summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmath
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2017-12-08 11:58:37 -0300
committerGitHub <noreply@github.com>2017-12-08 11:58:37 -0300
commit372b79b0d324b1eeb5991eb510726420c7cbb12d (patch)
tree533b0acfc41971f8d46bdd7139a379a0f2ba39d5 /thirdparty/thekla_atlas/nvmath
parent8c78ccb027635702a2d69ebb7ad6a6ddfaf5ffa1 (diff)
parentbf05309af734431c3b3cf869a63ed477439a6739 (diff)
Merge pull request #14409 from hpvb/import-thekla-atlas
Import thekla_atlas
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath')
-rw-r--r--thirdparty/thekla_atlas/nvmath/Basis.cpp270
-rw-r--r--thirdparty/thekla_atlas/nvmath/Basis.h82
-rw-r--r--thirdparty/thekla_atlas/nvmath/Box.cpp119
-rw-r--r--thirdparty/thekla_atlas/nvmath/Box.h103
-rw-r--r--thirdparty/thekla_atlas/nvmath/Box.inl154
-rw-r--r--thirdparty/thekla_atlas/nvmath/Color.h150
-rw-r--r--thirdparty/thekla_atlas/nvmath/ConvexHull.cpp120
-rw-r--r--thirdparty/thekla_atlas/nvmath/ConvexHull.h17
-rw-r--r--thirdparty/thekla_atlas/nvmath/Fitting.cpp1205
-rw-r--r--thirdparty/thekla_atlas/nvmath/Fitting.h50
-rw-r--r--thirdparty/thekla_atlas/nvmath/KahanSum.h39
-rw-r--r--thirdparty/thekla_atlas/nvmath/Matrix.cpp441
-rw-r--r--thirdparty/thekla_atlas/nvmath/Matrix.h113
-rw-r--r--thirdparty/thekla_atlas/nvmath/Matrix.inl1274
-rw-r--r--thirdparty/thekla_atlas/nvmath/Morton.h83
-rw-r--r--thirdparty/thekla_atlas/nvmath/Plane.cpp27
-rw-r--r--thirdparty/thekla_atlas/nvmath/Plane.h42
-rw-r--r--thirdparty/thekla_atlas/nvmath/Plane.inl50
-rw-r--r--thirdparty/thekla_atlas/nvmath/ProximityGrid.cpp158
-rw-r--r--thirdparty/thekla_atlas/nvmath/ProximityGrid.h99
-rw-r--r--thirdparty/thekla_atlas/nvmath/Quaternion.h213
-rw-r--r--thirdparty/thekla_atlas/nvmath/Random.cpp54
-rw-r--r--thirdparty/thekla_atlas/nvmath/Random.h376
-rw-r--r--thirdparty/thekla_atlas/nvmath/Solver.cpp744
-rw-r--r--thirdparty/thekla_atlas/nvmath/Solver.h24
-rw-r--r--thirdparty/thekla_atlas/nvmath/Sparse.cpp889
-rw-r--r--thirdparty/thekla_atlas/nvmath/Sparse.h204
-rw-r--r--thirdparty/thekla_atlas/nvmath/Sphere.cpp431
-rw-r--r--thirdparty/thekla_atlas/nvmath/Sphere.h43
-rw-r--r--thirdparty/thekla_atlas/nvmath/TypeSerialization.cpp54
-rw-r--r--thirdparty/thekla_atlas/nvmath/TypeSerialization.h35
-rw-r--r--thirdparty/thekla_atlas/nvmath/Vector.cpp4
-rw-r--r--thirdparty/thekla_atlas/nvmath/Vector.h149
-rw-r--r--thirdparty/thekla_atlas/nvmath/Vector.inl919
-rw-r--r--thirdparty/thekla_atlas/nvmath/ftoi.h258
-rw-r--r--thirdparty/thekla_atlas/nvmath/nvmath.h337
36 files changed, 9330 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Basis.cpp b/thirdparty/thekla_atlas/nvmath/Basis.cpp
new file mode 100644
index 0000000000..0824179633
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Basis.cpp
@@ -0,0 +1,270 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#include "Basis.h"
+
+using namespace nv;
+
+
+/// Normalize basis vectors.
