofs += len; + pState->m_comp_size += len; + return MZ_TRUE; +} + +static mz_bool mz_zip_writer_create_local_dir_header( + mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size, + mz_uint16 extra_size, mz_uint64 uncomp_size, mz_uint64 comp_size, + mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, + mz_uint16 dos_time, mz_uint16 dos_date) { + (void)pZip; + memset(pDst, 0, MZ_ZIP_LOCAL_DIR_HEADER_SIZE); + MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_SIG_OFS, MZ_ZIP_LOCAL_DIR_HEADER_SIG); + MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_VERSION_NEEDED_OFS, method ? 20 : 0); + MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_BIT_FLAG_OFS, bit_flags); + MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_METHOD_OFS, method); + MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_TIME_OFS, dos_time); + MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_DATE_OFS, dos_date); + MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_CRC32_OFS, uncomp_crc32); + MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS, comp_size); + MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS, uncomp_size); + MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILENAME_LEN_OFS, filename_size); + MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_EXTRA_LEN_OFS, extra_size); + return MZ_TRUE; +} + +static mz_bool mz_zip_writer_create_central_dir_header( + mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size, + mz_uint16 extra_size, mz_uint16 comment_size, mz_uint64 uncomp_size, + mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method, + mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date, + mz_uint64 local_header_ofs, mz_uint32 ext_attributes) { + (void)pZip; + memset(pDst, 0, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE); + MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_SIG_OFS, MZ_ZIP_CENTRAL_DIR_HEADER_SIG); + MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_NEEDED_OFS, method ? 20 : 0); + MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_BIT_FLAG_OFS, bit_flags); + MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_METHOD_OFS, method); + MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_TIME_OFS, dos_time); + MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_DATE_OFS, dos_date); + MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_CRC32_OFS, uncomp_crc32); + MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS, comp_size); + MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS, uncomp_size); + MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILENAME_LEN_OFS, filename_size); + MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_EXTRA_LEN_OFS, extra_size); + MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_COMMENT_LEN_OFS, comment_size); + MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS, ext_attributes); + MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_header_ofs); + return MZ_TRUE; +} + +static mz_bool mz_zip_writer_add_to_central_dir( + mz_zip_archive *pZip, const char *pFilename, mz_uint16 filename_size, + const void *pExtra, mz_uint16 extra_size, const void *pComment, + mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size, + mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, + mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs, + mz_uint32 ext_attributes) { + mz_zip_internal_state *pState = pZip->m_pState; + mz_uint32 central_dir_ofs = (mz_uint32)pState->m_central_dir.m_size; + size_t orig_central_dir_size = pState->m_central_dir.m_size; + mz_uint8 central_dir_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE]; + + // No zip64 support yet + if ((local_header_ofs > 0xFFFFFFFF) || + (((mz_uint64)pState->m_central_dir.m_size + + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + extra_size + + comment_size) > 0xFFFFFFFF)) + return MZ_FALSE; + + if (!mz_zip_writer_create_central_dir_header( + pZip, central_dir_header, filename_size, extra_size, comment_size, + uncomp_size, comp_size, uncomp_crc32, method, bit_flags, dos_time, + dos_date, local_header_ofs, ext_attributes)) + return MZ_FALSE; + + if ((!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_dir_header, + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) || + (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pFilename, + filename_size)) || + (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pExtra, + extra_size)) || + (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pComment, + comment_size)) || + (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, + ¢ral_dir_ofs, 1))) { + // Try to push the central directory array back into its original state. + mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, + MZ_FALSE); + return MZ_FALSE; + } + + return MZ_TRUE; +} + +static mz_bool mz_zip_writer_validate_archive_name(const char *pArchive_name) { + // Basic ZIP archive filename validity checks: Valid filenames cannot start + // with a forward slash, cannot contain a drive letter, and cannot use + // DOS-style backward slashes. + if (*pArchive_name == '/') return MZ_FALSE; + while (*pArchive_name) { + if ((*pArchive_name == '\\') || (*pArchive_name == ':')) return MZ_FALSE; + pArchive_name++; + } + return MZ_TRUE; +} + +static mz_uint mz_zip_writer_compute_padding_needed_for_file_alignment( + mz_zip_archive *pZip) { + mz_uint32 n; + if (!pZip->m_file_offset_alignment) return 0; + n = (mz_uint32)(pZip->m_archive_size & (pZip->m_file_offset_alignment - 1)); + return (pZip->m_file_offset_alignment - n) & + (pZip->m_file_offset_alignment - 1); +} + +static mz_bool mz_zip_writer_write_zeros(mz_zip_archive *pZip, + mz_uint64 cur_file_ofs, mz_uint32 n) { + char buf[4096]; + memset(buf, 0, MZ_MIN(sizeof(buf), n)); + while (n) { + mz_uint32 s = MZ_MIN(sizeof(buf), n); + if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_file_ofs, buf, s) != s) + return MZ_FALSE; + cur_file_ofs += s; + n -= s; + } + return MZ_TRUE; +} + +mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, + const char *pArchive_name, const void *pBuf, + size_t buf_size, const void *pComment, + mz_uint16 comment_size, + mz_uint level_and_flags, mz_uint64 uncomp_size, + mz_uint32 uncomp_crc32) { + mz_uint16 method = 0, dos_time = 0, dos_date = 0; + mz_uint level, ext_attributes = 0, num_alignment_padding_bytes; + mz_uint64 local_dir_header_ofs = pZip->m_archive_size, + cur_archive_file_ofs = pZip->m_archive_size, comp_size = 0; + size_t archive_name_size; + mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE]; + tdefl_compressor *pComp = NULL; + mz_bool store_data_uncompressed; + mz_zip_internal_state *pState; + + if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; + level = level_and_flags & 0xF; + store_data_uncompressed = + ((!level) || (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)); + + if ((!pZip) || (!pZip->m_pState) || + (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || ((buf_size) && (!pBuf)) || + (!pArchive_name) || ((comment_size) && (!pComment)) || + (pZip->m_total_files == 0xFFFF) || (level > MZ_UBER_COMPRESSION)) + return MZ_FALSE; + + pState = pZip->m_pState; + + if ((!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (uncomp_size)) + return MZ_FALSE; + // No zip64 support yet + if ((buf_size > 0xFFFFFFFF) || (uncomp_size > 0xFFFFFFFF)) return MZ_FALSE; + if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; + +#ifndef MINIZ_NO_TIME + { + time_t cur_time; + time(&cur_time); + mz_zip_time_to_dos_time(cur_time, &dos_time, &dos_date); + } +#endif // #ifndef MINIZ_NO_TIME + + archive_name_size = strlen(pArchive_name); + if (archive_name_size > 0xFFFF) return MZ_FALSE; + + num_alignment_padding_bytes = + mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); + + // no zip64 support yet + if ((pZip->m_total_files == 0xFFFF) || + ((pZip->m_archive_size + num_alignment_padding_bytes + + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + + comment_size + archive_name_size) > 0xFFFFFFFF)) + return MZ_FALSE; + + if ((archive_name_size) && (pArchive_name[archive_name_size - 1] == '/')) { + // Set DOS Subdirectory attribute bit. + ext_attributes |= 0x10; + // Subdirectories cannot contain data. + if ((buf_size) || (uncomp_size)) return MZ_FALSE; + } + + // Try to do any allocations before writing to the archive, so if an + // allocation fails the file remains unmodified. (A good idea if we're doing + // an in-place modification.) + if ((!mz_zip_array_ensure_room( + pZip, &pState->m_central_dir, + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + archive_name_size + comment_size)) || + (!mz_zip_array_ensure_room(pZip, &pState->m_central_dir_offsets, 1))) + return MZ_FALSE; + + if ((!store_data_uncompressed) && (buf_size)) { + if (NULL == (pComp = (tdefl_compressor *)pZip->m_pAlloc( + pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor)))) + return MZ_FALSE; + } + + if (!mz_zip_writer_write_zeros( + pZip, cur_archive_file_ofs, + num_alignment_padding_bytes + sizeof(local_dir_header))) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); + return MZ_FALSE; + } + local_dir_header_ofs += num_alignment_padding_bytes; + if (pZip->m_file_offset_alignment) { + MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == + 0); + } + cur_archive_file_ofs += + num_alignment_padding_bytes + sizeof(local_dir_header); + + MZ_CLEAR_OBJ(local_dir_header); + if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name, + archive_name_size) != archive_name_size) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); + return MZ_FALSE; + } + cur_archive_file_ofs += archive_name_size; + + if (!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) { + uncomp_crc32 = + (mz_uint32)mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, buf_size); + uncomp_size = buf_size; + if (uncomp_size <= 3) { + level = 0; + store_data_uncompressed = MZ_TRUE; + } + } + + if (store_data_uncompressed) { + if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pBuf, + buf_size) != buf_size) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); + return MZ_FALSE; + } + + cur_archive_file_ofs += buf_size; + comp_size = buf_size; + + if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) method = MZ_DEFLATED; + } else if (buf_size) { + mz_zip_writer_add_state state; + + state.m_pZip = pZip; + state.m_cur_archive_file_ofs = cur_archive_file_ofs; + state.m_comp_size = 0; + + if ((tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state, + tdefl_create_comp_flags_from_zip_params( + level, -15, MZ_DEFAULT_STRATEGY)) != + TDEFL_STATUS_OKAY) || + (tdefl_compress_buffer(pComp, pBuf, buf_size, TDEFL_FINISH) != + TDEFL_STATUS_DONE)) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); + return MZ_FALSE; + } + + comp_size = state.m_comp_size; + cur_archive_file_ofs = state.m_cur_archive_file_ofs; + + method = MZ_DEFLATED; + } + + pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); + pComp = NULL; + + // no zip64 support yet + if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF)) + return MZ_FALSE; + + if (!mz_zip_writer_create_local_dir_header( + pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size, + comp_size, uncomp_crc32, method, 0, dos_time, dos_date)) + return MZ_FALSE; + + if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header, + sizeof(local_dir_header)) != sizeof(local_dir_header)) + return MZ_FALSE; + + if (!mz_zip_writer_add_to_central_dir( + pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment, + comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0, + dos_time, dos_date, local_dir_header_ofs, ext_attributes)) + return MZ_FALSE; + + pZip->m_total_files++; + pZip->m_archive_size = cur_archive_file_ofs; + + return MZ_TRUE; +} + +#ifndef MINIZ_NO_STDIO +mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, + const char *pSrc_filename, const void *pComment, + mz_uint16 comment_size, + mz_uint level_and_flags) { + mz_uint uncomp_crc32 = MZ_CRC32_INIT, level, num_alignment_padding_bytes; + mz_uint16 method = 0, dos_time = 0, dos_date = 0, ext_attributes = 0; + mz_uint64 local_dir_header_ofs = pZip->m_archive_size, + cur_archive_file_ofs = pZip->m_archive_size, uncomp_size = 0, + comp_size = 0; + size_t archive_name_size; + mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE]; + MZ_FILE *pSrc_file = NULL; + + if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; + level = level_and_flags & 0xF; + + if ((!pZip) || (!pZip->m_pState) || + (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || (!pArchive_name) || + ((comment_size) && (!pComment)) || (level > MZ_UBER_COMPRESSION)) + return MZ_FALSE; + if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) return MZ_FALSE; + if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; + + archive_name_size = strlen(pArchive_name); + if (archive_name_size > 0xFFFF) return MZ_FALSE; + + num_alignment_padding_bytes = + mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); + + // no zip64 support yet + if ((pZip->m_total_files == 0xFFFF) || + ((pZip->m_archive_size + num_alignment_padding_bytes + + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + + comment_size + archive_name_size) > 0xFFFFFFFF)) + return MZ_FALSE; + + if (!mz_zip_get_file_modified_time(pSrc_filename, &dos_time, &dos_date)) + return MZ_FALSE; + + pSrc_file = MZ_FOPEN(pSrc_filename, "rb"); + if (!pSrc_file) return MZ_FALSE; + MZ_FSEEK64(pSrc_file, 0, SEEK_END); + uncomp_size = MZ_FTELL64(pSrc_file); + MZ_FSEEK64(pSrc_file, 0, SEEK_SET); + + if (uncomp_size > 0xFFFFFFFF) { + // No zip64 support yet + MZ_FCLOSE(pSrc_file); + return MZ_FALSE; + } + if (uncomp_size <= 3) level = 0; + + if (!mz_zip_writer_write_zeros( + pZip, cur_archive_file_ofs, + num_alignment_padding_bytes + sizeof(local_dir_header))) { + MZ_FCLOSE(pSrc_file); + return MZ_FALSE; + } + local_dir_header_ofs += num_alignment_padding_bytes; + if (pZip->m_file_offset_alignment) { + MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == + 0); + } + cur_archive_file_ofs += + num_alignment_padding_bytes + sizeof(local_dir_header); + + MZ_CLEAR_OBJ(local_dir_header); + if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name, + archive_name_size) != archive_name_size) { + MZ_FCLOSE(pSrc_file); + return MZ_FALSE; + } + cur_archive_file_ofs += archive_name_size; + + if (uncomp_size) { + mz_uint64 uncomp_remaining = uncomp_size; + void *pRead_buf = + pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, MZ_ZIP_MAX_IO_BUF_SIZE); + if (!pRead_buf) { + MZ_FCLOSE(pSrc_file); + return MZ_FALSE; + } + + if (!level) { + while (uncomp_remaining) { + mz_uint n = + (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, uncomp_remaining); + if ((MZ_FREAD(pRead_buf, 1, n, pSrc_file) != n) || + (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pRead_buf, + n) != n)) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); + MZ_FCLOSE(pSrc_file); + return MZ_FALSE; + } + uncomp_crc32 = + (mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, n); + uncomp_remaining -= n; + cur_archive_file_ofs += n; + } + comp_size = uncomp_size; + } else { + mz_bool result = MZ_FALSE; + mz_zip_writer_add_state state; + tdefl_compressor *pComp = (tdefl_compressor *)pZip->m_pAlloc( + pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor)); + if (!pComp) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); + MZ_FCLOSE(pSrc_file); + return MZ_FALSE; + } + + state.m_pZip = pZip; + state.m_cur_archive_file_ofs = cur_archive_file_ofs; + state.m_comp_size = 0; + + if (tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state, + tdefl_create_comp_flags_from_zip_params( + level, -15, MZ_DEFAULT_STRATEGY)) != + TDEFL_STATUS_OKAY) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); + pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); + MZ_FCLOSE(pSrc_file); + return MZ_FALSE; + } + + for (;;) { + size_t in_buf_size = (mz_uint32)MZ_MIN(uncomp_remaining, + (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE); + tdefl_status status; + + if (MZ_FREAD(pRead_buf, 1, in_buf_size, pSrc_file) != in_buf_size) + break; + + uncomp_crc32 = (mz_uint32)mz_crc32( + uncomp_crc32, (const mz_uint8 *)pRead_buf, in_buf_size); + uncomp_remaining -= in_buf_size; + + status = tdefl_compress_buffer( + pComp, pRead_buf, in_buf_size, + uncomp_remaining ? TDEFL_NO_FLUSH : TDEFL_FINISH); + if (status == TDEFL_STATUS_DONE) { + result = MZ_TRUE; + break; + } else if (status != TDEFL_STATUS_OKAY) + break; + } + + pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); + + if (!result) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); + MZ_FCLOSE(pSrc_file); + return MZ_FALSE; + } + + comp_size = state.m_comp_size; + cur_archive_file_ofs = state.m_cur_archive_file_ofs; + + method = MZ_DEFLATED; + } + + pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); + } + + MZ_FCLOSE(pSrc_file); + pSrc_file = NULL; + + // no zip64 support yet + if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF)) + return MZ_FALSE; + + if (!mz_zip_writer_create_local_dir_header( + pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size, + comp_size, uncomp_crc32, method, 0, dos_time, dos_date)) + return MZ_FALSE; + + if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header, + sizeof(local_dir_header)) != sizeof(local_dir_header)) + return MZ_FALSE; + + if (!mz_zip_writer_add_to_central_dir( + pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment, + comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0, + dos_time, dos_date, local_dir_header_ofs, ext_attributes)) + return MZ_FALSE; + + pZip->m_total_files++; + pZip->m_archive_size = cur_archive_file_ofs; + + return MZ_TRUE; +} +#endif // #ifndef MINIZ_NO_STDIO + +mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, + mz_zip_archive *pSource_zip, + mz_uint file_index) { + mz_uint n, bit_flags, num_alignment_padding_bytes; + mz_uint64 comp_bytes_remaining, local_dir_header_ofs; + mz_uint64 cur_src_file_ofs, cur_dst_file_ofs; + mz_uint32 + local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / + sizeof(mz_uint32)]; + mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; + mz_uint8 central_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE]; + size_t orig_central_dir_size; + mz_zip_internal_state *pState; + void *pBuf; + const mz_uint8 *pSrc_central_header; + + if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING)) + return MZ_FALSE; + if (NULL == + (pSrc_central_header = mz_zip_reader_get_cdh(pSource_zip, file_index))) + return MZ_FALSE; + pState = pZip->m_pState; + + num_alignment_padding_bytes = + mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); + + // no zip64 support yet + if ((pZip->m_total_files == 0xFFFF) || + ((pZip->m_archive_size + num_alignment_padding_bytes + + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) > + 0xFFFFFFFF)) + return MZ_FALSE; + + cur_src_file_ofs = + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS); + cur_dst_file_ofs = pZip->m_archive_size; + + if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, + pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) + return MZ_FALSE; + if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) + return MZ_FALSE; + cur_src_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE; + + if (!mz_zip_writer_write_zeros(pZip, cur_dst_file_ofs, + num_alignment_padding_bytes)) + return MZ_FALSE; + cur_dst_file_ofs += num_alignment_padding_bytes; + local_dir_header_ofs = cur_dst_file_ofs; + if (pZip->m_file_offset_alignment) { + MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == + 0); + } + + if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pLocal_header, + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) + return MZ_FALSE; + cur_dst_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE; + + n = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); + comp_bytes_remaining = + n + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); + + if (NULL == (pBuf = pZip->m_pAlloc( + pZip->m_pAlloc_opaque, 1, + (size_t)MZ_MAX(sizeof(mz_uint32) * 4, + MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, + comp_bytes_remaining))))) + return MZ_FALSE; + + while (comp_bytes_remaining) { + n = (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining); + if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf, + n) != n) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); + return MZ_FALSE; + } + cur_src_file_ofs += n; + + if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); + return MZ_FALSE; + } + cur_dst_file_ofs += n; + + comp_bytes_remaining -= n; + } + + bit_flags = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_BIT_FLAG_OFS); + if (bit_flags & 8) { + // Copy data descriptor + if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf, + sizeof(mz_uint32) * 4) != sizeof(mz_uint32) * 4) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); + return MZ_FALSE; + } + + n = sizeof(mz_uint32) * ((MZ_READ_LE32(pBuf) == 0x08074b50) ? 