+void Basis::normalize(float epsilon /*= NV_EPSILON*/)
+{
+ normal = ::normalizeSafe(normal, Vector3(0.0f), epsilon);
+ tangent = ::normalizeSafe(tangent, Vector3(0.0f), epsilon);
+ bitangent = ::normalizeSafe(bitangent, Vector3(0.0f), epsilon);
+}
+
+
+/// Gram-Schmidt orthogonalization.
+/// @note Works only if the vectors are close to orthogonal.
+void Basis::orthonormalize(float epsilon /*= NV_EPSILON*/)
+{
+ // N' = |N|
+ // T' = |T - (N' dot T) N'|
+ // B' = |B - (N' dot B) N' - (T' dot B) T'|
+
+ normal = ::normalize(normal, epsilon);
+
+ tangent -= normal * dot(normal, tangent);
+ tangent = ::normalize(tangent, epsilon);
+
+ bitangent -= normal * dot(normal, bitangent);
+ bitangent -= tangent * dot(tangent, bitangent);
+ bitangent = ::normalize(bitangent, epsilon);
+}
+
+
+
+
+/// Robust orthonormalization.
+/// Returns an orthonormal basis even when the original is degenerate.
+void Basis::robustOrthonormalize(float epsilon /*= NV_EPSILON*/)
+{
+ // Normalize all vectors.
+ normalize(epsilon);
+
+ if (lengthSquared(normal) < epsilon*epsilon)
+ {
+ // Build normal from tangent and bitangent.
+ normal = cross(tangent, bitangent);
+
+ if (lengthSquared(normal) < epsilon*epsilon)
+ {
+ // Arbitrary basis.
+ tangent = Vector3(1, 0, 0);
+ bitangent = Vector3(0, 1, 0);
+ normal = Vector3(0, 0, 1);
+ return;
+ }
+
+ normal = nv::normalize(normal, epsilon);
+ }
+
+ // Project tangents to normal plane.
+ tangent -= normal * dot(normal, tangent);
+ bitangent -= normal * dot(normal, bitangent);
+
+ if (lengthSquared(tangent) < epsilon*epsilon)
+ {
+ if (lengthSquared(bitangent) < epsilon*epsilon)
+ {
+ // Arbitrary basis.
+ buildFrameForDirection(normal);
+ }
+ else
+ {
+ // Build tangent from bitangent.
+ bitangent = nv::normalize(bitangent, epsilon);
+
+ tangent = cross(bitangent, normal);
+ nvDebugCheck(isNormalized(tangent, epsilon));
+ }
+ }
+ else
+ {
+ tangent = nv::normalize(tangent, epsilon);
+#if 0
+ bitangent -= tangent * dot(tangent, bitangent);
+
+ if (lengthSquared(bitangent) < epsilon*epsilon)
+ {
+ bitangent = cross(tangent, normal);
+ nvDebugCheck(isNormalized(bitangent, epsilon));
+ }
+ else
+ {
+ bitangent = nv::normalize(bitangent, epsilon);
+ }
+#else
+ if (lengthSquared(bitangent) < epsilon*epsilon)
+ {
+ // Build bitangent from tangent.
+ bitangent = cross(tangent, normal);
+ nvDebugCheck(isNormalized(bitangent, epsilon));
+ }
+ else
+ {
+ bitangent = nv::normalize(bitangent, epsilon);
+
+ // At this point tangent and bitangent are orthogonal to normal, but we don't know whether their orientation.
+
+ Vector3 bisector;
+ if (lengthSquared(tangent + bitangent) < epsilon*epsilon)
+ {
+ bisector = tangent;
+ }
+ else
+ {
+ bisector = nv::normalize(tangent + bitangent);
+ }
+ Vector3 axis = nv::normalize(cross(bisector, normal));
+
+ //nvDebugCheck(isNormalized(axis, epsilon));
+ nvDebugCheck(equal(dot(axis, tangent), -dot(axis, bitangent), epsilon));
+
+ if (dot(axis, tangent) > 0)
+ {
+ tangent = bisector + axis;
+ bitangent = bisector - axis;
+ }
+ else
+ {
+ tangent = bisector - axis;
+ bitangent = bisector + axis;
+ }
+
+ // Make sure the resulting tangents are still perpendicular to the normal.
+ tangent -= normal * dot(normal, tangent);
+ bitangent -= normal * dot(normal, bitangent);
+
+ // Double check.
+ nvDebugCheck(equal(dot(normal, tangent), 0.0f, epsilon));
+ nvDebugCheck(equal(dot(normal, bitangent), 0.0f, epsilon));
+
+ // Normalize.
+ tangent = nv::normalize(tangent);
+ bitangent = nv::normalize(bitangent);
+
+ // If tangent and bitangent are not orthogonal, then derive bitangent from tangent, just in case...
+ if (!equal(dot(tangent, bitangent), 0.0f, epsilon)) {
+ bitangent = cross(tangent, normal);
+ bitangent = nv::normalize(bitangent);
+ }
+ }
+#endif
+ }
+
+ /*// Check vector lengths.
+ if (!isNormalized(normal, epsilon))
+ {
+ nvDebug("%f %f %f\n", normal.x, normal.y, normal.z);
+ nvDebug("%f %f %f\n", tangent.x, tangent.y, tangent.z);
+ nvDebug("%f %f %f\n", bitangent.x, bitangent.y, bitangent.z);
+ }*/
+
+ nvDebugCheck(isNormalized(normal, epsilon));
+ nvDebugCheck(isNormalized(tangent, epsilon));
+ nvDebugCheck(isNormalized(bitangent, epsilon));
+
+ // Check vector angles.
+ nvDebugCheck(equal(dot(normal, tangent), 0.0f, epsilon));
+ nvDebugCheck(equal(dot(normal, bitangent), 0.0f, epsilon));
+ nvDebugCheck(equal(dot(tangent, bitangent), 0.0f, epsilon));
+
+ // Check vector orientation.
+ const float det = dot(cross(normal, tangent), bitangent);
+ nvDebugCheck(equal(det, 1.0f, epsilon) || equal(det, -1.0f, epsilon));
+}
+
+
+/// Build an arbitrary frame for the given direction.
+void Basis::buildFrameForDirection(Vector3::Arg d, float angle/*= 0*/)
+{
+ nvCheck(isNormalized(d));
+ normal = d;
+
+ // Choose minimum axis.
+ if (fabsf(normal.x) < fabsf(normal.y) && fabsf(normal.x) < fabsf(normal.z))
+ {
+ tangent = Vector3(1, 0, 0);
+ }
+ else if (fabsf(normal.y) < fabsf(normal.z))
+ {
+ tangent = Vector3(0, 1, 0);
+ }
+ else
+ {
+ tangent = Vector3(0, 0, 1);
+ }
+
+ // Ortogonalize
+ tangent -= normal * dot(normal, tangent);
+ tangent = ::normalize(tangent);
+
+ bitangent = cross(normal, tangent);
+
+ // Rotate frame around normal according to angle.
+ if (angle != 0.0f) {
+ float c = cosf(angle);
+ float s = sinf(angle);
+ Vector3 tmp = c * tangent - s * bitangent;
+ bitangent = s * tangent + c * bitangent;
+ tangent = tmp;
+ }
+}
+
+bool Basis::isValid() const
+{
+ if (equal(normal, Vector3(0.0f))) return false;
+ if (equal(tangent, Vector3(0.0f))) return false;
+ if (equal(bitangent, Vector3(0.0f))) return false;
+
+ if (equal(determinant(), 0.0f)) return false;
+
+ return true;
+}
+
+
+/// Transform by this basis. (From this basis to object space).
+Vector3 Basis::transform(Vector3::Arg v) const
+{
+ Vector3 o = tangent * v.x;
+ o += bitangent * v.y;
+ o += normal * v.z;
+ return o;
+}
+
+/// Transform by the transpose. (From object space to this basis).
+Vector3 Basis::transformT(Vector3::Arg v)
+{
+ return Vector3(dot(tangent, v), dot(bitangent, v), dot(normal, v));
+}
+
+/// Transform by the inverse. (From object space to this basis).
+/// @note Uses Cramer's rule so the inverse is not accurate if the basis is ill-conditioned.
+Vector3 Basis::transformI(Vector3::Arg v) const
+{
+ const float det = determinant();
+ nvDebugCheck(!equal(det, 0.0f, 0.0f));
+
+ const float idet = 1.0f / det;
+
+ // Rows of the inverse matrix.