4 : 3); + if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); + return MZ_FALSE; + } + + cur_src_file_ofs += n; + cur_dst_file_ofs += n; + } + pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); + + // no zip64 support yet + if (cur_dst_file_ofs > 0xFFFFFFFF) return MZ_FALSE; + + orig_central_dir_size = pState->m_central_dir.m_size; + + memcpy(central_header, pSrc_central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE); + MZ_WRITE_LE32(central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS, + local_dir_header_ofs); + if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_header, + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) + return MZ_FALSE; + + n = MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_FILENAME_LEN_OFS) + + MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_EXTRA_LEN_OFS) + + MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_COMMENT_LEN_OFS); + if (!mz_zip_array_push_back( + pZip, &pState->m_central_dir, + pSrc_central_header + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n)) { + mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, + MZ_FALSE); + return MZ_FALSE; + } + + if (pState->m_central_dir.m_size > 0xFFFFFFFF) return MZ_FALSE; + n = (mz_uint32)orig_central_dir_size; + if (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &n, 1)) { + mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, + MZ_FALSE); + return MZ_FALSE; + } + + pZip->m_total_files++; + pZip->m_archive_size = cur_dst_file_ofs; + + return MZ_TRUE; +} + +mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip) { + mz_zip_internal_state *pState; + mz_uint64 central_dir_ofs, central_dir_size; + mz_uint8 hdr[MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE]; + + if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING)) + return MZ_FALSE; + + pState = pZip->m_pState; + + // no zip64 support yet + if ((pZip->m_total_files > 0xFFFF) || + ((pZip->m_archive_size + pState->m_central_dir.m_size + + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF)) + return MZ_FALSE; + + central_dir_ofs = 0; + central_dir_size = 0; + if (pZip->m_total_files) { + // Write central directory + central_dir_ofs = pZip->m_archive_size; + central_dir_size = pState->m_central_dir.m_size; + pZip->m_central_directory_file_ofs = central_dir_ofs; + if (pZip->m_pWrite(pZip->m_pIO_opaque, central_dir_ofs, + pState->m_central_dir.m_p, + (size_t)central_dir_size) != central_dir_size) + return MZ_FALSE; + pZip->m_archive_size += central_dir_size; + } + + // Write end of central directory record + MZ_CLEAR_OBJ(hdr); + MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_SIG_OFS, + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG); + MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS, + pZip->m_total_files); + MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS, pZip->m_total_files); + MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_SIZE_OFS, central_dir_size); + MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_OFS_OFS, central_dir_ofs); + + if (pZip->m_pWrite(pZip->m_pIO_opaque, pZip->m_archive_size, hdr, + sizeof(hdr)) != sizeof(hdr)) + return MZ_FALSE; +#ifndef MINIZ_NO_STDIO + if ((pState->m_pFile) && (MZ_FFLUSH(pState->m_pFile) == EOF)) return MZ_FALSE; +#endif // #ifndef MINIZ_NO_STDIO + + pZip->m_archive_size += sizeof(hdr); + + pZip->m_zip_mode = MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED; + return MZ_TRUE; +} + +mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf, + size_t *pSize) { + if ((!pZip) || (!pZip->m_pState) || (!pBuf) || (!pSize)) return MZ_FALSE; + if (pZip->m_pWrite != mz_zip_heap_write_func) return MZ_FALSE; + if (!mz_zip_writer_finalize_archive(pZip)) return MZ_FALSE; + + *pBuf = pZip->m_pState->m_pMem; + *pSize = pZip->m_pState->m_mem_size; + pZip->m_pState->m_pMem = NULL; + pZip->m_pState->m_mem_size = pZip->m_pState->m_mem_capacity = 0; + return MZ_TRUE; +} + +mz_bool mz_zip_writer_end(mz_zip_archive *pZip) { + mz_zip_internal_state *pState; + mz_bool status = MZ_TRUE; + if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) || + ((pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) && + (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED))) + return MZ_FALSE; + + pState = pZip->m_pState; + pZip->m_pState = NULL; + mz_zip_array_clear(pZip, &pState->m_central_dir); + mz_zip_array_clear(pZip, &pState->m_central_dir_offsets); + mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets); + +#ifndef MINIZ_NO_STDIO + if (pState->m_pFile) { + MZ_FCLOSE(pState->m_pFile); + pState->m_pFile = NULL; + } +#endif // #ifndef MINIZ_NO_STDIO + + if ((pZip->m_pWrite == mz_zip_heap_write_func) && (pState->m_pMem)) { + pZip->m_pFree(pZip->m_pAlloc_opaque, pState->m_pMem); + pState->m_pMem = NULL; + } + + pZip->m_pFree(pZip->m_pAlloc_opaque, pState); + pZip->m_zip_mode = MZ_ZIP_MODE_INVALID; + return status; +} + +#ifndef MINIZ_NO_STDIO +mz_bool mz_zip_add_mem_to_archive_file_in_place( + const char *pZip_filename, const char *pArchive_name, const void *pBuf, + size_t buf_size, const void *pComment, mz_uint16 comment_size, + mz_uint level_and_flags) { + mz_bool status, created_new_archive = MZ_FALSE; + mz_zip_archive zip_archive; + struct MZ_FILE_STAT_STRUCT file_stat; + MZ_CLEAR_OBJ(zip_archive); + if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; + if ((!pZip_filename) || (!pArchive_name) || ((buf_size) && (!pBuf)) || + ((comment_size) && (!pComment)) || + ((level_and_flags & 0xF) > MZ_UBER_COMPRESSION)) + return MZ_FALSE; + if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; + if (MZ_FILE_STAT(pZip_filename, &file_stat) != 0) { + // Create a new archive. + if (!mz_zip_writer_init_file(&zip_archive, pZip_filename, 0)) + return MZ_FALSE; + created_new_archive = MZ_TRUE; + } else { + // Append to an existing archive. + if (!mz_zip_reader_init_file( + &zip_archive, pZip_filename, + level_and_flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY)) + return MZ_FALSE; + if (!mz_zip_writer_init_from_reader(&zip_archive, pZip_filename)) { + mz_zip_reader_end(&zip_archive); + return MZ_FALSE; + } + } + status = + mz_zip_writer_add_mem_ex(&zip_archive, pArchive_name, pBuf, buf_size, + pComment, comment_size, level_and_flags, 0, 0); + // Always finalize, even if adding failed for some reason, so we have a valid + // central directory. (This may not always succeed, but we can try.) + if (!mz_zip_writer_finalize_archive(&zip_archive)) status = MZ_FALSE; + if (!mz_zip_writer_end(&zip_archive)) status = MZ_FALSE; + if ((!status) && (created_new_archive)) { + // It's a new archive and something went wrong, so just delete it. + int ignoredStatus = MZ_DELETE_FILE(pZip_filename); + (void)ignoredStatus; + } + return status; +} + +void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, + const char *pArchive_name, + size_t *pSize, mz_uint flags) { + int file_index; + mz_zip_archive zip_archive; + void *p = NULL; + + if (pSize) *pSize = 0; + + if ((!pZip_filename) || (!pArchive_name)) return NULL; + + MZ_CLEAR_OBJ(zip_archive); + if (!mz_zip_reader_init_file( + &zip_archive, pZip_filename, + flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY)) + return NULL; + + if ((file_index = mz_zip_reader_locate_file(&zip_archive, pArchive_name, NULL, + flags)) >= 0) + p = mz_zip_reader_extract_to_heap(&zip_archive, file_index, pSize, flags); + + mz_zip_reader_end(&zip_archive); + return p; +} + +#endif // #ifndef MINIZ_NO_STDIO + +#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS + +#endif // #ifndef MINIZ_NO_ARCHIVE_APIS + +#ifdef __cplusplus +} +#endif + +#endif // MINIZ_HEADER_FILE_ONLY + +/* + This is free and unencumbered software released into the public domain. + + Anyone is free to copy, modify, publish, use, compile, sell, or + distribute this software, either in source code form or as a compiled + binary, for any purpose, commercial or non-commercial, and by any + means. + + In jurisdictions that recognize copyright laws, the author or authors + of this software dedicate any and all copyright interest in the + software to the public domain. We make this dedication for the benefit + of the public at large and to the detriment of our heirs and + successors. We intend this dedication to be an overt act of + relinquishment in perpetuity of all present and future rights to this + software under copyright law. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR + OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + OTHER DEALINGS IN THE SOFTWARE. + + For more information, please refer to <http://unlicense.org/> +*/ + +// ---------------------- end of miniz ---------------------------------------- + +#ifdef __clang__ +#pragma clang diagnostic pop +#endif +} +#else + +// Reuse MINIZ_LITTE_ENDIAN macro + +#if defined(__sparcv9) +// Big endian +#else +#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU +// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian. +#define MINIZ_LITTLE_ENDIAN 1 +#endif +#endif + +#endif // TINYEXR_USE_MINIZ + +// static bool IsBigEndian(void) { +// union { +// unsigned int i; +// char c[4]; +// } bint = {0x01020304}; +// +// return bint.c[0] == 1; +//} + +static const int kEXRVersionSize = 8; + +static void swap2(unsigned short *val) { +#ifdef MINIZ_LITTLE_ENDIAN + (void)val; +#else + unsigned short tmp = *val; + unsigned char *dst = reinterpret_cast<unsigned char *>(val); + unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); + + dst[0] = src[1]; + dst[1] = src[0]; +#endif +} + +static void swap4(unsigned int *val) { +#ifdef MINIZ_LITTLE_ENDIAN + (void)val; +#else + unsigned int tmp = *val; + unsigned char *dst = reinterpret_cast<unsigned char *>(val); + unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); + + dst[0] = src[3]; + dst[1] = src[2]; + dst[2] = src[1]; + dst[3] = src[0]; +#endif +} + +static void swap8(tinyexr::tinyexr_uint64 *val) { +#ifdef MINIZ_LITTLE_ENDIAN + (void)val; +#else + tinyexr::tinyexr_uint64 tmp = (*val); + unsigned char *dst = reinterpret_cast<unsigned char *>(val); + unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); + + dst[0] = src[7]; + dst[1] = src[6]; + dst[2] = src[5]; + dst[3] = src[4]; + dst[4] = src[3]; + dst[5] = src[2]; + dst[6] = src[1]; + dst[7] = src[0]; +#endif +} + +// https://gist.github.com/rygorous/2156668 +// Reuse MINIZ_LITTLE_ENDIAN flag from miniz. +union FP32 { + unsigned int u; + float f; + struct { +#if MINIZ_LITTLE_ENDIAN + unsigned int Mantissa : 23; + unsigned int Exponent : 8; + unsigned int Sign : 1; +#else + unsigned int Sign : 1; + unsigned int Exponent : 8; + unsigned int Mantissa : 23; +#endif + } s; +}; + +#ifdef __clang__ +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wpadded" +#endif + +union FP16 { + unsigned short u; + struct { +#if MINIZ_LITTLE_ENDIAN + unsigned int Mantissa : 10; + unsigned int Exponent : 5; + unsigned int Sign : 1; +#else + unsigned int Sign : 1; + unsigned int Exponent : 5; + unsigned int Mantissa : 10; +#endif + } s; +}; + +#ifdef __clang__ +#pragma clang diagnostic pop +#endif + +static FP32 half_to_float(FP16 h) { + static const FP32 magic = {113 << 23}; + static const unsigned int shifted_exp = 0x7c00 + << 13; // exponent mask after shift + FP32 o; + + o.u = (h.u & 0x7fffU) << 13U; // exponent/mantissa bits + unsigned int exp_ = shifted_exp & o.u; // just the exponent + o.u += (127 - 15) << 23; // exponent adjust + + // handle exponent special cases + if (exp_ == shifted_exp) // Inf/NaN? + o.u += (128 - 16) << 23; // extra exp adjust + else if (exp_ == 0) // Zero/Denormal? + { + o.u += 1 << 23; // extra exp adjust + o.f -= magic.f; // renormalize + } + + o.u |= (h.u & 0x8000U) << 16U; // sign bit + return o; +} + +static FP16 float_to_half_full(FP32 f) { + FP16 o = {0}; + + // Based on ISPC reference code (with minor modifications) + if (f.s.Exponent == 0) // Signed zero/denormal (which will underflow) + o.s.Exponent = 0; + else if (f.s.Exponent == 255) // Inf or NaN (all exponent bits set) + { + o.s.Exponent = 31; + o.s.Mantissa = f.s.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf + } else // Normalized number + { + // Exponent unbias the single, then bias the halfp + int newexp = f.s.Exponent - 127 + 15; + if (newexp >= 31) // Overflow, return signed infinity + o.s.Exponent = 31; + else if (newexp <= 0) // Underflow + { + if ((14 - newexp) <= 24) // Mantissa might be non-zero + { + unsigned int mant = f.s.Mantissa | 0x800000; // Hidden 1 bit + o.s.Mantissa = mant >> (14 - newexp); + if ((mant >> (13 - newexp)) & 1) // Check for rounding + o.u++; // Round, might overflow into exp bit, but this is OK + } + } else { + o.s.Exponent = static_cast<unsigned int>(newexp); + o.s.Mantissa = f.s.Mantissa >> 13; + if (f.s.Mantissa & 0x1000) // Check for rounding + o.u++; // Round, might overflow to inf, this is OK + } + } + + o.s.Sign = f.s.Sign; + return o; +} + +// NOTE: From OpenEXR code +// #define IMF_INCREASING_Y 0 +// #define IMF_DECREASING_Y 1 +// #define IMF_RAMDOM_Y 2 +// +// #define IMF_NO_COMPRESSION 0 +// #define IMF_RLE_COMPRESSION 1 +// #define IMF_ZIPS_COMPRESSION 2 +// #define IMF_ZIP_COMPRESSION 3 +// #define IMF_PIZ_COMPRESSION 4 +// #define IMF_PXR24_COMPRESSION 5 +// #define IMF_B44_COMPRESSION 6 +// #define IMF_B44A_COMPRESSION 7 + +static const char *ReadString(std::string *s, const char *ptr) { + // Read untile NULL(\0). + const char *p = ptr; + const char *q = ptr; + while ((*q) != 0) q++; + + (*s) = std::string(p, q); + + return q + 1; // skip '\0' +} + +static bool ReadAttribute(std::string *name, std::string *type, + std::vector<unsigned char> *data, size_t *marker_size, + const char *marker, size_t size) { + size_t name_len = strnlen(marker, size); + if (name_len == size) { + // String does not have a terminating character. + return false; + } + *name = std::string(marker, name_len); + + marker += name_len + 1; + size -= name_len + 1; + + size_t type_len = strnlen(marker, size); + if (type_len == size) { + return false; + } + *type = std::string(marker, type_len); + + marker += type_len + 1; + size -= type_len + 1; + + if (size < sizeof(uint32_t)) { + return false; + } + + uint32_t data_len; + memcpy(&data_len, marker, sizeof(uint32_t)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); + + marker += sizeof(uint32_t); + size -= sizeof(uint32_t); + + if (size < data_len) { + return false; + } + + data->resize(static_cast<size_t>(data_len)); + memcpy(&data->at(0), marker, static_cast<size_t>(data_len)); + + *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t) + data_len; + return true; +} + +static void WriteAttributeToMemory(std::vector<unsigned char> *out, + const char *name, const char *type, + const unsigned char *data, int len) { + out->insert(out->end(), name, name + strlen(name) + 1); + out->insert(out->end(), type, type + strlen(type) + 1); + + int outLen = len; + tinyexr::swap4(reinterpret_cast<unsigned int *>(&outLen)); + out->insert(out->end(), reinterpret_cast<unsigned char *>(&outLen), + reinterpret_cast<unsigned char *>(&outLen) + sizeof(int)); + out->insert(out->end(), data, data + len); +} + +typedef struct { + std::string name; // less than 255 bytes long + int pixel_type; + int x_sampling; + int y_sampling; + unsigned char p_linear; + unsigned char pad[3]; +} ChannelInfo; + +typedef struct { + std::vector<tinyexr::ChannelInfo> channels; + std::vector<EXRAttribute> attributes; + + int data_window[4]; + int line_order; + int display_window[4]; + float screen_window_center[2]; + float screen_window_width; + float pixel_aspect_ratio; + + int chunk_count; + + // Tiled format + int tile_size_x; + int tile_size_y; + int tile_level_mode; + int tile_rounding_mode; + + unsigned int header_len; + + int compression_type; + + void clear() { + channels.clear(); + attributes.clear(); + + data_window[0] = 0; + data_window[1] = 0; + data_window[2] = 0; + data_window[3] = 0; + line_order = 0; + display_window[0] = 0; + display_window[1] = 0; + display_window[2] = 0; + display_window[3] = 0; + screen_window_center[0] = 0.0f; + screen_window_center[1] = 0.0f; + screen_window_width = 0.0f; + pixel_aspect_ratio = 0.0f; + + chunk_count = 0; + + // Tiled format + tile_size_x = 0; + tile_size_y = 0; + tile_level_mode = 0; + tile_rounding_mode = 0; + + header_len = 0; + compression_type = 0; + } +} HeaderInfo; + +static void ReadChannelInfo(std::vector<ChannelInfo> &channels, + const std::vector<unsigned char> &data) { + const char *p = reinterpret_cast<const char *>(&data.at(0)); + + for (;;) { + if ((*p) == 0) { + break; + } + ChannelInfo info; + p = ReadString(&info.name, p); + + memcpy(&info.pixel_type, p, sizeof(int)); + p += 4; + info.p_linear = static_cast<unsigned char>(p[0]); // uchar + p += 1 + 3; // reserved: uchar[3] + memcpy(&info.x_sampling, p, sizeof(int)); // int + p += 4; + memcpy(&info.y_sampling, p, sizeof(int)); // int + p += 4; + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.pixel_type)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.x_sampling)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.y_sampling)); + + channels.push_back(info); + } +} + +static void WriteChannelInfo(std::vector<unsigned char> &data, + const std::vector<ChannelInfo> &channels) { + size_t sz = 0; + + // Calculate total size. + for (size_t c = 0; c < channels.size(); c++) { + sz += strlen(channels[c].name.c_str()) + 1; // +1 for \0 + sz += 16; // 4 * int + } + data.resize(sz + 1); + + unsigned char *p = &data.at(0); + + for (size_t c = 0; c < channels.size(); c++) { + memcpy(p, channels[c].name.c_str(), strlen(channels[c].name.c_str())); + p += strlen(channels[c].name.c_str()); + (*p) = '\0'; + p++; + + int pixel_type = channels[c].pixel_type; + int x_sampling = channels[c].x_sampling; + int y_sampling = channels[c].y_sampling; + tinyexr::swap4(reinterpret_cast<unsigned int *>(&pixel_type)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&x_sampling)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&y_sampling)); + + memcpy(p, &pixel_type, sizeof(int)); + p += sizeof(int); + + (*p) = channels[c].p_linear; + p += 4; + + memcpy(p, &x_sampling, sizeof(int)); + p += sizeof(int); + + memcpy(p, &y_sampling, sizeof(int)); + p += sizeof(int); + } + + (*p) = '\0'; +} + +static void CompressZip(unsigned char *dst, + tinyexr::tinyexr_uint64 &compressedSize, + const unsigned char *src, unsigned long src_size) { + std::vector<unsigned char> tmpBuf(src_size); + + // + // Apply EXR-specific? postprocess. Grabbed from OpenEXR's + // ImfZipCompressor.cpp + // + + // + // Reorder the pixel data. + // + + const char *srcPtr = reinterpret_cast<const char *>(src); + + { + char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0)); + char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2; + const char *stop = srcPtr + src_size; + + for (;;) { + if (srcPtr < stop) + *(t1++) = *(srcPtr++); + else + break; + + if (srcPtr < stop) + *(t2++) = *(srcPtr++); + else + break; + } + } + + // + // Predictor. + // + + { + unsigned char *t = &tmpBuf.at(0) + 1; + unsigned char *stop = &tmpBuf.at(0) + src_size; + int p = t[-1]; + + while (t < stop) { + int d = int(t[0]) - p + (128 + 256); + p = t[0]; + t[0] = static_cast<unsigned char>(d); + ++t; + } + } + +#if TINYEXR_USE_MINIZ + // + // Compress the data using miniz + // + + miniz::mz_ulong outSize = miniz::mz_compressBound(src_size); + int ret = miniz::mz_compress( + dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)), + src_size); + assert(ret == miniz::MZ_OK); + (void)ret; + + compressedSize = outSize; +#else + uLong outSize = compressBound(static_cast<uLong>(src_size)); + int ret = compress(dst, &outSize, static_cast<const Bytef *>(&tmpBuf.at(0)), + src_size); + assert(ret == Z_OK); + + compressedSize = outSize; +#endif +} + +static void DecompressZip(unsigned char *dst, + unsigned long *uncompressed_size /* inout */, + const unsigned char *src, unsigned long src_size) { + std::vector<unsigned char> tmpBuf(*uncompressed_size); + +#if TINYEXR_USE_MINIZ + int ret = + miniz::mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size); + assert(ret == miniz::MZ_OK); + (void)ret; +#else + int ret = uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size); + assert(ret == Z_OK); + (void)ret; +#endif + + // + // Apply EXR-specific? postprocess. Grabbed from OpenEXR's + // ImfZipCompressor.cpp + // + + // Predictor. + { + unsigned char *t = &tmpBuf.at(0) + 1; + unsigned char *stop = &tmpBuf.at(0) + (*uncompressed_size); + + while (t < stop) { + int d = int(t[-1]) + int(t[0]) - 128; + t[0] = static_cast<unsigned char>(d); + ++t; + } + } + + // Reorder the pixel data. + { + const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0)); + const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) + + (*uncompressed_size + 1) / 2; + char *s = reinterpret_cast<char *>(dst); + char *stop = s + (*uncompressed_size); + + for (;;) { + if (s < stop) + *(s++) = *(t1++); + else + break; + + if (s < stop) + *(s++) = *(t2++); + else + break; + } + } +} + +// RLE code from OpenEXR -------------------------------------- + +#ifdef __clang__ +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wsign-conversion" +#endif + +const int MIN_RUN_LENGTH = 3; +const int MAX_RUN_LENGTH = 127; + +// +// Compress an array of bytes, using run-length encoding, +// and return the length of the compressed data. +// + +static int rleCompress(int inLength, const char in[], signed char out[]) { + const char *inEnd = in + inLength; + const char *runStart = in; + const char *runEnd = in + 1; + signed char *outWrite = out; + + while (runStart < inEnd) { + while (runEnd < inEnd && *runStart == *runEnd && + runEnd - runStart - 1 < MAX_RUN_LENGTH) { + ++runEnd; + } + + if (runEnd - runStart >= MIN_RUN_LENGTH) { + // + // Compressable run + // + + *outWrite++ = static_cast<char>(runEnd - runStart) - 1; + *outWrite++ = *(reinterpret_cast<const signed char *>(runStart)); + runStart = runEnd; + } else { + // + // Uncompressable run + // + + while (runEnd < inEnd && + ((runEnd + 1 >= inEnd || *runEnd != *(runEnd + 1)) || + (runEnd + 2 >= inEnd || *(runEnd + 1) != *(runEnd + 2))) && + runEnd - runStart < MAX_RUN_LENGTH) { + ++runEnd; + } + + *outWrite++ = static_cast<char>(runStart - runEnd); + + while (runStart < runEnd) { + *outWrite++ = *(reinterpret_cast<const signed char *>(runStart++)); + } + } + + ++runEnd; + } + + return static_cast<int>(outWrite - out); +} + +// +// Uncompress an array of