+ Vector3 r0(
+ (bitangent.y * normal.z - bitangent.z * normal.y),
+ -(bitangent.x * normal.z - bitangent.z * normal.x),
+ (bitangent.x * normal.y - bitangent.y * normal.x));
+
+ Vector3 r1(
+ -(tangent.y * normal.z - tangent.z * normal.y),
+ (tangent.x * normal.z - tangent.z * normal.x),
+ -(tangent.x * normal.y - tangent.y * normal.x));
+
+ Vector3 r2(
+ (tangent.y * bitangent.z - tangent.z * bitangent.y),
+ -(tangent.x * bitangent.z - tangent.z * bitangent.x),
+ (tangent.x * bitangent.y - tangent.y * bitangent.x));
+
+ return Vector3(dot(v, r0), dot(v, r1), dot(v, r2)) * idet;
+}
+
+
diff --git a/thirdparty/thekla_atlas/nvmath/Basis.h b/thirdparty/thekla_atlas/nvmath/Basis.h
new file mode 100644
index 0000000000..e8146afdbe
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Basis.h
@@ -0,0 +1,82 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#pragma once
+#ifndef NV_MATH_BASIS_H
+#define NV_MATH_BASIS_H
+
+#include "nvmath.h"
+#include "Vector.inl"
+#include "Matrix.h"
+
+namespace nv
+{
+
+ /// Basis class to compute tangent space basis, ortogonalizations and to
+ /// transform vectors from one space to another.
+ class Basis
+ {
+ public:
+
+ /// Create a null basis.
+ Basis() : tangent(0, 0, 0), bitangent(0, 0, 0), normal(0, 0, 0) {}
+
+ /// Create a basis given three vectors.
+ Basis(Vector3::Arg n, Vector3::Arg t, Vector3::Arg b) : tangent(t), bitangent(b), normal(n) {}
+
+ /// Create a basis with the given tangent vectors and the handness.
+ Basis(Vector3::Arg n, Vector3::Arg t, float sign)
+ {
+ build(n, t, sign);
+ }
+
+ NVMATH_API void normalize(float epsilon = NV_EPSILON);
+ NVMATH_API void orthonormalize(float epsilon = NV_EPSILON);
+ NVMATH_API void robustOrthonormalize(float epsilon = NV_EPSILON);
+ NVMATH_API void buildFrameForDirection(Vector3::Arg d, float angle = 0);
+
+ /// Calculate the determinant [ F G N ] to obtain the handness of the basis.
+ float handness() const
+ {
+ return determinant() > 0.0f ? 1.0f : -1.0f;
+ }
+
+ /// Build a basis from 2 vectors and a handness flag.
+ void build(Vector3::Arg n, Vector3::Arg t, float sign)
+ {
+ normal = n;
+ tangent = t;
+ bitangent = sign * cross(t, n);
+ }
+
+ /// Compute the determinant of this basis.
+ float determinant() const
+ {
+ return
+ tangent.x * bitangent.y * normal.z - tangent.z * bitangent.y * normal.x +
+ tangent.y * bitangent.z * normal.x - tangent.y * bitangent.x * normal.z +
+ tangent.z * bitangent.x * normal.y - tangent.x * bitangent.z * normal.y;
+ }
+
+ bool isValid() const;
+
+ // Get transform matrix for this basis.
+ NVMATH_API Matrix matrix() const;
+
+ // Transform by this basis. (From this basis to object space).
+ NVMATH_API Vector3 transform(Vector3::Arg v) const;
+
+ // Transform by the transpose. (From object space to this basis).
+ NVMATH_API Vector3 transformT(Vector3::Arg v);
+
+ // Transform by the inverse. (From object space to this basis).
+ NVMATH_API Vector3 transformI(Vector3::Arg v) const;
+
+
+ Vector3 tangent;
+ Vector3 bitangent;
+ Vector3 normal;
+ };
+
+} // nv namespace
+
+#endif // NV_MATH_BASIS_H
diff --git a/thirdparty/thekla_atlas/nvmath/Box.cpp b/thirdparty/thekla_atlas/nvmath/Box.cpp
new file mode 100644
index 0000000000..8f2014a077
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Box.cpp
@@ -0,0 +1,119 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#include "Box.h"
+#include "Box.inl"
+#include "Sphere.h"
+
+using namespace nv;
+
+
+
+
+// Clip the given segment against this box.
+bool Box::clipSegment(const Vector3 & origin, const Vector3 & dir, float * t_near, float * t_far) const {
+
+ // Avoid aliasing.
+ float tnear = *t_near;
+ float tfar = *t_far;
+
+ // clip ray segment to box
+ for (int i = 0; i < 3; i++)
+ {
+ const float pos = origin.component[i] + tfar * dir.component[i];
+ const float dt = tfar - tnear;
+
+ if (dir.component[i] < 0) {
+
+ // clip end point
+ if (pos < minCorner.component[i]) {
+ tfar = tnear + dt * (origin.component[i] - minCorner.component[i]) / (origin.component[i] - pos);
+ }
+
+ // clip start point
+ if (origin.component[i] > maxCorner.component[i]) {
+ tnear = tnear + dt * (origin.component[i] - maxCorner.component[i]) / (tfar * dir.component[i]);
+ }
+ }
+ else {
+
+ // clip end point
+ if (pos > maxCorner.component[i]) {
+ tfar = tnear + dt * (maxCorner.component[i] - origin.component[i]) / (pos - origin.component[i]);
+ }
+
+ // clip start point
+ if (origin.component[i] < minCorner.component[i]) {
+ tnear = tnear + dt * (minCorner.component[i] - origin.component[i]) / (tfar * dir.component[i]);
+ }
+ }
+
+ if (tnear > tfar) {
+ // Clipped away.
+ return false;
+ }
+ }
+
+ // Return result.
+ *t_near = tnear;
+ *t_far = tfar;
+ return true;
+}
+
+
+float nv::distanceSquared(const Box &box, const Vector3 &point) {
+ Vector3 closest;
+
+ if (point.x < box.minCorner.x) closest.x = box.minCorner.x;
+ else if (point.x > box.maxCorner.x) closest.x = box.maxCorner.x;
+ else closest.x = point.x;
+
+ if (point.y < box.minCorner.y) closest.y = box.minCorner.y;
+ else if (point.y > box.maxCorner.y) closest.y = box.maxCorner.y;
+ else closest.y = point.y;
+
+ if (point.z < box.minCorner.z) closest.z = box.minCorner.z;
+ else if (point.z > box.maxCorner.z) closest.z = box.maxCorner.z;
+ else closest.z = point.z;
+
+ return lengthSquared(point - closest);
+}
+
+bool nv::overlap(const Box &box, const Sphere &sphere) {
+ return distanceSquared(box, sphere.center) < sphere.radius * sphere.radius;
+}
+
+
+bool nv::intersect(const Box & box, const Vector3 & p, const Vector3 & id, float * t /*= NULL*/) {
+ // Precompute these in ray structure?
+ int sdx = (id.x < 0);
+ int sdy = (id.y < 0);
+ int sdz = (id.z < 0);
+
+ float tmin = (box.corner( sdx).x - p.x) * id.x;
+ float tmax = (box.corner(1-sdx).x - p.x) * id.x;
+ float tymin = (box.corner( sdy).y - p.y) * id.y;
+ float tymax = (box.corner(1-sdy).y - p.y) * id.y;
+
+ if ((tmin > tymax) || (tymin > tmax))
+ return false;
+
+ if (tymin > tmin) tmin = tymin;
+ if (tymax < tmax) tmax = tymax;
+
+ float tzmin = (box.corner( sdz).z - p.z) * id.z;
+ float tzmax = (box.corner(1-sdz).z - p.z) * id.z;
+
+ if ((tmin > tzmax) || (tzmin > tmax))
+ return false;
+
+ if (tzmin > tmin) tmin = tzmin;
+ if (tzmax < tmax) tmax = tzmax;
+
+ if (tmax < 0)
+ return false;
+
+ if (t != NULL) *t = tmin;
+
+ return true;
+}
+
diff --git a/thirdparty/thekla_atlas/nvmath/Box.h b/thirdparty/thekla_atlas/nvmath/Box.h
new file mode 100644
index 0000000000..19b5f2a3a5
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Box.h
@@ -0,0 +1,103 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_BOX_H
+#define NV_MATH_BOX_H
+
+#include "Vector.h"
+
+#include <float.h> // FLT_MAX
+
+namespace nv
+{
+ class Vector;
+ class Stream;
+ class Sphere;
+
+ // Axis Aligned Bounding Box.
+ class Box
+ {
+ public:
+
+ inline Box() {}
+ inline Box(const Box & b) : minCorner(b.minCorner), maxCorner(b.maxCorner) {}
+ inline Box(const Vector3 & mins, const Vector3 & maxs) : minCorner(mins), maxCorner(maxs) {}
+
+ Box & operator=(const Box & b);
+
+ operator const float * () const { return reinterpret_cast<const float *>(this); }
+
+ // Clear the bounds.