bytes compressed with rleCompress(). +// Returns the length of the oncompressed data, or 0 if the +// length of the uncompressed data would be more than maxLength. +// + +static int rleUncompress(int inLength, int maxLength, const signed char in[], + char out[]) { + char *outStart = out; + + while (inLength > 0) { + if (*in < 0) { + int count = -(static_cast<int>(*in++)); + inLength -= count + 1; + + if (0 > (maxLength -= count)) return 0; + + memcpy(out, in, count); + out += count; + in += count; + } else { + int count = *in++; + inLength -= 2; + + if (0 > (maxLength -= count + 1)) return 0; + + memset(out, *reinterpret_cast<const char *>(in), count + 1); + out += count + 1; + + in++; + } + } + + return static_cast<int>(out - outStart); +} + +#ifdef __clang__ +#pragma clang diagnostic pop +#endif +// End of RLE code from OpenEXR ----------------------------------- + +static void CompressRle(unsigned char *dst, + tinyexr::tinyexr_uint64 &compressedSize, + const unsigned char *src, unsigned long src_size) { + std::vector<unsigned char> tmpBuf(src_size); + + // + // Apply EXR-specific? postprocess. Grabbed from OpenEXR's + // ImfRleCompressor.cpp + // + + // + // Reorder the pixel data. + // + + const char *srcPtr = reinterpret_cast<const char *>(src); + + { + char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0)); + char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2; + const char *stop = srcPtr + src_size; + + for (;;) { + if (srcPtr < stop) + *(t1++) = *(srcPtr++); + else + break; + + if (srcPtr < stop) + *(t2++) = *(srcPtr++); + else + break; + } + } + + // + // Predictor. + // + + { + unsigned char *t = &tmpBuf.at(0) + 1; + unsigned char *stop = &tmpBuf.at(0) + src_size; + int p = t[-1]; + + while (t < stop) { + int d = int(t[0]) - p + (128 + 256); + p = t[0]; + t[0] = static_cast<unsigned char>(d); + ++t; + } + } + + // outSize will be (srcSiz * 3) / 2 at max. + int outSize = rleCompress(static_cast<int>(src_size), + reinterpret_cast<const char *>(&tmpBuf.at(0)), + reinterpret_cast<signed char *>(dst)); + assert(outSize > 0); + + compressedSize = static_cast<tinyexr::tinyexr_uint64>(outSize); +} + +static void DecompressRle(unsigned char *dst, + const unsigned long uncompressed_size, + const unsigned char *src, unsigned long src_size) { + std::vector<unsigned char> tmpBuf(uncompressed_size); + + int ret = rleUncompress(static_cast<int>(src_size), + static_cast<int>(uncompressed_size), + reinterpret_cast<const signed char *>(src), + reinterpret_cast<char *>(&tmpBuf.at(0))); + assert(ret == static_cast<int>(uncompressed_size)); + (void)ret; + + // + // Apply EXR-specific? postprocess. Grabbed from OpenEXR's + // ImfRleCompressor.cpp + // + + // Predictor. + { + unsigned char *t = &tmpBuf.at(0) + 1; + unsigned char *stop = &tmpBuf.at(0) + uncompressed_size; + + while (t < stop) { + int d = int(t[-1]) + int(t[0]) - 128; + t[0] = static_cast<unsigned char>(d); + ++t; + } + } + + // Reorder the pixel data. + { + const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0)); + const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) + + (uncompressed_size + 1) / 2; + char *s = reinterpret_cast<char *>(dst); + char *stop = s + uncompressed_size; + + for (;;) { + if (s < stop) + *(s++) = *(t1++); + else + break; + + if (s < stop) + *(s++) = *(t2++); + else + break; + } + } +} + +#if TINYEXR_USE_PIZ + +#ifdef __clang__ +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wc++11-long-long" +#pragma clang diagnostic ignored "-Wold-style-cast" +#pragma clang diagnostic ignored "-Wpadded" +#pragma clang diagnostic ignored "-Wsign-conversion" +#pragma clang diagnostic ignored "-Wc++11-extensions" +#pragma clang diagnostic ignored "-Wconversion" +#endif + +// +// PIZ compress/uncompress, based on OpenEXR's ImfPizCompressor.cpp +// +// ----------------------------------------------------------------- +// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas +// Digital Ltd. LLC) +// (3 clause BSD license) +// + +struct PIZChannelData { + unsigned short *start; + unsigned short *end; + int nx; + int ny; + int ys; + int size; +}; + +//----------------------------------------------------------------------------- +// +// 16-bit Haar Wavelet encoding and decoding +// +// The source code in this file is derived from the encoding +// and decoding routines written by Christian Rouet for his +// PIZ image file format. +// +//----------------------------------------------------------------------------- + +// +// Wavelet basis functions without modulo arithmetic; they produce +// the best compression ratios when the wavelet-transformed data are +// Huffman-encoded, but the wavelet transform works only for 14-bit +// data (untransformed data values must be less than (1 << 14)). +// + +inline void wenc14(unsigned short a, unsigned short b, unsigned short &l, + unsigned short &h) { + short as = static_cast<short>(a); + short bs = static_cast<short>(b); + + short ms = (as + bs) >> 1; + short ds = as - bs; + + l = static_cast<unsigned short>(ms); + h = static_cast<unsigned short>(ds); +} + +inline void wdec14(unsigned short l, unsigned short h, unsigned short &a, + unsigned short &b) { + short ls = static_cast<short>(l); + short hs = static_cast<short>(h); + + int hi = hs; + int ai = ls + (hi & 1) + (hi >> 1); + + short as = static_cast<short>(ai); + short bs = static_cast<short>(ai - hi); + + a = static_cast<unsigned short>(as); + b = static_cast<unsigned short>(bs); +} + +// +// Wavelet basis functions with modulo arithmetic; they work with full +// 16-bit data, but Huffman-encoding the wavelet-transformed data doesn't +// compress the data quite as well. +// + +const int NBITS = 16; +const int A_OFFSET = 1 << (NBITS - 1); +const int M_OFFSET = 1 << (NBITS - 1); +const int MOD_MASK = (1 << NBITS) - 1; + +inline void wenc16(unsigned short a, unsigned short b, unsigned short &l, + unsigned short &h) { + int ao = (a + A_OFFSET) & MOD_MASK; + int m = ((ao + b) >> 1); + int d = ao - b; + + if (d < 0) m = (m + M_OFFSET) & MOD_MASK; + + d &= MOD_MASK; + + l = static_cast<unsigned short>(m); + h = static_cast<unsigned short>(d); +} + +inline void wdec16(unsigned short l, unsigned short h, unsigned short &a, + unsigned short &b) { + int m = l; + int d = h; + int bb = (m - (d >> 1)) & MOD_MASK; + int aa = (d + bb - A_OFFSET) & MOD_MASK; + b = static_cast<unsigned short>(bb); + a = static_cast<unsigned short>(aa); +} + +// +// 2D Wavelet encoding: +// + +static void wav2Encode( + unsigned short *in, // io: values are transformed in place + int nx, // i : x size + int ox, // i : x offset + int ny, // i : y size + int oy, // i : y offset + unsigned short mx) // i : maximum in[x][y] value +{ + bool w14 = (mx < (1 << 14)); + int n = (nx > ny) ? ny : nx; + int p = 1; // == 1 << level + int p2 = 2; // == 1 << (level+1) + + // + // Hierachical loop on smaller dimension n + // + + while (p2 <= n) { + unsigned short *py = in; + unsigned short *ey = in + oy * (ny - p2); + int oy1 = oy * p; + int oy2 = oy * p2; + int ox1 = ox * p; + int ox2 = ox * p2; + unsigned short i00, i01, i10, i11; + + // + // Y loop + // + + for (; py <= ey; py += oy2) { + unsigned short *px = py; + unsigned short *ex = py + ox * (nx - p2); + + // + // X loop + // + + for (; px <= ex; px += ox2) { + unsigned short *p01 = px + ox1; + unsigned short *p10 = px + oy1; + unsigned short *p11 = p10 + ox1; + + // + // 2D wavelet encoding + // + + if (w14) { + wenc14(*px, *p01, i00, i01); + wenc14(*p10, *p11, i10, i11); + wenc14(i00, i10, *px, *p10); + wenc14(i01, i11, *p01, *p11); + } else { + wenc16(*px, *p01, i00, i01); + wenc16(*p10, *p11, i10, i11); + wenc16(i00, i10, *px, *p10); + wenc16(i01, i11, *p01, *p11); + } + } + + // + // Encode (1D) odd column (still in Y loop) + // + + if (nx & p) { + unsigned short *p10 = px + oy1; + + if (w14) + wenc14(*px, *p10, i00, *p10); + else + wenc16(*px, *p10, i00, *p10); + + *px = i00; + } + } + + // + // Encode (1D) odd line (must loop in X) + // + + if (ny & p) { + unsigned short *px = py; + unsigned short *ex = py + ox * (nx - p2); + + for (; px <= ex; px += ox2) { + unsigned short *p01 = px + ox1; + + if (w14) + wenc14(*px, *p01, i00, *p01); + else + wenc16(*px, *p01, i00, *p01); + + *px = i00; + } + } + + // + // Next level + // + + p = p2; + p2 <<= 1; + } +} + +// +// 2D Wavelet decoding: +// + +static void wav2Decode( + unsigned short *in, // io: values are transformed in place + int nx, // i : x size + int ox, // i : x offset + int ny, // i : y size + int oy, // i : y offset + unsigned short mx) // i : maximum in[x][y] value +{ + bool w14 = (mx < (1 << 14)); + int n = (nx > ny) ? ny : nx; + int p = 1; + int p2; + + // + // Search max level + // + + while (p <= n) p <<= 1; + + p >>= 1; + p2 = p; + p >>= 1; + + // + // Hierarchical loop on smaller dimension n + // + + while (p >= 1) { + unsigned short *py = in; + unsigned short *ey = in + oy * (ny - p2); + int oy1 = oy * p; + int oy2 = oy * p2; + int ox1 = ox * p; + int ox2 = ox * p2; + unsigned short i00, i01, i10, i11; + + // + // Y loop + // + + for (; py <= ey; py += oy2) { + unsigned short *px = py; + unsigned short *ex = py + ox * (nx - p2); + + // + // X loop + // + + for (; px <= ex; px += ox2) { + unsigned short *p01 = px + ox1; + unsigned short *p10 = px + oy1; + unsigned short *p11 = p10 + ox1; + + // + // 2D wavelet decoding + // + + if (w14) { + wdec14(*px, *p10, i00, i10); + wdec14(*p01, *p11, i01, i11); + wdec14(i00, i01, *px, *p01); + wdec14(i10, i11, *p10, *p11); + } else { + wdec16(*px, *p10, i00, i10); + wdec16(*p01, *p11, i01, i11); + wdec16(i00, i01, *px, *p01); + wdec16(i10, i11, *p10, *p11); + } + } + + // + // Decode (1D) odd column (still in Y loop) + // + + if (nx & p) { + unsigned short *p10 = px + oy1; + + if (w14) + wdec14(*px, *p10, i00, *p10); + else + wdec16(*px, *p10, i00, *p10); + + *px = i00; + } + } + + // + // Decode (1D) odd line (must loop in X) + // + + if (ny & p) { + unsigned short *px = py; + unsigned short *ex = py + ox * (nx - p2); + + for (; px <= ex; px += ox2) { + unsigned short *p01 = px + ox1; + + if (w14) + wdec14(*px, *p01, i00, *p01); + else + wdec16(*px, *p01, i00, *p01); + + *px = i00; + } + } + + // + // Next level + // + + p2 = p; + p >>= 1; + } +} + +//----------------------------------------------------------------------------- +// +// 16-bit Huffman compression and decompression. +// +// The source code in this file is derived from the 8-bit +// Huffman compression and decompression routines written +// by Christian Rouet for his PIZ image file format. +// +//----------------------------------------------------------------------------- + +// Adds some modification for tinyexr. + +const int HUF_ENCBITS = 16; // literal (value) bit length +const int HUF_DECBITS = 14; // decoding bit size (>= 8) + +const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size +const int HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size +const int HUF_DECMASK = HUF_DECSIZE - 1; + +struct HufDec { // short code long code + //------------------------------- + int len : 8; // code length 0 + int lit : 24; // lit p size + int *p; // 0 lits +}; + +inline long long hufLength(long long code) { return code & 63; } + +inline long long hufCode(long long code) { return code >> 6; } + +inline void outputBits(int nBits, long long bits, long long &c, int &lc, + char *&out) { + c <<= nBits; + lc += nBits; + + c |= bits; + + while (lc >= 8) *out++ = static_cast<char>((c >> (lc -= 8))); +} + +inline long long getBits(int nBits, long long &c, int &lc, const char *&in) { + while (lc < nBits) { + c = (c << 8) | *(reinterpret_cast<const unsigned char *>(in++)); + lc += 8; + } + + lc -= nBits; + return (c >> lc) & ((1 << nBits) - 1); +} + +// +// ENCODING TABLE BUILDING & (UN)PACKING +// + +// +// Build a "canonical" Huffman code table: +// - for each (uncompressed) symbol, hcode contains the length +// of the corresponding code (in the compressed data) +// - canonical codes are computed and stored in hcode +// - the rules for constructing canonical codes are as follows: +// * shorter codes (if filled with zeroes to the right) +// have a numerically higher value than longer codes +// * for codes with the same length, numerical values +// increase with numerical symbol values +// - because the canonical code table can be constructed from +// symbol lengths alone, the code table can be transmitted +// without sending the actual code values +// - see http://www.compressconsult.com/huffman/ +// + +static void hufCanonicalCodeTable(long long hcode[HUF_ENCSIZE]) { + long long n[59]; + + // + // For each i from 0 through 58, count the + // number of different codes of length i, and + // store the count in n[i]. + // + + for (int i = 0; i <= 58; ++i) n[i] = 0; + + for (int i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1; + + // + // For each i from 58 through 1, compute the + // numerically lowest code with length i, and + // store that code in n[i]. + // + + long long c = 0; + + for (int i = 58; i > 0; --i) { + long long nc = ((c + n[i]) >> 1); + n[i] = c; + c = nc; + } + + // + // hcode[i] contains the length, l, of the + // code for symbol i. Assign the next available + // code of length l to the symbol and store both + // l and the code in hcode[i]. + // + + for (int i = 0; i < HUF_ENCSIZE; ++i) { + int l = static_cast<int>(hcode[i]); + + if (l > 0) hcode[i] = l | (n[l]++ << 6); + } +} + +// +// Compute Huffman codes (based on frq input) and store them in frq: +// - code structure is : [63:lsb - 6:msb] | [5-0: bit length]; +// - max code length is 58 bits; +// - codes outside the range [im-iM] have a null length (unused values); +// - original frequencies are destroyed; +// - encoding tables are used by hufEncode() and hufBuildDecTable(); +// + +struct FHeapCompare { + bool operator()(long long *a, long long *b) { return *a > *b; } +}; + +static void hufBuildEncTable( + long long *frq, // io: input frequencies [HUF_ENCSIZE], output table + int *im, // o: min frq index + int *iM) // o: max frq index +{ + // + // This function assumes that when it is called, array frq + // indicates the frequency of all possible symbols in the data + // that are to be Huffman-encoded. (frq[i] contains the number + // of occurrences of symbol i in the data.) + // + // The loop below does three things: + // + // 1) Finds the minimum and maximum indices that point + // to non-zero entries in frq: + // + // frq[im] != 0, and frq[i] == 0 for all i < im + // frq[iM] != 0, and frq[i] == 0 for all i > iM + // + // 2) Fills array fHeap with pointers to all non-zero + // entries in frq. + // + // 3) Initializes array hlink such that hlink[i] == i + // for all array entries. + // + + int hlink[HUF_ENCSIZE]; + long long *fHeap[HUF_ENCSIZE]; + + *im = 0; + + while (!frq[*im]) (*im)++; + + int nf = 0; + + for (int i = *im; i < HUF_ENCSIZE; i++) { + hlink[i] = i; + + if (frq[i]) { + fHeap[nf] = &frq[i]; + nf++; + *iM = i; + } + } + + // + // Add a pseudo-symbol, with a frequency count of 1, to frq; + // adjust the fHeap and hlink array accordingly. Function + // hufEncode() uses the pseudo-symbol for run-length encoding. + // + + (*iM)++; + frq[*iM] = 1; + fHeap[nf] = &frq[*iM]; + nf++; + + // + // Build an array, scode, such that scode[i] contains the number + // of bits assigned to symbol i. Conceptually this is done by + // constructing a tree whose leaves are the symbols with non-zero + // frequency: + // + // Make a heap that contains all symbols with a non-zero frequency, + // with the least frequent symbol on top. + // + // Repeat until only one symbol is left on the heap: + // + // Take the two least frequent symbols off the top of the heap. + // Create a new node that has first two nodes as children, and + // whose frequency is the sum of the frequencies of the first + // two nodes. Put the new node back into the heap. + // + // The last node left on the heap is the root of the tree. For each + // leaf node, the distance between the root and the leaf is the length + // of the code for the corresponding symbol. + // + // The loop below doesn't actually build the tree; instead we compute + // the distances of the leaves from the root on the fly. When a new + // node is added to the heap, then that node's descendants are linked + // into a single linear list that starts at the new node, and the code + // lengths of the descendants (that is, their distance from the root + // of the tree) are incremented by one. + // + + std::make_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); + + long long scode[HUF_ENCSIZE]; + memset(scode, 0, sizeof(long long) * HUF_ENCSIZE); + + while (nf > 1) { + // + // Find the indices, mm and m, of the two smallest non-zero frq + // values in fHeap, add the smallest frq to the second-smallest + // frq, and remove the smallest frq value from fHeap. + // + + int mm = fHeap[0] - frq; + std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); + --nf; + + int m = fHeap[0] - frq; + std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); + + frq[m] += frq[mm]; + std::push_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); + + // + // The entries in scode are linked into lists with the + // entries in hlink serving as "next" pointers and with + // the end of a list marked by hlink[j] == j. + // + // Traverse the lists that start at scode[m] and scode[mm]. + // For each element visited, increment the length of the + // corresponding code by one bit. (If we visit scode[j] + // during the traversal, then the code for symbol j becomes + // one bit longer.) + // + // Merge the lists that start at scode[m] and scode[mm] + // into a single list that starts at scode[m]. + // + + // + // Add a bit to all codes in the first list. + // + + for (int j = m;; j = hlink[j]) { + scode[j]++; + + assert(scode[j] <= 58); + + if (hlink[j] == j) { + // + // Merge the two lists. + // + + hlink[j] = mm; + break; + } + } + + // + // Add a bit to all codes in the second list + // + + for (int j = mm;; j = hlink[j]) { + scode[j]++; + + assert(scode[j] <= 58); + + if (hlink[j] == j) break; + } + } + + // + // Build a canonical Huffman code table, replacing the code + // lengths in scode with (code, code length) pairs. Copy the + // code table from scode into frq. + // + + hufCanonicalCodeTable(scode); + memcpy(frq, scode, sizeof(long long) * HUF_ENCSIZE); +} + +// +// Pack an encoding table: +// - only code lengths, not actual codes, are stored +// - runs of zeroes are compressed as follows: +// +// unpacked packed +// -------------------------------- +// 1 zero 0 (6 bits) +// 2 zeroes 59 +// 3 zeroes 60 +// 4 zeroes 61 +// 5 zeroes 62 +// n zeroes (6 or more) 63 n-6 (6 + 8 bits) +// + +const int SHORT_ZEROCODE_RUN = 59; +const int LONG_ZEROCODE_RUN = 63; +const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; +const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN; + +static void hufPackEncTable( + const long long *hcode, // i : encoding table [HUF_ENCSIZE] + int im, // i : min hcode index + int iM, // i : max hcode index + char **pcode) // o: ptr to packed table (updated) +{ + char *p = *pcode; + long long c = 0; + int lc = 0; + + for (; im <= iM; im++) { + int l = hufLength(hcode[im]); + + if (l == 0) { + int zerun = 1; + + while ((im < iM) && (zerun < LONGEST_LONG_RUN)) { + if (hufLength(hcode[im + 1]) > 0) break; + im++; + zerun++; + } + + if (zerun >= 2) { + if (zerun >= SHORTEST_LONG_RUN) { + outputBits(6, LONG_ZEROCODE_RUN, c, lc, p); + outputBits(8, zerun - SHORTEST_LONG_RUN, c, lc, p); + } else { + outputBits(6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p); + } + continue; + } + } + + outputBits(6, l, c, lc, p); + } + + if (lc > 0) *p++ = (unsigned char)(c << (8 - lc)); + + *pcode = p; +} + +// +// Unpack an encoding table packed by hufPackEncTable(): +// + +static bool hufUnpackEncTable( + const char **pcode, // io: ptr to packed table (updated) + int ni, // i : input size (in bytes) + int im, // i : min hcode index + int iM, // i : max hcode index + long long *hcode) // o: encoding table [HUF_ENCSIZE] +{ + memset(hcode, 0, sizeof(long long) * HUF_ENCSIZE); + + const char *p = *pcode; + long long c = 0; + int lc = 0; + + for (; im <= iM; im++) { + if (p - *pcode > ni) { + return false; + } + + long long l = hcode[im] = getBits(6, c, lc, p); // code length + + if (l == (long long)LONG_ZEROCODE_RUN) { + if (p - *pcode > ni) { + return false; + } + + int zerun = getBits(8, c, lc, p) + SHORTEST_LONG_RUN; + + if (im + zerun > iM + 1) { + return false; + } + + while (zerun--) hcode[im++] = 0; + + im--; + } else if (l >= (long long)SHORT_ZEROCODE_RUN) { + int zerun = l - SHORT_ZEROCODE_RUN + 2; + + if (im + zerun > iM + 1) { + return false; + } + + while (zerun--) hcode[im++] = 0; + + im--; + } + } + + *pcode = const_cast<char *>(p); + + hufCanonicalCodeTable(hcode); + + return true; +} + +// +// DECODING TABLE BUILDING +// + +// +// Clear a newly allocated decoding table so that it contains only zeroes. +// + +static void hufClearDecTable(HufDec *hdecod) // io: (allocated by caller) +// decoding table [HUF_DECSIZE] +{ + for (int i = 0; i < HUF_DECSIZE; i++) { + hdecod[i].len = 0; + hdecod[i].lit = 0; + hdecod[i].p = NULL; + } + // memset(hdecod, 0, sizeof(HufDec) * HUF_DECSIZE); +} + +// +// Build a decoding hash table based on the encoding table hcode: +// - short codes (<= HUF_DECBITS) are resolved with a single table access; +// - long code entry allocations are not optimized, because long codes are +// unfrequent; +// - decoding tables are used by hufDecode(); +// + +static bool hufBuildDecTable(const long long *hcode, // i : encoding