+ void clearBounds();
+
+ // min < max
+ bool isValid() const;
+
+ // Build a cube centered on center and with edge = 2*dist
+ void cube(const Vector3 & center, float dist);
+
+ // Build a box, given center and extents.
+ void setCenterExtents(const Vector3 & center, const Vector3 & extents);
+
+ // Get box center.
+ Vector3 center() const;
+
+ // Return extents of the box.
+ Vector3 extents() const;
+
+ // Return extents of the box.
+ float extents(uint axis) const;
+
+ // Add a point to this box.
+ void addPointToBounds(const Vector3 & p);
+
+ // Add a box to this box.
+ void addBoxToBounds(const Box & b);
+
+ // Add sphere to this box.
+ void addSphereToBounds(const Vector3 & p, float r);
+
+ // Translate box.
+ void translate(const Vector3 & v);
+
+ // Scale the box.
+ void scale(float s);
+
+ // Expand the box by a fixed amount.
+ void expand(float r);
+
+ // Get the area of the box.
+ float area() const;
+
+ // Get the volume of the box.
+ float volume() const;
+
+ // Return true if the box contains the given point.
+ bool contains(const Vector3 & p) const;
+
+ // Split the given box in 8 octants and assign the ith one to this box.
+ void setOctant(const Box & box, const Vector3 & center, int i);
+
+
+ // Clip the given segment against this box.
+ bool clipSegment(const Vector3 & origin, const Vector3 & dir, float * t_near, float * t_far) const;
+
+
+ friend Stream & operator<< (Stream & s, Box & box);
+
+ const Vector3 & corner(int i) const { return (&minCorner)[i]; }
+
+ Vector3 minCorner;
+ Vector3 maxCorner;
+ };
+
+ float distanceSquared(const Box &box, const Vector3 &point);
+ bool overlap(const Box &box, const Sphere &sphere);
+
+ // p is ray origin, id is inverse ray direction.
+ bool intersect(const Box & box, const Vector3 & p, const Vector3 & id, float * t);
+
+} // nv namespace
+
+
+#endif // NV_MATH_BOX_H
diff --git a/thirdparty/thekla_atlas/nvmath/Box.inl b/thirdparty/thekla_atlas/nvmath/Box.inl
new file mode 100644
index 0000000000..dcfa70ff96
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Box.inl
@@ -0,0 +1,154 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_BOX_INL
+#define NV_MATH_BOX_INL
+
+#include "Box.h"
+#include "Vector.inl"
+
+#include <float.h> // FLT_MAX
+
+namespace nv
+{
+ // Default ctor.
+ //inline Box::Box() { };
+
+ // Copy ctor.
+ //inline Box::Box(const Box & b) : minCorner(b.minCorner), maxCorner(b.maxCorner) { }
+
+ // Init ctor.
+ //inline Box::Box(const Vector3 & mins, const Vector3 & maxs) : minCorner(mins), maxCorner(maxs) { }
+
+ // Assignment operator.
+ inline Box & Box::operator=(const Box & b) { minCorner = b.minCorner; maxCorner = b.maxCorner; return *this; }
+
+ // Clear the bounds.
+ inline void Box::clearBounds()
+ {
+ minCorner.set(FLT_MAX, FLT_MAX, FLT_MAX);
+ maxCorner.set(-FLT_MAX, -FLT_MAX, -FLT_MAX);
+ }
+
+ // min < max
+ inline bool Box::isValid() const
+ {
+ return minCorner.x <= maxCorner.x && minCorner.y <= maxCorner.y && minCorner.z <= maxCorner.z;
+ }
+
+ // Build a cube centered on center and with edge = 2*dist
+ inline void Box::cube(const Vector3 & center, float dist)
+ {
+ setCenterExtents(center, Vector3(dist));
+ }
+
+ // Build a box, given center and extents.
+ inline void Box::setCenterExtents(const Vector3 & center, const Vector3 & extents)
+ {
+ minCorner = center - extents;
+ maxCorner = center + extents;
+ }
+
+ // Get box center.
+ inline Vector3 Box::center() const
+ {
+ return (minCorner + maxCorner) * 0.5f;
+ }
+
+ // Return extents of the box.
+ inline Vector3 Box::extents() const
+ {
+ return (maxCorner - minCorner) * 0.5f;
+ }
+
+ // Return extents of the box.
+ inline float Box::extents(uint axis) const
+ {
+ nvDebugCheck(axis < 3);
+ if (axis == 0) return (maxCorner.x - minCorner.x) * 0.5f;
+ if (axis == 1) return (maxCorner.y - minCorner.y) * 0.5f;
+ if (axis == 2) return (maxCorner.z - minCorner.z) * 0.5f;
+ nvUnreachable();
+ return 0.0f;
+ }
+
+ // Add a point to this box.
+ inline void Box::addPointToBounds(const Vector3 & p)
+ {
+ minCorner = min(minCorner, p);
+ maxCorner = max(maxCorner, p);
+ }
+
+ // Add a box to this box.
+ inline void Box::addBoxToBounds(const Box & b)
+ {
+ minCorner = min(minCorner, b.minCorner);
+ maxCorner = max(maxCorner, b.maxCorner);
+ }
+
+ // Add sphere to this box.
+ inline void Box::addSphereToBounds(const Vector3 & p, float r) {
+ minCorner = min(minCorner, p - Vector3(r));
+ maxCorner = min(maxCorner, p + Vector3(r));
+ }
+
+ // Translate box.
+ inline void Box::translate(const Vector3 & v)
+ {
+ minCorner += v;
+ maxCorner += v;
+ }
+
+ // Scale the box.
+ inline void Box::scale(float s)
+ {
+ minCorner *= s;
+ maxCorner *= s;
+ }
+
+ // Expand the box by a fixed amount.
+ inline void Box::expand(float r) {
+ minCorner -= Vector3(r,r,r);
+ maxCorner += Vector3(r,r,r);
+ }
+
+ // Get the area of the box.
+ inline float Box::area() const
+ {
+ const Vector3 d = extents();
+ return 8.0f * (d.x*d.y + d.x*d.z + d.y*d.z);
+ }
+
+ // Get the volume of the box.
+ inline float Box::volume() const
+ {
+ Vector3 d = extents();
+ return 8.0f * (d.x * d.y * d.z);
+ }
+
+ // Return true if the box contains the given point.
+ inline bool Box::contains(const Vector3 & p) const
+ {
+ return
+ minCorner.x < p.x && minCorner.y < p.y && minCorner.z < p.z &&
+ maxCorner.x > p.x && maxCorner.y > p.y && maxCorner.z > p.z;
+ }
+
+ // Split the given box in 8 octants and assign the ith one to this box.
+ inline void Box::setOctant(const Box & box, const Vector3 & center, int i)
+ {
+ minCorner = box.minCorner;
+ maxCorner = box.maxCorner;
+
+ if (i & 4) minCorner.x = center.x;
+ else maxCorner.x = center.x;
+ if (i & 2) minCorner.y = center.y;
+ else maxCorner.y = center.y;
+ if (i & 1) minCorner.z = center.z;
+ else maxCorner.z = center.z;
+ }
+
+} // nv namespace
+
+
+#endif // NV_MATH_BOX_INL
diff --git a/thirdparty/thekla_atlas/nvmath/Color.h b/thirdparty/thekla_atlas/nvmath/Color.h
new file mode 100644
index 0000000000..5cdc374bd9
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Color.h
@@ -0,0 +1,150 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_COLOR_H
+#define NV_MATH_COLOR_H
+
+#include "nvmath.h"
+
+namespace nv
+{
+
+ /// 64 bit color stored as BGRA.
+ class NVMATH_CLASS Color64
+ {
+ public:
+ Color64() { }
+ Color64(const Color64 & c) : u(c.u) { }
+ Color64(uint16 R, uint16 G, uint16 B, uint16 A) { setRGBA(R, G, B, A); }
+ explicit Color64(uint64 U) : u(U) { }
+
+ void setRGBA(uint16 R, uint16 G, uint16 B, uint16 A)
+ {
+ r = R;
+ g = G;
+ b = B;
+ a = A;
+ }
+
+ operator uint64 () const {
+ return u;
+ }
+
+ union {
+ struct {
+#if NV_LITTLE_ENDIAN
+ uint16 r, a, b, g;
+#else
+ uint16 a: 16;
+ uint16 r: 16;
+ uint16 g: 16;
+ uint16 b: 16;
+#endif
+ };
+ uint64 u;
+ };
+ };
+
+ /// 32 bit color stored as BGRA.