table + int im, // i : min index in hcode + int iM, // i : max index in hcode + HufDec *hdecod) // o: (allocated by caller) +// decoding table [HUF_DECSIZE] +{ + // + // Init hashtable & loop on all codes. + // Assumes that hufClearDecTable(hdecod) has already been called. + // + + for (; im <= iM; im++) { + long long c = hufCode(hcode[im]); + int l = hufLength(hcode[im]); + + if (c >> l) { + // + // Error: c is supposed to be an l-bit code, + // but c contains a value that is greater + // than the largest l-bit number. + // + + // invalidTableEntry(); + return false; + } + + if (l > HUF_DECBITS) { + // + // Long code: add a secondary entry + // + + HufDec *pl = hdecod + (c >> (l - HUF_DECBITS)); + + if (pl->len) { + // + // Error: a short code has already + // been stored in table entry *pl. + // + + // invalidTableEntry(); + return false; + } + + pl->lit++; + + if (pl->p) { + int *p = pl->p; + pl->p = new int[pl->lit]; + + for (int i = 0; i < pl->lit - 1; ++i) pl->p[i] = p[i]; + + delete[] p; + } else { + pl->p = new int[1]; + } + + pl->p[pl->lit - 1] = im; + } else if (l) { + // + // Short code: init all primary entries + // + + HufDec *pl = hdecod + (c << (HUF_DECBITS - l)); + + for (long long i = 1ULL << (HUF_DECBITS - l); i > 0; i--, pl++) { + if (pl->len || pl->p) { + // + // Error: a short code or a long code has + // already been stored in table entry *pl. + // + + // invalidTableEntry(); + return false; + } + + pl->len = l; + pl->lit = im; + } + } + } + + return true; +} + +// +// Free the long code entries of a decoding table built by hufBuildDecTable() +// + +static void hufFreeDecTable(HufDec *hdecod) // io: Decoding table +{ + for (int i = 0; i < HUF_DECSIZE; i++) { + if (hdecod[i].p) { + delete[] hdecod[i].p; + hdecod[i].p = 0; + } + } +} + +// +// ENCODING +// + +inline void outputCode(long long code, long long &c, int &lc, char *&out) { + outputBits(hufLength(code), hufCode(code), c, lc, out); +} + +inline void sendCode(long long sCode, int runCount, long long runCode, + long long &c, int &lc, char *&out) { + // + // Output a run of runCount instances of the symbol sCount. + // Output the symbols explicitly, or if that is shorter, output + // the sCode symbol once followed by a runCode symbol and runCount + // expressed as an 8-bit number. + // + + if (hufLength(sCode) + hufLength(runCode) + 8 < hufLength(sCode) * runCount) { + outputCode(sCode, c, lc, out); + outputCode(runCode, c, lc, out); + outputBits(8, runCount, c, lc, out); + } else { + while (runCount-- >= 0) outputCode(sCode, c, lc, out); + } +} + +// +// Encode (compress) ni values based on the Huffman encoding table hcode: +// + +static int hufEncode // return: output size (in bits) + (const long long *hcode, // i : encoding table + const unsigned short *in, // i : uncompressed input buffer + const int ni, // i : input buffer size (in bytes) + int rlc, // i : rl code + char *out) // o: compressed output buffer +{ + char *outStart = out; + long long c = 0; // bits not yet written to out + int lc = 0; // number of valid bits in c (LSB) + int s = in[0]; + int cs = 0; + + // + // Loop on input values + // + + for (int i = 1; i < ni; i++) { + // + // Count same values or send code + // + + if (s == in[i] && cs < 255) { + cs++; + } else { + sendCode(hcode[s], cs, hcode[rlc], c, lc, out); + cs = 0; + } + + s = in[i]; + } + + // + // Send remaining code + // + + sendCode(hcode[s], cs, hcode[rlc], c, lc, out); + + if (lc) *out = (c << (8 - lc)) & 0xff; + + return (out - outStart) * 8 + lc; +} + +// +// DECODING +// + +// +// In order to force the compiler to inline them, +// getChar() and getCode() are implemented as macros +// instead of "inline" functions. +// + +#define getChar(c, lc, in) \ + { \ + c = (c << 8) | *(unsigned char *)(in++); \ + lc += 8; \ + } + +#define getCode(po, rlc, c, lc, in, out, oe) \ + { \ + if (po == rlc) { \ + if (lc < 8) getChar(c, lc, in); \ + \ + lc -= 8; \ + \ + unsigned char cs = (c >> lc); \ + \ + if (out + cs > oe) return false; \ + \ + unsigned short s = out[-1]; \ + \ + while (cs-- > 0) *out++ = s; \ + } else if (out < oe) { \ + *out++ = po; \ + } else { \ + return false; \ + } \ + } + +// +// Decode (uncompress) ni bits based on encoding & decoding tables: +// + +static bool hufDecode(const long long *hcode, // i : encoding table + const HufDec *hdecod, // i : decoding table + const char *in, // i : compressed input buffer + int ni, // i : input size (in bits) + int rlc, // i : run-length code + int no, // i : expected output size (in bytes) + unsigned short *out) // o: uncompressed output buffer +{ + long long c = 0; + int lc = 0; + unsigned short *outb = out; + unsigned short *oe = out + no; + const char *ie = in + (ni + 7) / 8; // input byte size + + // + // Loop on input bytes + // + + while (in < ie) { + getChar(c, lc, in); + + // + // Access decoding table + // + + while (lc >= HUF_DECBITS) { + const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK]; + + if (pl.len) { + // + // Get short code + // + + lc -= pl.len; + getCode(pl.lit, rlc, c, lc, in, out, oe); + } else { + if (!pl.p) { + return false; + } + // invalidCode(); // wrong code + + // + // Search long code + // + + int j; + + for (j = 0; j < pl.lit; j++) { + int l = hufLength(hcode[pl.p[j]]); + + while (lc < l && in < ie) // get more bits + getChar(c, lc, in); + + if (lc >= l) { + if (hufCode(hcode[pl.p[j]]) == + ((c >> (lc - l)) & (((long long)(1) << l) - 1))) { + // + // Found : get long code + // + + lc -= l; + getCode(pl.p[j], rlc, c, lc, in, out, oe); + break; + } + } + } + + if (j == pl.lit) { + return false; + // invalidCode(); // Not found + } + } + } + } + + // + // Get remaining (short) codes + // + + int i = (8 - ni) & 7; + c >>= i; + lc -= i; + + while (lc > 0) { + const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK]; + + if (pl.len) { + lc -= pl.len; + getCode(pl.lit, rlc, c, lc, in, out, oe); + } else { + return false; + // invalidCode(); // wrong (long) code + } + } + + if (out - outb != no) { + return false; + } + // notEnoughData (); + + return true; +} + +static void countFrequencies(long long freq[HUF_ENCSIZE], + const unsigned short data[/*n*/], int n) { + for (int i = 0; i < HUF_ENCSIZE; ++i) freq[i] = 0; + + for (int i = 0; i < n; ++i) ++freq[data[i]]; +} + +static void writeUInt(char buf[4], unsigned int i) { + unsigned char *b = (unsigned char *)buf; + + b[0] = i; + b[1] = i >> 8; + b[2] = i >> 16; + b[3] = i >> 24; +} + +static unsigned int readUInt(const char buf[4]) { + const unsigned char *b = (const unsigned char *)buf; + + return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | + ((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000); +} + +// +// EXTERNAL INTERFACE +// + +static int hufCompress(const unsigned short raw[], int nRaw, + char compressed[]) { + if (nRaw == 0) return 0; + + long long freq[HUF_ENCSIZE]; + + countFrequencies(freq, raw, nRaw); + + int im = 0; + int iM = 0; + hufBuildEncTable(freq, &im, &iM); + + char *tableStart = compressed + 20; + char *tableEnd = tableStart; + hufPackEncTable(freq, im, iM, &tableEnd); + int tableLength = tableEnd - tableStart; + + char *dataStart = tableEnd; + int nBits = hufEncode(freq, raw, nRaw, iM, dataStart); + int data_length = (nBits + 7) / 8; + + writeUInt(compressed, im); + writeUInt(compressed + 4, iM); + writeUInt(compressed + 8, tableLength); + writeUInt(compressed + 12, nBits); + writeUInt(compressed + 16, 0); // room for future extensions + + return dataStart + data_length - compressed; +} + +static bool hufUncompress(const char compressed[], int nCompressed, + unsigned short raw[], int nRaw) { + if (nCompressed == 0) { + if (nRaw != 0) return false; + + return false; + } + + int im = readUInt(compressed); + int iM = readUInt(compressed + 4); + // int tableLength = readUInt (compressed + 8); + int nBits = readUInt(compressed + 12); + + if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return false; + + const char *ptr = compressed + 20; + + // + // Fast decoder needs at least 2x64-bits of compressed data, and + // needs to be run-able on this platform. Otherwise, fall back + // to the original decoder + // + + // if (FastHufDecoder::enabled() && nBits > 128) + //{ + // FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM); + // fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw); + //} + // else + { + std::vector<long long> freq(HUF_ENCSIZE); + std::vector<HufDec> hdec(HUF_DECSIZE); + + hufClearDecTable(&hdec.at(0)); + + hufUnpackEncTable(&ptr, nCompressed - (ptr - compressed), im, iM, + &freq.at(0)); + + { + if (nBits > 8 * (nCompressed - (ptr - compressed))) { + return false; + } + + hufBuildDecTable(&freq.at(0), im, iM, &hdec.at(0)); + hufDecode(&freq.at(0), &hdec.at(0), ptr, nBits, iM, nRaw, raw); + } + // catch (...) + //{ + // hufFreeDecTable (hdec); + // throw; + //} + + hufFreeDecTable(&hdec.at(0)); + } + + return true; +} + +// +// Functions to compress the range of values in the pixel data +// + +const int USHORT_RANGE = (1 << 16); +const int BITMAP_SIZE = (USHORT_RANGE >> 3); + +static void bitmapFromData(const unsigned short data[/*nData*/], int nData, + unsigned char bitmap[BITMAP_SIZE], + unsigned short &minNonZero, + unsigned short &maxNonZero) { + for (int i = 0; i < BITMAP_SIZE; ++i) bitmap[i] = 0; + + for (int i = 0; i < nData; ++i) bitmap[data[i] >> 3] |= (1 << (data[i] & 7)); + + bitmap[0] &= ~1; // zero is not explicitly stored in + // the bitmap; we assume that the + // data always contain zeroes + minNonZero = BITMAP_SIZE - 1; + maxNonZero = 0; + + for (int i = 0; i < BITMAP_SIZE; ++i) { + if (bitmap[i]) { + if (minNonZero > i) minNonZero = i; + if (maxNonZero < i) maxNonZero = i; + } + } +} + +static unsigned short forwardLutFromBitmap( + const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) { + int k = 0; + + for (int i = 0; i < USHORT_RANGE; ++i) { + if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) + lut[i] = k++; + else + lut[i] = 0; + } + + return k - 1; // maximum value stored in lut[], +} // i.e. number of ones in bitmap minus 1 + +static unsigned short reverseLutFromBitmap( + const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) { + int k = 0; + + for (int i = 0; i < USHORT_RANGE; ++i) { + if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i; + } + + int n = k - 1; + + while (k < USHORT_RANGE) lut[k++] = 0; + + return n; // maximum k where lut[k] is non-zero, +} // i.e. number of ones in bitmap minus 1 + +static void applyLut(const unsigned short lut[USHORT_RANGE], + unsigned short data[/*nData*/], int nData) { + for (int i = 0; i < nData; ++i) data[i] = lut[data[i]]; +} + +#ifdef __clang__ +#pragma clang diagnostic pop +#endif // __clang__ + +static bool CompressPiz(unsigned char *outPtr, unsigned int &outSize, + const unsigned char *inPtr, size_t inSize, + const std::vector<ChannelInfo> &channelInfo, + int data_width, int num_lines) { + unsigned char bitmap[BITMAP_SIZE]; + unsigned short minNonZero; + unsigned short maxNonZero; + +#if !MINIZ_LITTLE_ENDIAN + // @todo { PIZ compression on BigEndian architecture. } + assert(0); + return false; +#endif + + // Assume `inSize` is multiple of 2 or 4. + std::vector<unsigned short> tmpBuffer(inSize / sizeof(unsigned short)); + + std::vector<PIZChannelData> channelData(channelInfo.size()); + unsigned short *tmpBufferEnd = &tmpBuffer.at(0); + + for (size_t c = 0; c < channelData.size(); c++) { + PIZChannelData &cd = channelData[c]; + + cd.start = tmpBufferEnd; + cd.end = cd.start; + + cd.nx = data_width; + cd.ny = num_lines; + // cd.ys = c.channel().ySampling; + + size_t pixelSize = sizeof(int); // UINT and FLOAT + if (channelInfo[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { + pixelSize = sizeof(short); + } + + cd.size = static_cast<int>(pixelSize / sizeof(short)); + + tmpBufferEnd += cd.nx * cd.ny * cd.size; + } + + const unsigned char *ptr = inPtr; + for (int y = 0; y < num_lines; ++y) { + for (size_t i = 0; i < channelData.size(); ++i) { + PIZChannelData &cd = channelData[i]; + + // if (modp (y, cd.ys) != 0) + // continue; + + size_t n = static_cast<size_t>(cd.nx * cd.size); + memcpy(cd.end, ptr, n * sizeof(unsigned short)); + ptr += n * sizeof(unsigned short); + cd.end += n; + } + } + + bitmapFromData(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), bitmap, + minNonZero, maxNonZero); + + unsigned short lut[USHORT_RANGE]; + unsigned short maxValue = forwardLutFromBitmap(bitmap, lut); + applyLut(lut, &tmpBuffer.at(0), static_cast<int>(tmpBuffer.size())); + + // + // Store range compression info in _outBuffer + // + + char *buf = reinterpret_cast<char *>(outPtr); + + memcpy(buf, &minNonZero, sizeof(unsigned short)); + buf += sizeof(unsigned short); + memcpy(buf, &maxNonZero, sizeof(unsigned short)); + buf += sizeof(unsigned short); + + if (minNonZero <= maxNonZero) { + memcpy(buf, reinterpret_cast<char *>(&bitmap[0] + minNonZero), + maxNonZero - minNonZero + 1); + buf += maxNonZero - minNonZero + 1; + } + + // + // Apply wavelet encoding + // + + for (size_t i = 0; i < channelData.size(); ++i) { + PIZChannelData &cd = channelData[i]; + + for (int j = 0; j < cd.size; ++j) { + wav2Encode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, + maxValue); + } + } + + // + // Apply Huffman encoding; append the result to _outBuffer + // + + // length header(4byte), then huff data. Initialize length header with zero, + // then later fill it by `length`. + char *lengthPtr = buf; + int zero = 0; + memcpy(buf, &zero, sizeof(int)); + buf += sizeof(int); + + int length = + hufCompress(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), buf); + memcpy(lengthPtr, &length, sizeof(int)); + + outSize = static_cast<unsigned int>( + (reinterpret_cast<unsigned char *>(buf) - outPtr) + + static_cast<unsigned int>(length)); + return true; +} + +static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr, + size_t tmpBufSize, int num_channels, + const EXRChannelInfo *channels, int data_width, + int num_lines) { + unsigned char bitmap[BITMAP_SIZE]; + unsigned short minNonZero; + unsigned short maxNonZero; + +#if !MINIZ_LITTLE_ENDIAN + // @todo { PIZ compression on BigEndian architecture. } + assert(0); + return false; +#endif + + memset(bitmap, 0, BITMAP_SIZE); + + const unsigned char *ptr = inPtr; + minNonZero = *(reinterpret_cast<const unsigned short *>(ptr)); + maxNonZero = *(reinterpret_cast<const unsigned short *>(ptr + 2)); + ptr += 4; + + if (maxNonZero >= BITMAP_SIZE) { + return false; + } + + if (minNonZero <= maxNonZero) { + memcpy(reinterpret_cast<char *>(&bitmap[0] + minNonZero), ptr, + maxNonZero - minNonZero + 1); + ptr += maxNonZero - minNonZero + 1; + } + + unsigned short lut[USHORT_RANGE]; + memset(lut, 0, sizeof(unsigned short) * USHORT_RANGE); + unsigned short maxValue = reverseLutFromBitmap(bitmap, lut); + + // + // Huffman decoding + // + + int length; + + length = *(reinterpret_cast<const int *>(ptr)); + ptr += sizeof(int); + + std::vector<unsigned short> tmpBuffer(tmpBufSize); + hufUncompress(reinterpret_cast<const char *>(ptr), length, &tmpBuffer.at(0), + static_cast<int>(tmpBufSize)); + + // + // Wavelet decoding + // + + std::vector<PIZChannelData> channelData(static_cast<size_t>(num_channels)); + + unsigned short *tmpBufferEnd = &tmpBuffer.at(0); + + for (size_t i = 0; i < static_cast<size_t>(num_channels); ++i) { + const EXRChannelInfo &chan = channels[i]; + + size_t pixelSize = sizeof(int); // UINT and FLOAT + if (chan.pixel_type == TINYEXR_PIXELTYPE_HALF) { + pixelSize = sizeof(short); + } + + channelData[i].start = tmpBufferEnd; + channelData[i].end = channelData[i].start; + channelData[i].nx = data_width; + channelData[i].ny = num_lines; + // channelData[i].ys = 1; + channelData[i].size = static_cast<int>(pixelSize / sizeof(short)); + + tmpBufferEnd += channelData[i].nx * channelData[i].ny * channelData[i].size; + } + + for (size_t i = 0; i < channelData.size(); ++i) { + PIZChannelData &cd = channelData[i]; + + for (int j = 0; j < cd.size; ++j) { + wav2Decode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, + maxValue); + } + } + + // + // Expand the pixel data to their original range + // + + applyLut(lut, &tmpBuffer.at(0), static_cast<int>(tmpBufSize)); + + for (int y = 0; y < num_lines; y++) { + for (size_t i = 0; i < channelData.size(); ++i) { + PIZChannelData &cd = channelData[i]; + + // if (modp (y, cd.ys) != 0) + // continue; + + size_t n = static_cast<size_t>(cd.nx * cd.size); + memcpy(outPtr, cd.end, static_cast<size_t>(n * sizeof(unsigned short))); + outPtr += n * sizeof(unsigned short); + cd.end += n; + } + } + + return true; +} +#endif // TINYEXR_USE_PIZ + +#if TINYEXR_USE_ZFP +struct ZFPCompressionParam { + double rate; + int precision; + double tolerance; + int type; // TINYEXR_ZFP_COMPRESSIONTYPE_* + + ZFPCompressionParam() { + type = TINYEXR_ZFP_COMPRESSIONTYPE_RATE; + rate = 2.0; + precision = 0; + tolerance = 0.0f; + } +}; + +bool FindZFPCompressionParam(ZFPCompressionParam *param, + const EXRAttribute *attributes, + int num_attributes) { + bool foundType = false; + + for (int i = 0; i < num_attributes; i++) { + if ((strcmp(attributes[i].name, "zfpCompressionType") == 0) && + (attributes[i].size == 1)) { + param->type = static_cast<int>(attributes[i].value[0]); + + foundType = true; + } + } + + if (!foundType) { + return false; + } + + if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { + for (int i = 0; i < num_attributes; i++) { + if ((strcmp(attributes[i].name, "zfpCompressionRate") == 0) && + (attributes[i].size == 8)) { + param->rate = *(reinterpret_cast<double *>(attributes[i].value)); + return true; + } + } + } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { + for (int i = 0; i < num_attributes; i++) { + if ((strcmp(attributes[i].name, "zfpCompressionPrecision") == 0) && + (attributes[i].size == 4)) { + param->rate = *(reinterpret_cast<int *>(attributes[i].value)); + return true; + } + } + } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { + for (int i = 0; i < num_attributes; i++) { + if ((strcmp(attributes[i].name, "zfpCompressionTolerance") == 0) && + (attributes[i].size == 8)) { + param->tolerance = *(reinterpret_cast<double *>(attributes[i].value)); + return true; + } + } + } else { + assert(0); + } + + return false; +} + +// Assume pixel format is FLOAT for all channels. +static bool DecompressZfp(float *dst, int dst_width, int dst_num_lines, + int num_channels, const unsigned char *src, + unsigned long src_size, + const ZFPCompressionParam ¶m) { + size_t uncompressed_size = dst_width * dst_num_lines * num_channels; + + zfp_stream *zfp = NULL; + zfp_field *field = NULL; + + assert((dst_width % 4) == 0); + assert((dst_num_lines % 4) == 0); + + if ((dst_width & 3U) || (dst_num_lines & 3U)) { + return false; + } + + field = + zfp_field_2d(reinterpret_cast<void *>(const_cast<unsigned char *>(src)), + zfp_type_float, dst_width, dst_num_lines * num_channels); + zfp = zfp_stream_open(NULL); + + if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { + zfp_stream_set_rate(zfp, param.rate, zfp_type_float, /* dimention */ 2, + /* write random access */ 0); + } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { + zfp_stream_set_precision(zfp, param.precision, zfp_type_float); + } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { + zfp_stream_set_accuracy(zfp, param.tolerance, zfp_type_float); + } else { + assert(0); + } + + size_t buf_size = zfp_stream_maximum_size(zfp, field); + std::vector<unsigned char> buf(buf_size); + memcpy(&buf.at(0), src, src_size); + + bitstream *stream = stream_open(&buf.at(0), buf_size); + zfp_stream_set_bit_stream(zfp, stream); + zfp_stream_rewind(zfp); + + size_t image_size = dst_width * dst_num_lines; + + for (int c = 0; c < num_channels; c++) { + // decompress 4x4 pixel block. + for (int y = 0; y < dst_num_lines; y += 4) { + for (int x = 0; x < dst_width; x += 4) { + float fblock[16]; + zfp_decode_block_float_2(zfp, fblock); + for (int j = 0; j < 4; j++) { + for (int i = 0; i < 4; i++) { + dst[c * image_size + ((y + j) * dst_width + (x + i))] = + fblock[j * 4 + i]; + } + } + } + } + } + + zfp_field_free(field); + zfp_stream_close(zfp); + stream_close(stream); + + return true; +} + +// Assume pixel format is FLOAT for all channels. +bool CompressZfp(std::vector<unsigned char> *outBuf, unsigned int *outSize, + const float *inPtr, int width, int num_lines, int num_channels, + const ZFPCompressionParam ¶m) { + zfp_stream *zfp = NULL; + zfp_field *field = NULL; + + assert((width % 4) == 0); + assert((num_lines % 4) == 0); + + if ((width & 3U) || (num_lines & 3U)) { + return false; + } + + // create input array. + field = zfp_field_2d(reinterpret_cast<void *>(const_cast<float *>(inPtr)), + zfp_type_float, width, num_lines * num_channels); + + zfp = zfp_stream_open(NULL); + + if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { + zfp_stream_set_rate(zfp, param.rate, zfp_type_float, 2, 0); + } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { + zfp_stream_set_precision(zfp, param.precision, zfp_type_float); + } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { + zfp_stream_set_accuracy(zfp, param.tolerance, zfp_type_float); + } else { + assert(0); + } + + size_t buf_size = zfp_stream_maximum_size(zfp, field); + + outBuf->resize(buf_size); + + bitstream *stream = stream_open(&outBuf->at(0), buf_size); + zfp_stream_set_bit_stream(zfp, stream); + zfp_field_free(field); + + size_t image_size = width * num_lines; + + for (int c = 0; c < num_channels; c++) { + // compress 4x4 pixel block. + for (int y = 0; y < num_lines; y += 4) { + for (int x = 0; x < width; x += 4) { + float fblock[16]; + for (int j = 0; j < 4; j++) { + for (int i = 0; i < 4; i++) { + fblock[j * 4 + i] = + inPtr[c * image_size + ((y + j) * width + (x + i))]; + } + } + zfp_encode_block_float_2(zfp, fblock); + } + } + } + + zfp_stream_flush(zfp); + (*outSize) = zfp_stream_compressed_size(zfp); + + zfp_stream_close(zfp); + + return true; +} + +#endif + +// +// ----------------------------------------------------------------- +// + +static void DecodePixelData(/* out */ unsigned char **out_images, + const int *requested_pixel_types, + const unsigned char *data_ptr, size_t data_len, + int compression_type, int line_order, int width, + int height, int x_stride, int y, int line_no, + int num_lines, size_t pixel_data_size, + size_t num_attributes, + const EXRAttribute *attributes, size_t num_channels, + const EXRChannelInfo *channels, + const std::vector<size_t> &channel_offset_list) { + if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { // PIZ +#if TINYEXR_USE_PIZ + // Allocate original data size. + std::vector<unsigned char> outBuf(static_cast<size_t>( + static_cast<size_t>(width * num_lines) * pixel_data_size)); + size_t tmpBufLen = static_cast<size_t>( + static_cast<size_t>(width * num_lines) * pixel_data_size); + + bool ret = tinyexr::DecompressPiz( + reinterpret_cast<unsigned char *>(&outBuf.at(0)), data_ptr, tmpBufLen, + static_cast<int>(num_channels), channels, width, num_lines); + + assert(ret); + (void)ret; + + // For PIZ_COMPRESSION: + // pixel sample data for channel 0 for scanline 0 + // pixel sample data for channel 1 for scanline 0 + // pixel sample data for channel ... for scanline 0 + // pixel sample data for channel n for scanline 0 + // pixel sample data for channel 0 for scanline 1 + // pixel sample data for channel 1 for scanline 1 + // pixel sample data for channel ... for scanline 1 + // pixel sample data for channel n for scanline 1 + // ... + for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { + if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( + &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + FP16 hf; + + hf.u = line_ptr[u]; + + tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); + + if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { + unsigned short *image = + reinterpret_cast<unsigned short **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += static_cast<size_t>( + (height - 1 - (line_no + static_cast<int>(v)))) * + static_cast<size_t>(x_stride) + + u; + } + *image = hf.u; + } else { // HALF -> FLOAT + FP32 f32 = half_to_float(hf); + float *image = reinterpret_cast<float **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += static_cast<size_t>( + (height - 1 - (line_no + static_cast<int>(v)))) * + static_cast<size_t>(x_stride) + + u; + } + *image = f32.f; + } + } + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { + assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT); + + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( + &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + unsigned int val = line_ptr[u]; + + tinyexr::swap4(&val); + + unsigned int *image = + reinterpret_cast<unsigned int **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += static_cast<size_t>( + (height - 1 - (line_no + static_cast<int>(v)))) * + static_cast<size_t>(x_stride) + + u; + } + *image = val; + } + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { + assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT); + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const float *line_ptr = reinterpret_cast<float *>(&outBuf.at( + v * pixel_data_size * static_cast<size_t>(x_stride) + + channel_offset_list[c] * static_cast<size_t>(x_stride))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + float val = line_ptr[u]; + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); + + float *image = reinterpret_cast<float **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += static_cast<size_t>( + (height - 1 - (line_no + static_cast<int>(v)))) * + static_cast<size_t>(x_stride) + + u; + } + *image = val; + } + } + } else { + assert(0); + } + } +#else + assert(0 && "PIZ is enabled in this build"); +#endif + + } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS || + compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { + // Allocate original data size. + std::vector<unsigned char> outBuf(static_cast<size_t>(width) * + static_cast<size_t>(num_lines) * + pixel_data_size); + + unsigned long dstLen = static_cast<unsigned long>(outBuf.size()); + assert(dstLen > 0); + tinyexr::DecompressZip(reinterpret_cast<unsigned char *>(&outBuf.at(0)), + &dstLen, data_ptr, + static_cast<unsigned long>(data_len)); + + // For ZIP_COMPRESSION: + // pixel sample data for channel 0 for scanline 0 + // pixel sample data for channel 1 for scanline 0 + // pixel sample data for channel ... for scanline 0 + // pixel sample data for channel n for scanline 0 + // pixel sample data for channel 0 for scanline 1 + // pixel sample data for channel 1 for scanline 1 + // pixel sample data for channel ... for scanline 1 + // pixel sample data for channel n for scanline 1 + // ... + for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { + if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( + &outBuf.at(v * static_cast<size_t>(pixel_data_size) * + static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + tinyexr::FP16 hf; + + hf.u = line_ptr[u]; + + tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); + + if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { + unsigned short *image = + reinterpret_cast<unsigned short **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = hf.u; + } else { // HALF -> FLOAT + tinyexr::FP32 f32 = half_to_float(hf); + float *image = reinterpret_cast<float **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = f32.f; + } + } + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { + assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT); + + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( + &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + unsigned int val = line_ptr[u]; + + tinyexr::swap4(&val); + + unsigned int *image = + reinterpret_cast<unsigned int **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = val; + } + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { + assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT); + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const float *line_ptr = reinterpret_cast<float *>( + &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + float val = line_ptr[u]; + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); + + float *image = reinterpret_cast<float **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = val; + } + } + } else { + assert(0); + } + } + } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) { + // Allocate original data size. + std::vector<unsigned char> outBuf(static_cast<size_t>(width) * + static_cast<size_t>(num_lines) * + pixel_data_size); + + unsigned long dstLen = static_cast<unsigned long>(outBuf.size()); + assert(dstLen > 0); + tinyexr::DecompressRle(reinterpret_cast<unsigned char *>(&outBuf.at(0)), + dstLen, data_ptr, + static_cast<unsigned long>(data_len)); + + // For RLE_COMPRESSION: + // pixel sample data for channel 0 for scanline 0 + // pixel sample data for channel 1 for scanline 0 + // pixel sample data for channel ... for scanline 0 + // pixel sample data for channel n for scanline 0 + // pixel sample data for channel 0 for scanline 1 + // pixel sample data for channel 1 for scanline 1 + // pixel sample data for channel ... for scanline 1 + // pixel sample data for channel n for scanline 1 + // ... + for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { + if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( + &outBuf.at(v * static_cast<size_t>(pixel_data_size) * + static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + tinyexr::FP16 hf; + + hf.u = line_ptr[u]; + + tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); + + if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { + unsigned short *image = + reinterpret_cast<unsigned short **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = hf.u; + } else { // HALF -> FLOAT + tinyexr::FP32 f32 = half_to_float(hf); + float *image = reinterpret_cast<float **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = f32.f; + } + } + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { + assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT); + + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( + &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + unsigned int val = line_ptr[u]; + + tinyexr::swap4(&val); + + unsigned int *image = + reinterpret_cast<unsigned int **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = val; + } + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { + assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT); + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const float *line_ptr = reinterpret_cast<float *>( + &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + float val = line_ptr[u]; + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); + + float *image = reinterpret_cast<float **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = val; + } + } + } else { + assert(0); + } + } + } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { +#if TINYEXR_USE_ZFP + tinyexr::ZFPCompressionParam zfp_compression_param; + if (!FindZFPCompressionParam(&zfp_compression_param, attributes, + num_attributes)) { + assert(0); + return; + } + + // Allocate original data size. + std::vector<unsigned char> outBuf(static_cast<size_t>(width) * + static_cast<size_t>(num_lines) * + pixel_data_size); + + unsigned long dstLen = outBuf.size(); + assert(dstLen > 0); + tinyexr::DecompressZfp(reinterpret_cast<float *>(&outBuf.at(0)), width, + num_lines, num_channels, data_ptr, + static_cast<unsigned long>(data_len), + zfp_compression_param); + + // For ZFP_COMPRESSION: + // pixel sample data for channel 0 for scanline 0 + // pixel sample data for channel 1 for scanline 0 + // pixel sample data for channel ... for scanline 0 + // pixel sample data for channel n for scanline 0 + // pixel sample data for channel 0 for scanline 1 + // pixel sample data for channel 1 for scanline 1 + // pixel sample data for channel ... for scanline 1 + // pixel sample data for channel n for scanline 1 + // ... + for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { + assert(channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT); + if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { + assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT); + for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { + const float *line_ptr = reinterpret_cast<float *>( + &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + + channel_offset_list[c] * static_cast<size_t>(width))); + for (size_t u = 0; u < static_cast<size_t>(width); u++) { + float val = line_ptr[u]; + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); + + float *image = reinterpret_cast<float **>(out_images)[c]; + if (line_order == 0) { + image += (static_cast<size_t>(line_no) + v) * + static_cast<size_t>(x_stride) + + u; + } else { + image += (static_cast<size_t>(height) - 1U - + (static_cast<size_t>(line_no) + v)) * + static_cast<size_t>(x_stride) + + u; + } + *image = val; + } + } + } else { + assert(0); + } + } +#else + (void)attributes; + (void)num_attributes; + (void)num_channels; + assert(0); +#endif + } else if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) { + for (size_t c = 0; c < num_channels; c++) { + if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { + const unsigned short *line_ptr = + reinterpret_cast<const unsigned short *>( + data_ptr + + c * static_cast<size_t>(width) * sizeof(unsigned short)); + + if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { + unsigned short *outLine = + reinterpret_cast<unsigned short *>(out_images[c]); + if (line_order == 0) { + outLine += y * x_stride; + } else { + outLine += (height - 1 - y) * x_stride; + } + + for (int u = 0; u < width; u++) { + tinyexr::FP16 hf; + + hf.u = line_ptr[u]; + + tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); + + outLine[u] = hf.u; + } + } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { + float *outLine = reinterpret_cast<float *>(out_images[c]); + if (line_order == 0) { + outLine += y * x_stride; + } else { + outLine += (height - 1 - y) * x_stride; + } + + for (int u = 0; u < width; u++) { + tinyexr::FP16 hf; + + hf.u = line_ptr[u]; + + tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); + + tinyexr::FP32 f32 = half_to_float(hf); + + outLine[u] = f32.f; + } + } else { + assert(0); + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { + const float *line_ptr = reinterpret_cast<const float *>( + data_ptr + c * static_cast<size_t>(width) * sizeof(float)); + + float *outLine = reinterpret_cast<float *>(out_images[c]); + if (line_order == 0) { + outLine += y * x_stride; + } else { + outLine += (height - 1 - y) * x_stride; + } + + for (int u = 0; u < width; u++) { + float val = line_ptr[u]; + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); + + outLine[u] = val; + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { + const unsigned int *line_ptr = reinterpret_cast<const unsigned int *>( + data_ptr + c * static_cast<size_t>(width) * sizeof(unsigned int)); + + unsigned int *outLine = reinterpret_cast<unsigned int *>(out_images[c]); + if (line_order == 0) { + outLine += y * x_stride; + } else { + outLine += (height - 1 - y) * x_stride; + } + + for (int u = 0; u < width; u++) { + unsigned int val = line_ptr[u]; + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); + + outLine[u] = val; + } + } + } + } +} + +static void DecodeTiledPixelData( + unsigned char **out_images, int *width, int *height, + const int *requested_pixel_types, const unsigned char *data_ptr, + size_t data_len, int compression_type, int line_order, int data_width, + int data_height, int tile_offset_x, int tile_offset_y, int tile_size_x, + int tile_size_y, size_t pixel_data_size, size_t num_attributes, + const EXRAttribute *attributes, size_t num_channels, + const EXRChannelInfo *channels, + const std::vector<size_t> &channel_offset_list) { + assert(tile_offset_x * tile_size_x < data_width); + assert(tile_offset_y * tile_size_y < data_height); + + // Compute actual image size in a tile. + if ((tile_offset_x + 1) * tile_size_x >= data_width) { + (*width) = data_width - (tile_offset_x * tile_size_x); + } else { + (*width) = tile_size_x; + } + + if ((tile_offset_y + 1) * tile_size_y >= data_height) { + (*height) = data_height - (tile_offset_y * tile_size_y); + } else { + (*height) = tile_size_y; + } + + // Image size = tile size. + DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len, + compression_type, line_order, (*width), tile_size_y, + /* stride */ tile_size_x, /* y */ 0, /* line_no */ 0, + (*height), pixel_data_size, num_attributes, attributes, + num_channels, channels, channel_offset_list); +} + +static void ComputeChannelLayout(std::vector<size_t> *channel_offset_list, + int *pixel_data_size, size_t *channel_offset, + int num_channels, + const EXRChannelInfo *channels) { + channel_offset_list->resize(static_cast<size_t>(num_channels)); + + (*pixel_data_size) = 0; + (*channel_offset) = 0; + + for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { + (*channel_offset_list)[c] = (*channel_offset); + if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { + (*pixel_data_size) += sizeof(unsigned short); + (*channel_offset) += sizeof(unsigned short); + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { + (*pixel_data_size) += sizeof(float); + (*channel_offset) += sizeof(float); + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { + (*pixel_data_size) += sizeof(unsigned int); + (*channel_offset) += sizeof(unsigned int); + } else { + assert(0); + } + } +} + +static unsigned char **AllocateImage(int num_channels, + const EXRChannelInfo *channels, + const int *requested_pixel_types, + int data_width, int data_height) { + unsigned char **images = + reinterpret_cast<unsigned char **>(static_cast<float **>( + malloc(sizeof(float *) * static_cast<size_t>(num_channels)))); + + for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { + size_t data_len = + static_cast<size_t>(data_width) * static_cast<size_t>(data_height); + if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { + // pixel_data_size += sizeof(unsigned short); + // channel_offset += sizeof(unsigned short); + // Alloc internal image for half type. + if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { + images[c] = + reinterpret_cast<unsigned char *>(static_cast<unsigned short *>( + malloc(sizeof(unsigned short) * data_len))); + } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { + images[c] = reinterpret_cast<unsigned char *>( + static_cast<float *>(malloc(sizeof(float) * data_len))); + } else { + assert(0); + } + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { + // pixel_data_size += sizeof(float); + // channel_offset += sizeof(float); + images[c] = reinterpret_cast<unsigned char *>( + static_cast<float *>(malloc(sizeof(float) * data_len))); + } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { + // pixel_data_size += sizeof(unsigned int); + // channel_offset += sizeof(unsigned int); + images[c] = reinterpret_cast<unsigned char *>( + static_cast<unsigned int *>(malloc(sizeof(unsigned int) * data_len))); + } else { + assert(0); + } + } + + return images; +} + +static int ParseEXRHeader(HeaderInfo *info, bool *empty_header, + const EXRVersion *version, std::string *err, + const unsigned char *buf, size_t size) { + const char *marker = reinterpret_cast<const char *>(&buf[0]); + + if (empty_header) { + (*empty_header) = false; + } + + if (version->multipart) { + if (size > 0 && marker[0] == '\0') { + // End of header list. + if (empty_header) { + (*empty_header) = true; + } + return TINYEXR_SUCCESS; + } + } + + // According to the spec, the header of every OpenEXR file must contain at + // least the following attributes: + // + // channels chlist + // compression compression + // dataWindow box2i + // displayWindow box2i + // lineOrder lineOrder + // pixelAspectRatio float + // screenWindowCenter v2f + // screenWindowWidth float + bool has_channels = false; + bool has_compression = false; + bool has_data_window = false; + bool has_display_window = false; + bool has_line_order = false; + bool has_pixel_aspect_ratio = false; + bool has_screen_window_center = false; + bool has_screen_window_width = false; + + info->data_window[0] = 0; + info->data_window[1] = 0; + info->data_window[2] = 0; + info->data_window[3] = 0; + info->line_order = 0; // @fixme + info->display_window[0] = 0; + info->display_window[1] = 0; + info->display_window[2] = 0; + info->display_window[3] = 0; + info->screen_window_center[0] = 0.0f; + info->screen_window_center[1] = 0.0f; + info->screen_window_width = -1.0f; + info->pixel_aspect_ratio = -1.0f; + + info->tile_size_x = -1; + info->tile_size_y = -1; + info->tile_level_mode = -1; + info->tile_rounding_mode = -1; + + info->attributes.clear(); + + // Read attributes + size_t orig_size = size; + for (;;) { + if (0 == size) { + return TINYEXR_ERROR_INVALID_DATA; + } else if (marker[0] == '\0') { + size--; + break; + } + + std::string attr_name; + std::string attr_type; + std::vector<unsigned char> data; + size_t marker_size; + if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size, + marker, size)) { + return TINYEXR_ERROR_INVALID_DATA; + } + marker += marker_size; + size -= marker_size; + + if (version->tiled && attr_name.compare("tiles") == 0) { + unsigned int x_size, y_size; + unsigned char tile_mode; + assert(data.size() == 9); + memcpy(&x_size, &data.at(0), sizeof(int)); + memcpy(&y_size, &data.at(4), sizeof(int)); + tile_mode = data[8]; + tinyexr::swap4(&x_size); + tinyexr::swap4(&y_size); + + info->tile_size_x = static_cast<int>(x_size); + info->tile_size_y = static_cast<int>(y_size); + + // mode = levelMode + roundingMode * 16 + info->tile_level_mode = tile_mode & 0x3; + info->tile_rounding_mode = (tile_mode >> 4) & 0x1; + + } else if (attr_name.compare("compression") == 0) { + bool ok = false; + if ((data[0] >= TINYEXR_COMPRESSIONTYPE_NONE) && + (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ)) { + ok = true; + } + + if (data[0] == TINYEXR_COMPRESSIONTYPE_PIZ) { +#if TINYEXR_USE_PIZ + ok = true; +#else + if (err) { + (*err) = "PIZ compression is not supported."; + } + return TINYEXR_ERROR_UNSUPPORTED_FORMAT; +#endif + } + + if (data[0] == TINYEXR_COMPRESSIONTYPE_ZFP) { +#if TINYEXR_USE_ZFP + ok = true; +#else + if (err) { + (*err) = "ZFP compression is not supported."; + } + return TINYEXR_ERROR_UNSUPPORTED_FORMAT; +#endif + } + + if (!ok) { + if (err) { + (*err) = "Unknown compression type."; + } + return TINYEXR_ERROR_UNSUPPORTED_FORMAT; + } + + info->compression_type = static_cast<int>(data[0]); + has_compression = true; + + } else if (attr_name.compare("channels") == 0) { + // name: zero-terminated string, from 1 to 255 bytes long + // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2 + // pLinear: unsigned char, possible values are 0 and 1 + // reserved: three chars, should be zero + // xSampling: int + // ySampling: int + + ReadChannelInfo(info->channels, data); + + if (info->channels.size() < 1) { + if (err) { + (*err) = "# of channels is zero."; + } + return TINYEXR_ERROR_INVALID_DATA; + } + + has_channels = true; + + } else if (attr_name.compare("dataWindow") == 0) { + memcpy(&info->data_window[0], &data.at(0), sizeof(int)); + memcpy(&info->data_window[1], &data.at(4), sizeof(int)); + memcpy(&info->data_window[2], &data.at(8), sizeof(int)); + memcpy(&info->data_window[3], &data.at(12), sizeof(int)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[0])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[1])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[2])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[3])); + + has_data_window = true; + } else if (attr_name.compare("displayWindow") == 0) { + memcpy(&info->display_window[0], &data.at(0), sizeof(int)); + memcpy(&info->display_window[1], &data.at(4), sizeof(int)); + memcpy(&info->display_window[2], &data.at(8), sizeof(int)); + memcpy(&info->display_window[3], &data.at(12), sizeof(int)); + tinyexr::swap4( + reinterpret_cast<unsigned int *>(&info->display_window[0])); + tinyexr::swap4( + reinterpret_cast<unsigned int *>(&info->display_window[1])); + tinyexr::swap4( + reinterpret_cast<unsigned int *>(&info->display_window[2])); + tinyexr::swap4( + reinterpret_cast<unsigned int *>(&info->display_window[3])); + + has_display_window = true; + } else if (attr_name.compare("lineOrder") == 0) { + info->line_order = static_cast<int>(data[0]); + has_line_order = true; + } else if (attr_name.compare("pixelAspectRatio") == 0) { + memcpy(&info->pixel_aspect_ratio, &data.at(0), sizeof(float)); + tinyexr::swap4( + reinterpret_cast<unsigned int *>(&info->pixel_aspect_ratio)); + has_pixel_aspect_ratio = true; + } else if (attr_name.compare("screenWindowCenter") == 0) { + memcpy(&info->screen_window_center[0], &data.at(0), sizeof(float)); + memcpy(&info->screen_window_center[1], &data.at(4), sizeof(float)); + tinyexr::swap4( + reinterpret_cast<unsigned int *>(&info->screen_window_center[0])); + tinyexr::swap4( + reinterpret_cast<unsigned int *>(&info->screen_window_center[1])); + has_screen_window_center = true; + } else if (attr_name.compare("screenWindowWidth") == 0) { + memcpy(&info->screen_window_width, &data.at(0), sizeof(float)); + tinyexr::swap4( + reinterpret_cast<unsigned int *>(&info->screen_window_width)); + + has_screen_window_width = true; + } else if (attr_name.compare("chunkCount") == 0) { + memcpy(&info->chunk_count, &data.at(0), sizeof(int)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->chunk_count)); + } else { + // Custom attribute(up to TINYEXR_MAX_ATTRIBUTES) + if (info->attributes.size() < TINYEXR_MAX_ATTRIBUTES) { + EXRAttribute attrib; + strncpy(attrib.name, attr_name.c_str(), 255); + attrib.name[255] = '\0'; + strncpy(attrib.type, attr_type.c_str(), 255); + attrib.type[255] = '\0'; + attrib.size = static_cast<int>(data.size()); + attrib.value = static_cast<unsigned char *>(malloc(data.size())); + memcpy(reinterpret_cast<char *>(attrib.value), &data.at(0), + data.size()); + info->attributes.push_back(attrib); + } + } + } + + // Check if required attributes exist + { + std::stringstream ss_err; + + if (!has_compression) { + ss_err << "\"compression\" attribute not found in the header." + << std::endl; + } + + if (!has_channels) { + ss_err << "\"channels\" attribute not found in the header." << std::endl; + } + + if (!has_line_order) { + ss_err << "\"lineOrder\" attribute not found in the header." << std::endl; + } + + if (!has_display_window) { + ss_err << "\"displayWindow\" attribute not found in the header." + << std::endl; + } + + if (!has_data_window) { + ss_err << "\"dataWindow\" attribute not found in the header." + << std::endl; + } + + if (!has_pixel_aspect_ratio) { + ss_err << "\"pixelAspectRatio\" attribute not found in the header." + << std::endl; + } + + if (!has_screen_window_width) { + ss_err << "\"screenWindowWidth\" attribute not found in the header." + << std::endl; + } + + if (!has_screen_window_center) { + ss_err << "\"screenWindowCenter\" attribute not found in the header." + << std::endl; + } + + if (!(ss_err.str().empty())) { + if (err) { + (*err) += ss_err.str(); + } + return TINYEXR_ERROR_INVALID_HEADER; + } + } + + info->header_len = static_cast<unsigned int>(orig_size - size); + + return TINYEXR_SUCCESS; +} + +// C++ HeaderInfo to C EXRHeader conversion. +static void ConvertHeader(EXRHeader *exr_header, const HeaderInfo &info) { + exr_header->pixel_aspect_ratio = info.pixel_aspect_ratio; + exr_header->screen_window_center[0] = info.screen_window_center[0]; + exr_header->screen_window_center[1] = info.screen_window_center[1]; + exr_header->screen_window_width = info.screen_window_width; + exr_header->chunk_count = info.chunk_count; + exr_header->display_window[0] = info.display_window[0]; + exr_header->display_window[1] = info.display_window[1]; + exr_header->display_window[2] = info.display_window[2]; + exr_header->display_window[3] = info.display_window[3]; + exr_header->data_window[0] = info.data_window[0]; + exr_header->data_window[1] = info.data_window[1]; + exr_header->data_window[2] = info.data_window[2]; + exr_header->data_window[3] = info.data_window[3]; + exr_header->line_order = info.line_order; + exr_header->compression_type = info.compression_type; + + exr_header->tile_size_x = info.tile_size_x; + exr_header->tile_size_y = info.tile_size_y; + exr_header->tile_level_mode = info.tile_level_mode; + exr_header->tile_rounding_mode = info.tile_rounding_mode; + + exr_header->num_channels = static_cast<int>(info.channels.size()); + + exr_header->channels = static_cast<EXRChannelInfo *>(malloc( + sizeof(EXRChannelInfo) * static_cast<size_t>(exr_header->num_channels))); + for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { + strncpy(exr_header->channels[c].name, info.channels[c].name.c_str(), 255); + // manually add '\0' for safety. + exr_header->channels[c].name[255] = '\0'; + + exr_header->channels[c].pixel_type = info.channels[c].pixel_type; + exr_header->channels[c].p_linear = info.channels[c].p_linear; + exr_header->channels[c].x_sampling = info.channels[c].x_sampling; + exr_header->channels[c].y_sampling = info.channels[c].y_sampling; + } + + exr_header->pixel_types = static_cast<int *>( + malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels))); + for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { + exr_header->pixel_types[c] = info.channels[c].pixel_type; + } + + // Initially fill with values of `pixel_types` + exr_header->requested_pixel_types = static_cast<int *>( + malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels))); + for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { + exr_header->requested_pixel_types[c] = info.channels[c].pixel_type; + } + + assert(info.attributes.size() < TINYEXR_MAX_ATTRIBUTES); + exr_header->num_custom_attributes = static_cast<int>(info.attributes.size()); + + for (size_t i = 0; i < info.attributes.size(); i++) { + memcpy(exr_header->custom_attributes[i].name, info.attributes[i].name, 256); + memcpy(exr_header->custom_attributes[i].type, info.attributes[i].type, 256); + exr_header->custom_attributes[i].size = info.attributes[i].size; + // Just copy poiner + exr_header->custom_attributes[i].value = info.attributes[i].value; + } + + exr_header->header_len = info.header_len; +} + +static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header, + const std::vector<tinyexr::tinyexr_uint64> &offsets, + const unsigned char *head) { + int num_channels = exr_header->num_channels; + + int num_scanline_blocks = 1; + if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { + num_scanline_blocks = 16; + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { + num_scanline_blocks = 32; + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { + num_scanline_blocks = 16; + } + + int data_width = exr_header->data_window[2] - exr_header->data_window[0] + 1; + int data_height = exr_header->data_window[3] - exr_header->data_window[1] + 1; + + size_t num_blocks = offsets.size(); + + std::vector<size_t> channel_offset_list; + int pixel_data_size = 0; + size_t channel_offset = 0; + tinyexr::ComputeChannelLayout(&channel_offset_list, &pixel_data_size, + &channel_offset, num_channels, + exr_header->channels); + + if (exr_header->tiled) { + size_t num_tiles = offsets.size(); // = # of blocks + + exr_image->tiles = static_cast<EXRTile *>( + malloc(sizeof(EXRTile) * static_cast<size_t>(num_tiles))); + + for (size_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) { + // Allocate memory for each tile. + exr_image->tiles[tile_idx].images = tinyexr::AllocateImage( + num_channels, exr_header->channels, exr_header->requested_pixel_types, + data_width, data_height); + + // 16 byte: tile coordinates + // 4 byte : data size + // ~ : data(uncompressed or compressed) + const unsigned char *data_ptr = + reinterpret_cast<const unsigned char *>(head + offsets[tile_idx]); + + int tile_coordinates[4]; + memcpy(tile_coordinates, data_ptr, sizeof(int) * 4); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[0])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[1])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[2])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[3])); + + // @todo{ LoD } + assert(tile_coordinates[2] == 0); + assert(tile_coordinates[3] == 0); + + int data_len; + memcpy(&data_len, data_ptr + 16, + sizeof(int)); // 16 = sizeof(tile_coordinates) + tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); + assert(data_len >= 4); + + // Move to data addr: 20 = 16 + 4; + data_ptr += 20; + + tinyexr::DecodeTiledPixelData( + exr_image->tiles[tile_idx].images, + &(exr_image->tiles[tile_idx].width), + &(exr_image->tiles[tile_idx].height), + exr_header->requested_pixel_types, data_ptr, + static_cast<size_t>(data_len), exr_header->compression_type, + exr_header->line_order, data_width, data_height, tile_coordinates[0], + tile_coordinates[1], exr_header->tile_size_x, exr_header->tile_size_y, + static_cast<size_t>(pixel_data_size), + static_cast<size_t>(exr_header->num_custom_attributes), + exr_header->custom_attributes, + static_cast<size_t>(exr_header->num_channels), exr_header->channels, + channel_offset_list); + + exr_image->tiles[tile_idx].offset_x = tile_coordinates[0]; + exr_image->tiles[tile_idx].offset_y = tile_coordinates[1]; + exr_image->tiles[tile_idx].level_x = tile_coordinates[2]; + exr_image->tiles[tile_idx].level_y = tile_coordinates[3]; + + exr_image->num_tiles = static_cast<int>(num_tiles); + } + } else { // scanline format + + exr_image->images = tinyexr::AllocateImage( + num_channels, exr_header->channels, exr_header->requested_pixel_types, + data_width, data_height); + +#ifdef _OPENMP +#pragma omp parallel for +#endif + for (int y = 0; y < static_cast<int>(num_blocks); y++) { + size_t y_idx = static_cast<size_t>(y); + const unsigned char *data_ptr = + reinterpret_cast<const unsigned char *>(head + offsets[y_idx]); + // 4 byte: scan line + // 4 byte: data size + // ~ : pixel data(uncompressed or compressed) + int line_no; + memcpy(&line_no, data_ptr, sizeof(int)); + int data_len; + memcpy(&data_len, data_ptr + 4, sizeof(int)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&line_no)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); + + int end_line_no = (std::min)(line_no + num_scanline_blocks, + (exr_header->data_window[3] + 1)); + + int num_lines = end_line_no - line_no; + assert(num_lines > 0); + + // Move to data addr: 8 = 4 + 4; + data_ptr += 8; + + // Adjust line_no with data_window.bmin.y + line_no -= exr_header->data_window[1]; + + tinyexr::DecodePixelData( + exr_image->images, exr_header->requested_pixel_types, data_ptr, + static_cast<size_t>(data_len), exr_header->compression_type, + exr_header->line_order, data_width, data_height, data_width, y, + line_no, num_lines, static_cast<size_t>(pixel_data_size), + static_cast<size_t>(exr_header->num_custom_attributes), + exr_header->custom_attributes, + static_cast<size_t>(exr_header->num_channels), exr_header->channels, + channel_offset_list); + } // omp parallel + } + + // Overwrite `pixel_type` with `requested_pixel_type`. + { + for (int c = 0; c < exr_header->num_channels; c++) { + exr_header->pixel_types[c] = exr_header->requested_pixel_types[c]; + } + } + + { + exr_image->num_channels = num_channels; + + exr_image->width = data_width; + exr_image->height = data_height; + } + + return TINYEXR_SUCCESS; +} + +static bool ReconstructLineOffsets( + std::vector<tinyexr::tinyexr_uint64> *offsets, size_t n, + const unsigned char *head, const unsigned char *marker, const size_t size) { + assert(head < marker); + assert(offsets->size() == n); + + for (size_t i = 0; i < n; i++) { + size_t offset = static_cast<size_t>(marker - head); + // Offset should not exceed whole EXR file/data size. + if (offset >= size) { + return false; + } + + int y; + unsigned int data_len; + + memcpy(&y, marker, sizeof(int)); + memcpy(&data_len, marker + 4, sizeof(unsigned int)); + + if (data_len >= size) { + return false; + } + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&y)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); + + (*offsets)[i] = offset; + + marker += data_len + 8; // 8 = 4 bytes(y) + 4 bytes(data_len) + } + + return true; +} + +static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header, + const unsigned char *head, + const unsigned char *marker, const size_t size, + const char **err) { + if (exr_image == NULL || exr_header == NULL || head == NULL || + marker == NULL || (size <= tinyexr::kEXRVersionSize)) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + int num_scanline_blocks = 1; + if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { + num_scanline_blocks = 16; + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { + num_scanline_blocks = 32; + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { + num_scanline_blocks = 16; + } + + int data_width = exr_header->data_window[2] - exr_header->data_window[0] + 1; + int data_height = exr_header->data_window[3] - exr_header->data_window[1] + 1; + + // Read offset tables. + size_t num_blocks; + + if (exr_header->chunk_count > 0) { + // Use `chunkCount` attribute. + num_blocks = static_cast<size_t>(exr_header->chunk_count); + } else if (exr_header->tiled) { + // @todo { LoD } + size_t num_x_tiles = static_cast<size_t>(data_width) / + static_cast<size_t>(exr_header->tile_size_x); + if (num_x_tiles * static_cast<size_t>(exr_header->tile_size_x) < + static_cast<size_t>(data_width)) { + num_x_tiles++; + } + size_t num_y_tiles = static_cast<size_t>(data_height) / + static_cast<size_t>(exr_header->tile_size_y); + if (num_y_tiles * static_cast<size_t>(exr_header->tile_size_y) < + static_cast<size_t>(data_height)) { + num_y_tiles++; + } + + num_blocks = num_x_tiles * num_y_tiles; + } else { + num_blocks = static_cast<size_t>(data_height) / + static_cast<size_t>(num_scanline_blocks); + if (num_blocks * static_cast<size_t>(num_scanline_blocks) < + static_cast<size_t>(data_height)) { + num_blocks++; + } + } + + std::vector<tinyexr::tinyexr_uint64> offsets(num_blocks); + + for (size_t y = 0; y < num_blocks; y++) { + tinyexr::tinyexr_uint64 offset; + memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64)); + tinyexr::swap8(&offset); + if (offset >= size) { + if (err) { + (*err) = "Invalid offset value."; + } + return TINYEXR_ERROR_INVALID_DATA; + } + marker += sizeof(tinyexr::tinyexr_uint64); // = 8 + offsets[y] = offset; + } + + // If line offsets are invalid, we try to reconstruct it. + // See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details. + for (size_t y = 0; y < num_blocks; y++) { + if (offsets[y] <= 0) { + // TODO(syoyo) Report as warning? + // if (err) { + // stringstream ss; + // ss << "Incomplete lineOffsets." << std::endl; + // (*err) += ss.str(); + //} + bool ret = + ReconstructLineOffsets(&offsets, num_blocks, head, marker, size); + if (ret) { + // OK + break; + } else { + if (err) { + (*err) = "Cannot reconstruct lineOffset table."; + } + return TINYEXR_ERROR_INVALID_DATA; + } + } + } + + return DecodeChunk(exr_image, exr_header, offsets, head); +} + +} // namespace tinyexr + +int LoadEXR(float **out_rgba, int *width, int *height, const char *filename, + const char **err) { + if (out_rgba == NULL) { + if (err) { + (*err) = "Invalid argument.\n"; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + EXRVersion exr_version; + EXRImage exr_image; + EXRHeader exr_header; + InitEXRHeader(&exr_header); + InitEXRImage(&exr_image); + + { + int ret = ParseEXRVersionFromFile(&exr_version, filename); + if (ret != TINYEXR_SUCCESS) { + return ret; + } + + if (exr_version.multipart || exr_version.non_image) { + if (err) { + (*err) = "Loading multipart or DeepImage is not supported yet.\n"; + } + return TINYEXR_ERROR_INVALID_DATA; // @fixme. + } + } + + { + int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err); + if (ret != TINYEXR_SUCCESS) { + return ret; + } + } + + // Read HALF channel as FLOAT. + for (int i = 0; i < exr_header.num_channels; i++) { + if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) { + exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT; + } + } + + { + int ret = LoadEXRImageFromFile(&exr_image, &exr_header, filename, err); + if (ret != TINYEXR_SUCCESS) { + return ret; + } + } + + // RGBA + int idxR = -1; + int idxG = -1; + int idxB = -1; + int idxA = -1; + for (int c = 0; c < exr_header.num_channels; c++) { + if (strcmp(exr_header.channels[c].name, "R") == 0) { + idxR = c; + } else if (strcmp(exr_header.channels[c].name, "G") == 0) { + idxG = c; + } else if (strcmp(exr_header.channels[c].name, "B") == 0) { + idxB = c; + } else if (strcmp(exr_header.channels[c].name, "A") == 0) { + idxA = c; + } + } + + if (idxR == -1) { + if (err) { + (*err) = "R channel not found\n"; + } + + // @todo { free exr_image } + return TINYEXR_ERROR_INVALID_DATA; + } + + if (idxG == -1) { + if (err) { + (*err) = "G channel not found\n"; + } + // @todo { free exr_image } + return TINYEXR_ERROR_INVALID_DATA; + } + + if (idxB == -1) { + if (err) { + (*err) = "B channel not found\n"; + } + // @todo { free exr_image } + return TINYEXR_ERROR_INVALID_DATA; + } + + (*out_rgba) = reinterpret_cast<float *>( + malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * + static_cast<size_t>(exr_image.height))); + for (int i = 0; i < exr_image.width * exr_image.height; i++) { + (*out_rgba)[4 * i + 0] = + reinterpret_cast<float **>(exr_image.images)[idxR][i]; + (*out_rgba)[4 * i + 1] = + reinterpret_cast<float **>(exr_image.images)[idxG][i]; + (*out_rgba)[4 * i + 2] = + reinterpret_cast<float **>(exr_image.images)[idxB][i]; + if (idxA != -1) { + (*out_rgba)[4 * i + 3] = + reinterpret_cast<float **>(exr_image.images)[idxA][i]; + } else { + (*out_rgba)[4 * i + 3] = 1.0; + } + } + + (*width) = exr_image.width; + (*height) = exr_image.height; + + FreeEXRHeader(&exr_header); + FreeEXRImage(&exr_image); + + return TINYEXR_SUCCESS; +} + +int ParseEXRHeaderFromMemory(EXRHeader *exr_header, const EXRVersion *version, + const unsigned char *memory, size_t size, + const char **err) { + if (memory == NULL || exr_header == NULL) { + if (err) { + (*err) = "Invalid argument.\n"; + } + + // Invalid argument + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + if (size < tinyexr::kEXRVersionSize) { + return TINYEXR_ERROR_INVALID_DATA; + } + + const unsigned char *marker = memory + tinyexr::kEXRVersionSize; + size_t marker_size = size - tinyexr::kEXRVersionSize; + + tinyexr::HeaderInfo info; + info.clear(); + + std::string err_str; + int ret = ParseEXRHeader(&info, NULL, version, &err_str, marker, marker_size); + + if (ret != TINYEXR_SUCCESS) { + if (err && !err_str.empty()) { + (*err) = strdup(err_str.c_str()); // May leak + } + } + + ConvertHeader(exr_header, info); + + // transfoer `tiled` from version. + exr_header->tiled = version->tiled; + + return ret; +} + +int LoadEXRFromMemory(float *out_rgba, const unsigned char *memory, size_t size, + const char **err) { + if (out_rgba == NULL || memory == NULL) { + if (err) { + (*err) = "Invalid argument.\n"; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + EXRVersion exr_version; + EXRImage exr_image; + EXRHeader exr_header; + + InitEXRHeader(&exr_header); + + int ret = ParseEXRVersionFromMemory(&exr_version, memory, size); + if (ret != TINYEXR_SUCCESS) { + return ret; + } + + ret = ParseEXRHeaderFromMemory(&exr_header, &exr_version, memory, size, err); + if (ret != TINYEXR_SUCCESS) { + return ret; + } + + InitEXRImage(&exr_image); + ret = LoadEXRImageFromMemory(&exr_image, &exr_header, memory, size, err); + if (ret != TINYEXR_SUCCESS) { + return ret; + } + + // RGBA + int idxR = -1; + int idxG = -1; + int idxB = -1; + int idxA = -1; + for (int c = 0; c < exr_header.num_channels; c++) { + if (strcmp(exr_header.channels[c].name, "R") == 0) { + idxR = c; + } else if (strcmp(exr_header.channels[c].name, "G") == 0) { + idxG = c; + } else if (strcmp(exr_header.channels[c].name, "B") == 0) { + idxB = c; + } else if (strcmp(exr_header.channels[c].name, "A") == 0) { + idxA = c; + } + } + + if (idxR == -1) { + if (err) { + (*err) = "R channel not found\n"; + } + + // @todo { free exr_image } + return TINYEXR_ERROR_INVALID_DATA; + } + + if (idxG == -1) { + if (err) { + (*err) = "G channel not found\n"; + } + // @todo { free exr_image } + return TINYEXR_ERROR_INVALID_DATA; + } + + if (idxB == -1) { + if (err) { + (*err) = "B channel not found\n"; + } + // @todo { free exr_image } + return TINYEXR_ERROR_INVALID_DATA; + } + + // Assume `out_rgba` have enough memory allocated. + for (int i = 0; i < exr_image.width * exr_image.height; i++) { + out_rgba[4 * i + 0] = reinterpret_cast<float **>(exr_image.images)[idxR][i]; + out_rgba[4 * i + 1] = reinterpret_cast<float **>(exr_image.images)[idxG][i]; + out_rgba[4 * i + 2] = reinterpret_cast<float **>(exr_image.images)[idxB][i]; + if (idxA > 0) { + out_rgba[4 * i + 3] = + reinterpret_cast<float **>(exr_image.images)[idxA][i]; + } else { + out_rgba[4 * i + 3] = 1.0; + } + } + + return TINYEXR_SUCCESS; +} + +int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *exr_header, + const char *filename, const char **err) { + if (exr_image == NULL) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + +#ifdef _WIN32 + FILE *fp = NULL; + fopen_s(&fp, filename, "rb"); +#else + FILE *fp = fopen(filename, "rb"); +#endif + if (!fp) { + if (err) { + (*err) = "Cannot read file."; + } + return TINYEXR_ERROR_CANT_OPEN_FILE; + } + + size_t filesize; + // Compute size + fseek(fp, 0, SEEK_END); + filesize = static_cast<size_t>(ftell(fp)); + fseek(fp, 0, SEEK_SET); + + std::vector<unsigned char> buf(filesize); // @todo { use mmap } + { + size_t ret; + ret = fread(&buf[0], 1, filesize, fp); + assert(ret == filesize); + fclose(fp); + (void)ret; + } + + return LoadEXRImageFromMemory(exr_image, exr_header, &buf.at(0), filesize, + err); +} + +int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *exr_header, + const unsigned char *memory, const size_t size, + const char **err) { + if (exr_image == NULL || memory == NULL || + (size < tinyexr::kEXRVersionSize)) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + if (exr_header->header_len == 0) { + if (err) { + (*err) = "EXRHeader is not initialized."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + const unsigned char *head = memory; + const unsigned char *marker = reinterpret_cast<const unsigned char *>( + memory + exr_header->header_len + + 8); // +8 for magic number + version header. + return tinyexr::DecodeEXRImage(exr_image, exr_header, head, marker, size, + err); +} + +size_t SaveEXRImageToMemory(const EXRImage *exr_image, + const EXRHeader *exr_header, + unsigned char **memory_out, const char **err) { + if (exr_image == NULL || memory_out == NULL || + exr_header->compression_type < 0) { + if (err) { + (*err) = "Invalid argument."; + } + return 0; // @fixme + } + +#if !TINYEXR_USE_PIZ + if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { + if (err) { + (*err) = "PIZ compression is not supported in this build."; + } + return 0; + } +#endif + +#if !TINYEXR_USE_ZFP + if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { + if (err) { + (*err) = "ZFP compression is not supported in this build."; + } + return 0; + } +#endif + +#if TINYEXR_USE_ZFP + for (size_t i = 0; i < static_cast<size_t>(exr_header->num_channels); i++) { + if (exr_header->requested_pixel_types[i] != TINYEXR_PIXELTYPE_FLOAT) { + if (err) { + (*err) = "Pixel type must be FLOAT for ZFP compression."; + } + return 0; + } + } +#endif + + std::vector<unsigned char> memory; + + // Header + { + const char header[] = {0x76, 0x2f, 0x31, 0x01}; + memory.insert(memory.end(), header, header + 4); + } + + // Version, scanline. + { + char marker[] = {2, 0, 0, 0}; + /* @todo + if (exr_header->tiled) { + marker[1] |= 0x2; + } + if (exr_header->long_name) { + marker[1] |= 0x4; + } + if (exr_header->non_image) { + marker[1] |= 0x8; + } + if (exr_header->multipart) { + marker[1] |= 0x10; + } + */ + memory.insert(memory.end(), marker, marker + 4); + } + + int num_scanlines = 1; + if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { + num_scanlines = 16; + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { + num_scanlines = 32; + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { + num_scanlines = 16; + } + + // Write attributes. + std::vector<tinyexr::ChannelInfo> channels; + { + std::vector<unsigned char> data; + + for (int c = 0; c < exr_header->num_channels; c++) { + tinyexr::ChannelInfo info; + info.p_linear = 0; + info.pixel_type = exr_header->requested_pixel_types[c]; + info.x_sampling = 1; + info.y_sampling = 1; + info.name = std::string(exr_header->channels[c].name); + channels.push_back(info); + } + + tinyexr::WriteChannelInfo(data, channels); + + tinyexr::WriteAttributeToMemory(&memory, "channels", "chlist", &data.at(0), + static_cast<int>(data.size())); + } + + { + int comp = exr_header->compression_type; + tinyexr::swap4(reinterpret_cast<unsigned int *>(&comp)); + tinyexr::WriteAttributeToMemory( + &memory, "compression", "compression", + reinterpret_cast<const unsigned char *>(&comp), 1); + } + + { + int data[4] = {0, 0, exr_image->width - 1, exr_image->height - 1}; + tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[0])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[1])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[2])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[3])); + tinyexr::WriteAttributeToMemory( + &memory, "dataWindow", "box2i", + reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4); + tinyexr::WriteAttributeToMemory( + &memory, "displayWindow", "box2i", + reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4); + } + + { + unsigned char line_order = 0; // @fixme { read line_order from EXRHeader } + tinyexr::WriteAttributeToMemory(&memory, "lineOrder", "lineOrder", + &line_order, 1); + } + + { + float aspectRatio = 1.0f; + tinyexr::swap4(reinterpret_cast<unsigned int *>(&aspectRatio)); + tinyexr::WriteAttributeToMemory( + &memory, "pixelAspectRatio", "float", + reinterpret_cast<const unsigned char *>(&aspectRatio), sizeof(float)); + } + + { + float center[2] = {0.0f, 0.0f}; + tinyexr::swap4(reinterpret_cast<unsigned int *>(¢er[0])); + tinyexr::swap4(reinterpret_cast<unsigned int *>(¢er[1])); + tinyexr::WriteAttributeToMemory( + &memory, "screenWindowCenter", "v2f", + reinterpret_cast<const unsigned char *>(center), 2 * sizeof(float)); + } + + { + float w = static_cast<float>(exr_image->width); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&w)); + tinyexr::WriteAttributeToMemory(&memory, "screenWindowWidth", "float", + reinterpret_cast<const unsigned char *>(&w), + sizeof(float)); + } + + // Custom attributes + if (exr_header->num_custom_attributes > 0) { + for (int i = 0; i < exr_header->num_custom_attributes; i++) { + tinyexr::WriteAttributeToMemory( + &memory, exr_header->custom_attributes[i].name, + exr_header->custom_attributes[i].type, + reinterpret_cast<const unsigned char *>( + exr_header->custom_attributes[i].value), + exr_header->custom_attributes[i].size); + } + } + + { // end of header + unsigned char e = 0; + memory.push_back(e); + } + + int num_blocks = exr_image->height / num_scanlines; + if (num_blocks * num_scanlines < exr_image->height) { + num_blocks++; + } + + std::vector<tinyexr::tinyexr_uint64> offsets(static_cast<size_t>(num_blocks)); + + size_t headerSize = memory.size(); + tinyexr::tinyexr_uint64 offset = + headerSize + + static_cast<size_t>(num_blocks) * + sizeof( + tinyexr::tinyexr_int64); // sizeof(header) + sizeof(offsetTable) + + std::vector<unsigned char> data; + + std::vector<std::vector<unsigned char> > data_list( + static_cast<size_t>(num_blocks)); + std::vector<size_t> channel_offset_list( + static_cast<size_t>(exr_header->num_channels)); + + int pixel_data_size = 0; + size_t channel_offset = 0; + for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { + channel_offset_list[c] = channel_offset; + if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { + pixel_data_size += sizeof(unsigned short); + channel_offset += sizeof(unsigned short); + } else if (exr_header->requested_pixel_types[c] == + TINYEXR_PIXELTYPE_FLOAT) { + pixel_data_size += sizeof(float); + channel_offset += sizeof(float); + } else if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT) { + pixel_data_size += sizeof(unsigned int); + channel_offset += sizeof(unsigned int); + } else { + assert(0); + } + } + +#if TINYEXR_USE_ZFP + tinyexr::ZFPCompressionParam zfp_compression_param; + + // Use ZFP compression parameter from custom attributes(if such a parameter + // exists) + { + bool ret = tinyexr::FindZFPCompressionParam( + &zfp_compression_param, exr_header->custom_attributes, + exr_header->num_custom_attributes); + + if (!ret) { + // Use predefined compression parameter. + zfp_compression_param.type = 0; + zfp_compression_param.rate = 2; + } + } +#endif + +// Use signed int since some OpenMP compiler doesn't allow unsigned type for +// `parallel for` +#ifdef _OPENMP +#pragma omp parallel for +#endif + for (int i = 0; i < num_blocks; i++) { + size_t ii = static_cast<size_t>(i); + int start_y = num_scanlines * i; + int endY = (std::min)(num_scanlines * (i + 1), exr_image->height); + int h = endY - start_y; + + std::vector<unsigned char> buf( + static_cast<size_t>(exr_image->width * h * pixel_data_size)); + + for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { + if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { + if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { + for (int y = 0; y < h; y++) { + for (int x = 0; x < exr_image->width; x++) { + tinyexr::FP16 h16; + h16.u = reinterpret_cast<unsigned short **>( + exr_image->images)[c][(y + start_y) * exr_image->width + x]; + + tinyexr::FP32 f32 = half_to_float(h16); + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&f32.f)); + + // Assume increasing Y + float *line_ptr = reinterpret_cast<float *>(&buf.at( + static_cast<size_t>(pixel_data_size * y * exr_image->width) + + channel_offset_list[c] * + static_cast<size_t>(exr_image->width))); + line_ptr[x] = f32.f; + } + } + } else if (exr_header->requested_pixel_types[c] == + TINYEXR_PIXELTYPE_HALF) { + for (int y = 0; y < h; y++) { + for (int x = 0; x < exr_image->width; x++) { + unsigned short val = reinterpret_cast<unsigned short **>( + exr_image->images)[c][(y + start_y) * exr_image->width + x]; + + tinyexr::swap2(&val); + + // Assume increasing Y + unsigned short *line_ptr = reinterpret_cast<unsigned short *>( + &buf.at(static_cast<size_t>(pixel_data_size * y * + exr_image->width) + + channel_offset_list[c] * + static_cast<size_t>(exr_image->width))); + line_ptr[x] = val; + } + } + } else { + assert(0); + } + + } else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { + if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { + for (int y = 0; y < h; y++) { + for (int x = 0; x < exr_image->width; x++) { + tinyexr::FP32 f32; + f32.f = reinterpret_cast<float **>( + exr_image->images)[c][(y + start_y) * exr_image->width + x]; + + tinyexr::FP16 h16; + h16 = float_to_half_full(f32); + + tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u)); + + // Assume increasing Y + unsigned short *line_ptr = reinterpret_cast<unsigned short *>( + &buf.at(static_cast<size_t>(pixel_data_size * y * + exr_image->width) + + channel_offset_list[c] * + static_cast<size_t>(exr_image->width))); + line_ptr[x] = h16.u; + } + } + } else if (exr_header->requested_pixel_types[c] == + TINYEXR_PIXELTYPE_FLOAT) { + for (int y = 0; y < h; y++) { + for (int x = 0; x < exr_image->width; x++) { + float val = reinterpret_cast<float **>( + exr_image->images)[c][(y + start_y) * exr_image->width + x]; + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); + + // Assume increasing Y + float *line_ptr = reinterpret_cast<float *>(&buf.at( + static_cast<size_t>(pixel_data_size * y * exr_image->width) + + channel_offset_list[c] * + static_cast<size_t>(exr_image->width))); + line_ptr[x] = val; + } + } + } else { + assert(0); + } + } else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_UINT) { + for (int y = 0; y < h; y++) { + for (int x = 0; x < exr_image->width; x++) { + unsigned int val = reinterpret_cast<unsigned int **>( + exr_image->images)[c][(y + start_y) * exr_image->width + x]; + + tinyexr::swap4(&val); + + // Assume increasing Y + unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at( + static_cast<size_t>(pixel_data_size * y * exr_image->width) + + channel_offset_list[c] * + static_cast<size_t>(exr_image->width))); + line_ptr[x] = val; + } + } + } + } + + if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_NONE) { + // 4 byte: scan line + // 4 byte: data size + // ~ : pixel data(uncompressed) + std::vector<unsigned char> header(8); + unsigned int data_len = static_cast<unsigned int>(buf.size()); + memcpy(&header.at(0), &start_y, sizeof(int)); + memcpy(&header.at(4), &data_len, sizeof(unsigned int)); + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); + + data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); + data_list[ii].insert(data_list[ii].end(), buf.begin(), + buf.begin() + data_len); + + } else if ((exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || + (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) { +#if TINYEXR_USE_MINIZ + std::vector<unsigned char> block(tinyexr::miniz::mz_compressBound( + static_cast<unsigned long>(buf.size()))); +#else + std::vector<unsigned char> block( + compressBound(static_cast<uLong>(buf.size()))); +#endif + tinyexr::tinyexr_uint64 outSize = block.size(); + + tinyexr::CompressZip(&block.at(0), outSize, + reinterpret_cast<const unsigned char *>(&buf.at(0)), + static_cast<unsigned long>(buf.size())); + + // 4 byte: scan line + // 4 byte: data size + // ~ : pixel data(compressed) + std::vector<unsigned char> header(8); + unsigned int data_len = static_cast<unsigned int>(outSize); // truncate + memcpy(&header.at(0), &start_y, sizeof(int)); + memcpy(&header.at(4), &data_len, sizeof(unsigned int)); + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); + + data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); + data_list[ii].insert(data_list[ii].end(), block.begin(), + block.begin() + data_len); + + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_RLE) { + // (buf.size() * 3) / 2 would be enough. + std::vector<unsigned char> block((buf.size() * 3) / 2); + + tinyexr::tinyexr_uint64 outSize = block.size(); + + tinyexr::CompressRle(&block.at(0), outSize, + reinterpret_cast<const unsigned char *>(&buf.at(0)), + static_cast<unsigned long>(buf.size())); + + // 4 byte: scan line + // 4 byte: data size + // ~ : pixel data(compressed) + std::vector<unsigned char> header(8); + unsigned int data_len = static_cast<unsigned int>(outSize); // truncate + memcpy(&header.at(0), &start_y, sizeof(int)); + memcpy(&header.at(4), &data_len, sizeof(unsigned int)); + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); + + data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); + data_list[ii].insert(data_list[ii].end(), block.begin(), + block.begin() + data_len); + + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { +#if TINYEXR_USE_PIZ + unsigned int bufLen = + 1024 + static_cast<unsigned int>( + 1.2 * static_cast<unsigned int>( + buf.size())); // @fixme { compute good bound. } + std::vector<unsigned char> block(bufLen); + unsigned int outSize = static_cast<unsigned int>(block.size()); + + CompressPiz(&block.at(0), outSize, + reinterpret_cast<const unsigned char *>(&buf.at(0)), + buf.size(), channels, exr_image->width, h); + + // 4 byte: scan line + // 4 byte: data size + // ~ : pixel data(compressed) + std::vector<unsigned char> header(8); + unsigned int data_len = outSize; + memcpy(&header.at(0), &start_y, sizeof(int)); + memcpy(&header.at(4), &data_len, sizeof(unsigned int)); + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); + + data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); + data_list[ii].insert(data_list[ii].end(), block.begin(), + block.begin() + data_len); + +#else + assert(0); +#endif + } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { +#if TINYEXR_USE_ZFP + std::vector<unsigned char> block; + unsigned int outSize; + + tinyexr::CompressZfp( + &block, &outSize, reinterpret_cast<const float *>(&buf.at(0)), + exr_image->width, h, exr_header->num_channels, zfp_compression_param); + + // 4 byte: scan line + // 4 byte: data size + // ~ : pixel data(compressed) + std::vector<unsigned char> header(8); + unsigned int data_len = outSize; + memcpy(&header.at(0), &start_y, sizeof(int)); + memcpy(&header.at(4), &data_len, sizeof(unsigned int)); + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); + + data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); + data_list[ii].insert(data_list[ii].end(), block.begin(), + block.begin() + data_len); + +#else + assert(0); +#endif + } else { + assert(0); + } + } // omp parallel + + for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) { + data.insert(data.end(), data_list[i].begin(), data_list[i].end()); + + offsets[i] = offset; + tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i])); + offset += data_list[i].size(); + } + + { + memory.insert( + memory.end(), reinterpret_cast<unsigned char *>(&offsets.at(0)), + reinterpret_cast<unsigned char *>(&offsets.at(0)) + + sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(num_blocks)); + } + + { memory.insert(memory.end(), data.begin(), data.end()); } + + assert(memory.size() > 0); + + (*memory_out) = static_cast<unsigned char *>(malloc(memory.size())); + memcpy((*memory_out), &memory.at(0), memory.size()); + + return memory.size(); // OK +} + +int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header, + const char *filename, const char **err) { + if (exr_image == NULL || filename == NULL || + exr_header->compression_type < 0) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + +#if !TINYEXR_USE_PIZ + if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { + if (err) { + (*err) = "PIZ compression is not supported in this build."; + } + return 0; + } +#endif + +#if !TINYEXR_USE_ZFP + if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { + if (err) { + (*err) = "ZFP compression is not supported in this build."; + } + return 0; + } +#endif + +#ifdef _WIN32 + FILE *fp = NULL; + fopen_s(&fp, filename, "wb"); +#else + FILE *fp = fopen(filename, "wb"); +#endif + if (!fp) { + if (err) { + (*err) = "Cannot write a file."; + } + return TINYEXR_ERROR_CANT_OPEN_FILE; + } + + unsigned char *mem = NULL; + size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err); + + if ((mem_size > 0) && mem) { + fwrite(mem, 1, mem_size, fp); + } + free(mem); + + fclose(fp); + + return TINYEXR_SUCCESS; +} + +int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) { + if (deep_image == NULL) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + FILE *fp = fopen(filename, "rb"); + if (!fp) { + if (err) { + (*err) = "Cannot read file."; + } + return TINYEXR_ERROR_CANT_OPEN_FILE; + } + + size_t filesize; + // Compute size + fseek(fp, 0, SEEK_END); + filesize = static_cast<size_t>(ftell(fp)); + fseek(fp, 0, SEEK_SET); + + if (filesize == 0) { + fclose(fp); + if (err) { + (*err) = "File size is zero."; + } + return TINYEXR_ERROR_INVALID_FILE; + } + + std::vector<char> buf(filesize); // @todo { use mmap } + { + size_t ret; + ret = fread(&buf[0], 1, filesize, fp); + assert(ret == filesize); + (void)ret; + } + fclose(fp); + + const char *head = &buf[0]; + const char *marker = &buf[0]; + + // Header check. + { + const char header[] = {0x76, 0x2f, 0x31, 0x01}; + + if (memcmp(marker, header, 4) != 0) { + if (err) { + (*err) = "Invalid magic number."; + } + return TINYEXR_ERROR_INVALID_MAGIC_NUMBER; + } + marker += 4; + } + + // Version, scanline. + { + // ver 2.0, scanline, deep bit on(0x800) + // must be [2, 0, 0, 0] + if (marker[0] != 2 || marker[1] != 8 || marker[2] != 0 || marker[3] != 0) { + if (err) { + (*err) = "Unsupported version or scanline."; + } + return TINYEXR_ERROR_UNSUPPORTED_FORMAT; + } + + marker += 4; + } + + int dx = -1; + int dy = -1; + int dw = -1; + int dh = -1; + int num_scanline_blocks = 1; // 16 for ZIP compression. + int compression_type = -1; + int num_channels = -1; + std::vector<tinyexr::ChannelInfo> channels; + + // Read attributes + size_t size = filesize - tinyexr::kEXRVersionSize; + for (;;) { + if (0 == size) { + return TINYEXR_ERROR_INVALID_DATA; + } else if (marker[0] == '\0') { + size--; + break; + } + + std::string attr_name; + std::string attr_type; + std::vector<unsigned char> data; + size_t marker_size; + if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size, + marker, size)) { + return TINYEXR_ERROR_INVALID_DATA; + } + marker += marker_size; + size -= marker_size; + + if (attr_name.compare("compression") == 0) { + compression_type = data[0]; + if (compression_type > TINYEXR_COMPRESSIONTYPE_PIZ) { + if (err) { + (*err) = "Unsupported compression type."; + } + return TINYEXR_ERROR_UNSUPPORTED_FORMAT; + } + + if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { + num_scanline_blocks = 16; + } + + } else if (attr_name.compare("channels") == 0) { + // name: zero-terminated string, from 1 to 255 bytes long + // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2 + // pLinear: unsigned char, possible values are 0 and 1 + // reserved: three chars, should be zero + // xSampling: int + // ySampling: int + + tinyexr::ReadChannelInfo(channels, data); + + num_channels = static_cast<int>(channels.size()); + + if (num_channels < 1) { + if (err) { + (*err) = "Invalid channels format."; + } + return TINYEXR_ERROR_INVALID_DATA; + } + + } else if (attr_name.compare("dataWindow") == 0) { + memcpy(&dx, &data.at(0), sizeof(int)); + memcpy(&dy, &data.at(4), sizeof(int)); + memcpy(&dw, &data.at(8), sizeof(int)); + memcpy(&dh, &data.at(12), sizeof(int)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&dx)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&dy)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&dw)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&dh)); + + } else if (attr_name.compare("displayWindow") == 0) { + int x; + int y; + int w; + int h; + memcpy(&x, &data.at(0), sizeof(int)); + memcpy(&y, &data.at(4), sizeof(int)); + memcpy(&w, &data.at(8), sizeof(int)); + memcpy(&h, &data.at(12), sizeof(int)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&x)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&y)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&w)); + tinyexr::swap4(reinterpret_cast<unsigned int *>(&h)); + } + } + + assert(dx >= 0); + assert(dy >= 0); + assert(dw >= 0); + assert(dh >= 0); + assert(num_channels >= 1); + + int data_width = dw - dx + 1; + int data_height = dh - dy + 1; + + std::vector<float> image( + static_cast<size_t>(data_width * data_height * 4)); // 4 = RGBA + + // Read offset tables. + int num_blocks = data_height / num_scanline_blocks; + if (num_blocks * num_scanline_blocks < data_height) { + num_blocks++; + } + + std::vector<tinyexr::tinyexr_int64> offsets(static_cast<size_t>(num_blocks)); + + for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) { + tinyexr::tinyexr_int64 offset; + memcpy(&offset, marker, sizeof(tinyexr::tinyexr_int64)); + tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offset)); + marker += sizeof(tinyexr::tinyexr_int64); // = 8 + offsets[y] = offset; + } + +#if TINYEXR_USE_PIZ + if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) || + (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) || + (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || + (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) || + (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ)) { +#else + if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) || + (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) || + (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || + (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) { +#endif + // OK + } else { + if (err) { + (*err) = "Unsupported format."; + } + return TINYEXR_ERROR_UNSUPPORTED_FORMAT; + } + + deep_image->image = static_cast<float ***>( + malloc(sizeof(float **) * static_cast<size_t>(num_channels))); + for (int c = 0; c < num_channels; c++) { + deep_image->image[c] = static_cast<float **>( + malloc(sizeof(float *) * static_cast<size_t>(data_height))); + for (int y = 0; y < data_height; y++) { + } + } + + deep_image->offset_table = static_cast<int **>( + malloc(sizeof(int *) * static_cast<size_t>(data_height))); + for (int y = 0; y < data_height; y++) { + deep_image->offset_table[y] = static_cast<int *>( + malloc(sizeof(int) * static_cast<size_t>(data_width))); + } + + for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) { + const unsigned char *data_ptr = + reinterpret_cast<const unsigned char *>(head + offsets[y]); + + // int: y coordinate + // int64: packed size of pixel offset table + // int64: packed size of sample data + // int64: unpacked size of sample data + // compressed pixel offset table + // compressed sample data + int line_no; + tinyexr::tinyexr_int64 packedOffsetTableSize; + tinyexr::tinyexr_int64 packedSampleDataSize; + tinyexr::tinyexr_int64 unpackedSampleDataSize; + memcpy(&line_no, data_ptr, sizeof(int)); + memcpy(&packedOffsetTableSize, data_ptr + 4, + sizeof(tinyexr::tinyexr_int64)); + memcpy(&packedSampleDataSize, data_ptr + 12, + sizeof(tinyexr::tinyexr_int64)); + memcpy(&unpackedSampleDataSize, data_ptr + 20, + sizeof(tinyexr::tinyexr_int64)); + + tinyexr::swap4(reinterpret_cast<unsigned int *>(&line_no)); + tinyexr::swap8( + reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedOffsetTableSize)); + tinyexr::swap8( + reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedSampleDataSize)); + tinyexr::swap8( + reinterpret_cast<tinyexr::tinyexr_uint64 *>(&unpackedSampleDataSize)); + + std::vector<int> pixelOffsetTable(static_cast<size_t>(data_width)); + + // decode pixel offset table. + { + unsigned long dstLen = + static_cast<unsigned long>(pixelOffsetTable.size() * sizeof(int)); + tinyexr::DecompressZip( + reinterpret_cast<unsigned char *>(&pixelOffsetTable.at(0)), &dstLen, + data_ptr + 28, static_cast<unsigned long>(packedOffsetTableSize)); + + assert(dstLen == pixelOffsetTable.size() * sizeof(int)); + for (size_t i = 0; i < static_cast<size_t>(data_width); i++) { + deep_image->offset_table[y][i] = pixelOffsetTable[i]; + } + } + + std::vector<unsigned char> sample_data( + static_cast<size_t>(unpackedSampleDataSize)); + + // decode sample data. + { + unsigned long dstLen = static_cast<unsigned long>(unpackedSampleDataSize); + tinyexr::DecompressZip( + reinterpret_cast<unsigned char *>(&sample_data.at(0)), &dstLen, + data_ptr + 28 + packedOffsetTableSize, + static_cast<unsigned long>(packedSampleDataSize)); + assert(dstLen == static_cast<unsigned long>(unpackedSampleDataSize)); + } + + // decode sample + int sampleSize = -1; + std::vector<int> channel_offset_list(static_cast<size_t>(num_channels)); + { + int channel_offset = 0; + for (size_t i = 0; i < static_cast<size_t>(num_channels); i++) { + channel_offset_list[i] = channel_offset; + if (channels[i].pixel_type == TINYEXR_PIXELTYPE_UINT) { // UINT + channel_offset += 4; + } else if (channels[i].pixel_type == TINYEXR_PIXELTYPE_HALF) { // half + channel_offset += 2; + } else if (channels[i].pixel_type == + TINYEXR_PIXELTYPE_FLOAT) { // float + channel_offset += 4; + } else { + assert(0); + } + } + sampleSize = channel_offset; + } + assert(sampleSize >= 2); + + assert(static_cast<size_t>( + pixelOffsetTable[static_cast<size_t>(data_width - 1)] * + sampleSize) == sample_data.size()); + int samples_per_line = static_cast<int>(sample_data.size()) / sampleSize; + + // + // Alloc memory + // + + // + // pixel data is stored as image[channels][pixel_samples] + // + { + tinyexr::tinyexr_uint64 data_offset = 0; + for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { + deep_image->image[c][y] = static_cast<float *>( + malloc(sizeof(float) * static_cast<size_t>(samples_per_line))); + + if (channels[c].pixel_type == 0) { // UINT + for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { + unsigned int ui = *reinterpret_cast<unsigned int *>( + &sample_data.at(data_offset + x * sizeof(int))); + deep_image->image[c][y][x] = static_cast<float>(ui); // @fixme + } + data_offset += + sizeof(unsigned int) * static_cast<size_t>(samples_per_line); + } else if (channels[c].pixel_type == 1) { // half + for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { + tinyexr::FP16 f16; + f16.u = *reinterpret_cast<unsigned short *>( + &sample_data.at(data_offset + x * sizeof(short))); + tinyexr::FP32 f32 = half_to_float(f16); + deep_image->image[c][y][x] = f32.f; + } + data_offset += sizeof(short) * static_cast<size_t>(samples_per_line); + } else { // float + for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { + float f = *reinterpret_cast<float *>( + &sample_data.at(data_offset + x * sizeof(float))); + deep_image->image[c][y][x] = f; + } + data_offset += sizeof(float) * static_cast<size_t>(samples_per_line); + } + } + } + } // y + + deep_image->width = data_width; + deep_image->height = data_height; + + deep_image->channel_names = static_cast<const char **>( + malloc(sizeof(const char *) * static_cast<size_t>(num_channels))); + for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { +#ifdef _WIN32 + deep_image->channel_names[c] = _strdup(channels[c].name.c_str()); +#else + deep_image->channel_names[c] = strdup(channels[c].name.c_str()); +#endif + } + deep_image->num_channels = num_channels; + + return TINYEXR_SUCCESS; +} + +void InitEXRImage(EXRImage *exr_image) { + if (exr_image == NULL) { + return; + } + + exr_image->width = 0; + exr_image->height = 0; + exr_image->num_channels = 0; + + exr_image->images = NULL; + exr_image->tiles = NULL; + + exr_image->num_tiles = 0; +} + +void InitEXRHeader(EXRHeader *exr_header) { + if (exr_header == NULL) { + return; + } + + memset(exr_header, 0, sizeof(EXRHeader)); +} + +int FreeEXRHeader(EXRHeader *exr_header) { + if (exr_header == NULL) { + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + if (exr_header->channels) { + free(exr_header->channels); + } + + if (exr_header->pixel_types) { + free(exr_header->pixel_types); + } + + if (exr_header->requested_pixel_types) { + free(exr_header->requested_pixel_types); + } + + for (int i = 0; i < exr_header->num_custom_attributes; i++) { + if (exr_header->custom_attributes[i].value) { + free(exr_header->custom_attributes[i].value); + } + } + + return TINYEXR_SUCCESS; +} + +int FreeEXRImage(EXRImage *exr_image) { + if (exr_image == NULL) { + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + for (int i = 0; i < exr_image->num_channels; i++) { + if (exr_image->images && exr_image->images[i]) { + free(exr_image->images[i]); + } + } + + if (exr_image->images) { + free(exr_image->images); + } + + if (exr_image->tiles) { + for (int tid = 0; tid < exr_image->num_tiles; tid++) { + for (int i = 0; i < exr_image->num_channels; i++) { + if (exr_image->tiles[tid].images && exr_image->tiles[tid].images[i]) { + free(exr_image->tiles[tid].images[i]); + } + } + if (exr_image->tiles[tid].images) { + free(exr_image->tiles[tid].images); + } + } + } + + return TINYEXR_SUCCESS; +} + +int ParseEXRHeaderFromFile(EXRHeader *exr_header, const EXRVersion *exr_version, + const char *filename, const char **err) { + if (exr_header == NULL || exr_version == NULL || filename == NULL) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + +#ifdef _WIN32 + FILE *fp = NULL; + fopen_s(&fp, filename, "rb"); +#else + FILE *fp = fopen(filename, "rb"); +#endif + if (!fp) { + if (err) { + (*err) = "Cannot read file."; + } + return TINYEXR_ERROR_CANT_OPEN_FILE; + } + + size_t filesize; + // Compute size + fseek(fp, 0, SEEK_END); + filesize = static_cast<size_t>(ftell(fp)); + fseek(fp, 0, SEEK_SET); + + std::vector<unsigned char> buf(filesize); // @todo { use mmap } + { + size_t ret; + ret = fread(&buf[0], 1, filesize, fp); + assert(ret == filesize); + fclose(fp); + + if (ret != filesize) { + if (err) { + (*err) = "fread error."; + } + return TINYEXR_ERROR_INVALID_FILE; + } + } + + return ParseEXRHeaderFromMemory(exr_header, exr_version, &buf.at(0), filesize, + err); +} + +int ParseEXRMultipartHeaderFromMemory(EXRHeader ***exr_headers, + int *num_headers, + const EXRVersion *exr_version, + const unsigned char *memory, size_t size, + const char **err) { + if (memory == NULL || exr_headers == NULL || num_headers == NULL || + exr_version == NULL) { + // Invalid argument + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + if (size < tinyexr::kEXRVersionSize) { + return TINYEXR_ERROR_INVALID_DATA; + } + + const unsigned char *marker = memory + tinyexr::kEXRVersionSize; + size_t marker_size = size - tinyexr::kEXRVersionSize; + + std::vector<tinyexr::HeaderInfo> infos; + + for (;;) { + tinyexr::HeaderInfo info; + info.clear(); + + std::string err_str; + bool empty_header = false; + int ret = ParseEXRHeader(&info, &empty_header, exr_version, &err_str, + marker, marker_size); + + if (ret != TINYEXR_SUCCESS) { + if (err) { + (*err) = strdup(err_str.c_str()); // may leak + } + return ret; + } + + if (empty_header) { + marker += 1; // skip '\0' + break; + } + + // `chunkCount` must exist in the header. + if (info.chunk_count == 0) { + if (err) { + (*err) = "`chunkCount' attribute is not found in the header."; + } + return TINYEXR_ERROR_INVALID_DATA; + } + + infos.push_back(info); + + // move to next header. + marker += info.header_len; + size -= info.header_len; + } + + // allocate memory for EXRHeader and create array of EXRHeader pointers. + (*exr_headers) = + static_cast<EXRHeader **>(malloc(sizeof(EXRHeader *) * infos.size())); + for (size_t i = 0; i < infos.size(); i++) { + EXRHeader *exr_header = static_cast<EXRHeader *>(malloc(sizeof(EXRHeader))); + + ConvertHeader(exr_header, infos[i]); + + // transfoer `tiled` from version. + exr_header->tiled = exr_version->tiled; + + (*exr_headers)[i] = exr_header; + } + + (*num_headers) = static_cast<int>(infos.size()); + + return TINYEXR_SUCCESS; +} + +int ParseEXRMultipartHeaderFromFile(EXRHeader ***exr_headers, int *num_headers, + const EXRVersion *exr_version, + const char *filename, const char **err) { + if (exr_headers == NULL || num_headers == NULL || exr_version == NULL || + filename == NULL) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + +#ifdef _WIN32 + FILE *fp = NULL; + fopen_s(&fp, filename, "rb"); +#else + FILE *fp = fopen(filename, "rb"); +#endif + if (!fp) { + if (err) { + (*err) = "Cannot read file."; + } + return TINYEXR_ERROR_CANT_OPEN_FILE; + } + + size_t filesize; + // Compute size + fseek(fp, 0, SEEK_END); + filesize = static_cast<size_t>(ftell(fp)); + fseek(fp, 0, SEEK_SET); + + std::vector<unsigned char> buf(filesize); // @todo { use mmap } + { + size_t ret; + ret = fread(&buf[0], 1, filesize, fp); + assert(ret == filesize); + fclose(fp); + + if (ret != filesize) { + if (err) { + (*err) = "fread error."; + } + return TINYEXR_ERROR_INVALID_FILE; + } + } + + return ParseEXRMultipartHeaderFromMemory( + exr_headers, num_headers, exr_version, &buf.at(0), filesize, err); +} + +int ParseEXRVersionFromMemory(EXRVersion *version, const unsigned char *memory, + size_t size) { + if (version == NULL || memory == NULL) { + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + if (size < tinyexr::kEXRVersionSize) { + return TINYEXR_ERROR_INVALID_DATA; + } + + const unsigned char *marker = memory; + + // Header check. + { + const char header[] = {0x76, 0x2f, 0x31, 0x01}; + + if (memcmp(marker, header, 4) != 0) { + return TINYEXR_ERROR_INVALID_MAGIC_NUMBER; + } + marker += 4; + } + + version->tiled = false; + version->long_name = false; + version->non_image = false; + version->multipart = false; + + // Parse version header. + { + // must be 2 + if (marker[0] != 2) { + return TINYEXR_ERROR_INVALID_EXR_VERSION; + } + + if (version == NULL) { + return TINYEXR_SUCCESS; // May OK + } + + version->version = 2; + + if (marker[1] & 0x2) { // 9th bit + version->tiled = true; + } + if (marker[1] & 0x4) { // 10th bit + version->long_name = true; + } + if (marker[1] & 0x8) { // 11th bit + version->non_image = true; // (deep image) + } + if (marker[1] & 0x10) { // 12th bit + version->multipart = true; + } + } + + return TINYEXR_SUCCESS; +} + +int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) { + if (filename == NULL) { + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + +#ifdef _WIN32 + FILE *fp = NULL; + fopen_s(&fp, filename, "rb"); +#else + FILE *fp = fopen(filename, "rb"); +#endif + if (!fp) { + return TINYEXR_ERROR_CANT_OPEN_FILE; + } + + size_t file_size; + // Compute size + fseek(fp, 0, SEEK_END); + file_size = static_cast<size_t>(ftell(fp)); + fseek(fp, 0, SEEK_SET); + + if (file_size < tinyexr::kEXRVersionSize) { + return TINYEXR_ERROR_INVALID_FILE; + } + + unsigned char buf[tinyexr::kEXRVersionSize]; + size_t ret = fread(&buf[0], 1, tinyexr::kEXRVersionSize, fp); + fclose(fp); + + if (ret != tinyexr::kEXRVersionSize) { + return TINYEXR_ERROR_INVALID_FILE; + } + + return ParseEXRVersionFromMemory(version, buf, tinyexr::kEXRVersionSize); +} + +int LoadEXRMultipartImageFromMemory(EXRImage *exr_images, + const EXRHeader **exr_headers, + unsigned int num_parts, + const unsigned char *memory, + const size_t size, const char **err) { + if (exr_images == NULL || exr_headers == NULL || num_parts == 0 || + memory == NULL || (size <= tinyexr::kEXRVersionSize)) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + // compute total header size. + size_t total_header_size = 0; + for (unsigned int i = 0; i < num_parts; i++) { + if (exr_headers[i]->header_len == 0) { + if (err) { + (*err) = "EXRHeader is not initialized."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + total_header_size += exr_headers[i]->header_len; + } + + const char *marker = reinterpret_cast<const char *>( + memory + total_header_size + 4 + + 4); // +8 for magic number and version header. + + marker += 1; // Skip empty header. + + // NOTE 1: + // In multipart image, There is 'part number' before chunk data. + // 4 byte : part number + // 4+ : chunk + // + // NOTE 2: + // EXR spec says 'part number' is 'unsigned long' but actually this is + // 'unsigned int(4 bytes)' in OpenEXR implementation... + // http://www.openexr.com/openexrfilelayout.pdf + + // Load chunk offset table. + std::vector<std::vector<tinyexr::tinyexr_uint64> > chunk_offset_table_list; + for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) { + std::vector<tinyexr::tinyexr_uint64> offset_table( + static_cast<size_t>(exr_headers[i]->chunk_count)); + + for (size_t c = 0; c < offset_table.size(); c++) { + tinyexr::tinyexr_uint64 offset; + memcpy(&offset, marker, 8); + tinyexr::swap8(&offset); + + if (offset >= size) { + if (err) { + (*err) = "Invalid offset size."; + } + return TINYEXR_ERROR_INVALID_DATA; + } + + offset_table[c] = offset + 4; // +4 to skip 'part number' + marker += 8; + } + + chunk_offset_table_list.push_back(offset_table); + } + + // Decode image. + for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) { + std::vector<tinyexr::tinyexr_uint64> &offset_table = + chunk_offset_table_list[i]; + + // First check 'part number' is identitical to 'i' + for (size_t c = 0; c < offset_table.size(); c++) { + const unsigned char *part_number_addr = + memory + offset_table[c] - 4; // -4 to move to 'part number' field. + unsigned int part_no; + memcpy(&part_no, part_number_addr, sizeof(unsigned int)); // 4 + tinyexr::swap4(&part_no); + + if (part_no != i) { + assert(0); + return TINYEXR_ERROR_INVALID_DATA; + } + } + + int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_table, + memory); + if (ret != TINYEXR_SUCCESS) { + return ret; + } + } + + return TINYEXR_SUCCESS; +} + +int LoadEXRMultipartImageFromFile(EXRImage *exr_images, + const EXRHeader **exr_headers, + unsigned int num_parts, const char *filename, + const char **err) { + if (exr_images == NULL || exr_headers == NULL || num_parts == 0) { + if (err) { + (*err) = "Invalid argument."; + } + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + +#ifdef _WIN32 + FILE *fp = NULL; + fopen_s(&fp, filename, "rb"); +#else + FILE *fp = fopen(filename, "rb"); +#endif + if (!fp) { + if (err) { + (*err) = "Cannot read file."; + } + return TINYEXR_ERROR_CANT_OPEN_FILE; + } + + size_t filesize; + // Compute size + fseek(fp, 0, SEEK_END); + filesize = static_cast<size_t>(ftell(fp)); + fseek(fp, 0, SEEK_SET); + + std::vector<unsigned char> buf(filesize); // @todo { use mmap } + { + size_t ret; + ret = fread(&buf[0], 1, filesize, fp); + assert(ret == filesize); + fclose(fp); + (void)ret; + } + + return LoadEXRMultipartImageFromMemory(exr_images, exr_headers, num_parts, + &buf.at(0), filesize, err); +} + +int SaveEXR(const float *data, int width, int height, int components, + const char *outfilename) { + if (components == 3 || components == 4) { + // OK + } else { + return TINYEXR_ERROR_INVALID_ARGUMENT; + } + + // Assume at least 16x16 pixels. + if (width < 16) return TINYEXR_ERROR_INVALID_ARGUMENT; + if (height < 16) return TINYEXR_ERROR_INVALID_ARGUMENT; + + EXRHeader header; + InitEXRHeader(&header); + + EXRImage image; + InitEXRImage(&image); + + image.num_channels = components; + + std::vector<float> images[4]; + images[0].resize(static_cast<size_t>(width * height)); + images[1].resize(static_cast<size_t>(width * height)); + images[2].resize(static_cast<size_t>(width * height)); + images[3].resize(static_cast<size_t>(width * height)); + + // Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers + for (size_t i = 0; i < static_cast<size_t>(width * height); i++) { + images[0][i] = data[static_cast<size_t>(components) * i + 0]; + images[1][i] = data[static_cast<size_t>(components) * i + 1]; + images[2][i] = data[static_cast<size_t>(components) * i + 2]; + if (components == 4) { + images[3][i] = data[static_cast<size_t>(components) * i + 3]; + } + } + + float *image_ptr[4] = {0, 0, 0, 0}; + if (components == 4) { + image_ptr[0] = &(images[3].at(0)); // A + image_ptr[1] = &(images[2].at(0)); // B + image_ptr[2] = &(images[1].at(0)); // G + image_ptr[3] = &(images[0].at(0)); // R + } else { + image_ptr[0] = &(images[2].at(0)); // B + image_ptr[1] = &(images[1].at(0)); // G + image_ptr[2] = &(images[0].at(0)); // R + } + + image.images = reinterpret_cast<unsigned char **>(image_ptr); + image.width = width; + image.height = height; + + header.num_channels = components; + header.channels = static_cast<EXRChannelInfo *>(malloc( + sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels))); + // Must be (A)BGR order, since most of EXR viewers expect this channel order. + if (components == 4) { + strncpy(header.channels[0].name, "A", 255); + header.channels[0].name[strlen("A")] = '\0'; + strncpy(header.channels[1].name, "B", 255); + header.channels[1].name[strlen("B")] = '\0'; + strncpy(header.channels[2].name, "G", 255); + header.channels[2].name[strlen("G")] = '\0'; + strncpy(header.channels[3].name, "R", 255); + header.channels[3].name[strlen("R")] = '\0'; + } else { + strncpy(header.channels[0].name, "B", 255); + header.channels[0].name[strlen("B")] = '\0'; + strncpy(header.channels[1].name, "G", 255); + header.channels[1].name[strlen("G")] = '\0'; + strncpy(header.channels[2].name, "R", 255); + header.channels[2].name[strlen("R")] = '\0'; + } + + header.pixel_types = static_cast<int *>( + malloc(sizeof(int) * static_cast<size_t>(header.num_channels))); + header.requested_pixel_types = static_cast<int *>( + malloc(sizeof(int) * static_cast<size_t>(header.num_channels))); + for (int i = 0; i < header.num_channels; i++) { + header.pixel_types[i] = + TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image + header.requested_pixel_types[i] = + TINYEXR_PIXELTYPE_HALF; // pixel type of output image to be stored in + // .EXR + } + + const char *err; + int ret = SaveEXRImageToFile(&image, &header, outfilename, &err); + if (ret != TINYEXR_SUCCESS) { + return ret; + } + + free(header.channels); + free(header.pixel_types); + free(header.requested_pixel_types); + + return ret; +} + +#ifdef _MSC_VER +#pragma warning(pop) +#endif + +#endif // TINYEXR_IMPLEMENTATION_DEIFNED +#endif // TINYEXR_IMPLEMENTATION |