+ class NVMATH_CLASS Color32
+ {
+ public:
+ Color32() { }
+ Color32(const Color32 & c) : u(c.u) { }
+ Color32(uint8 R, uint8 G, uint8 B) { setRGBA(R, G, B, 0xFF); }
+ Color32(uint8 R, uint8 G, uint8 B, uint8 A) { setRGBA( R, G, B, A); }
+ //Color32(uint8 c[4]) { setRGBA(c[0], c[1], c[2], c[3]); }
+ //Color32(float R, float G, float B) { setRGBA(uint(R*255), uint(G*255), uint(B*255), 0xFF); }
+ //Color32(float R, float G, float B, float A) { setRGBA(uint(R*255), uint(G*255), uint(B*255), uint(A*255)); }
+ explicit Color32(uint32 U) : u(U) { }
+
+ void setRGBA(uint8 R, uint8 G, uint8 B, uint8 A)
+ {
+ r = R;
+ g = G;
+ b = B;
+ a = A;
+ }
+
+ void setBGRA(uint8 B, uint8 G, uint8 R, uint8 A = 0xFF)
+ {
+ r = R;
+ g = G;
+ b = B;
+ a = A;
+ }
+
+ operator uint32 () const {
+ return u;
+ }
+
+ union {
+ struct {
+#if NV_LITTLE_ENDIAN
+ uint8 b, g, r, a;
+#else
+ uint8 a: 8;
+ uint8 r: 8;
+ uint8 g: 8;
+ uint8 b: 8;
+#endif
+ };
+ uint8 component[4];
+ uint32 u;
+ };
+ };
+
+
+ /// 16 bit 565 BGR color.
+ class NVMATH_CLASS Color16
+ {
+ public:
+ Color16() { }
+ Color16(const Color16 & c) : u(c.u) { }
+ explicit Color16(uint16 U) : u(U) { }
+
+ union {
+ struct {
+#if NV_LITTLE_ENDIAN
+ uint16 b : 5;
+ uint16 g : 6;
+ uint16 r : 5;
+#else
+ uint16 r : 5;
+ uint16 g : 6;
+ uint16 b : 5;
+#endif
+ };
+ uint16 u;
+ };
+ };
+
+ /// 16 bit 4444 BGRA color.
+ class NVMATH_CLASS Color16_4444
+ {
+ public:
+ Color16_4444() { }
+ Color16_4444(const Color16_4444 & c) : u(c.u) { }
+ explicit Color16_4444(uint16 U) : u(U) { }
+
+ union {
+ struct {
+#if NV_LITTLE_ENDIAN
+ uint16 b : 4;
+ uint16 g : 4;
+ uint16 r : 4;
+ uint16 a : 4;
+#else
+ uint16 a : 4;
+ uint16 r : 4;
+ uint16 g : 4;
+ uint16 b : 4;
+#endif
+ };
+ uint16 u;
+ };
+ };
+
+} // nv namespace
+
+#endif // NV_MATH_COLOR_H
diff --git a/thirdparty/thekla_atlas/nvmath/ConvexHull.cpp b/thirdparty/thekla_atlas/nvmath/ConvexHull.cpp
new file mode 100644
index 0000000000..a4a95dace4
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/ConvexHull.cpp
@@ -0,0 +1,120 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#include "ConvexHull.h"
+
+#include "Vector.inl"
+
+#include "nvcore/RadixSort.h"
+#include "nvcore/Array.inl"
+
+using namespace nv;
+
+inline static float triangleArea(Vector2::Arg v1, Vector2::Arg v2, Vector2::Arg v3)
+{
+ return 0.5f * (v3.x * v1.y + v1.x * v2.y + v2.x * v3.y - v2.x * v1.y - v3.x * v2.y - v1.x * v3.y);
+}
+
+
+// Compute the convex hull using Graham Scan.
+void nv::convexHull(const Array<Vector2> & input, Array<Vector2> & output, float epsilon/*=0*/)
+{
+ const uint inputCount = input.count();
+
+ Array<float> coords;
+ coords.resize(inputCount);
+
+ for (uint i = 0; i < inputCount; i++) {
+ coords[i] = input[i].x;
+ }
+
+ RadixSort radix;
+ radix.sort(coords);
+
+ const uint * ranks = radix.ranks();
+
+ Array<Vector2> top(inputCount);
+ Array<Vector2> bottom(inputCount);
+
+ Vector2 P = input[ranks[0]];
+ Vector2 Q = input[ranks[inputCount-1]];
+
+ float topy = max(P.y, Q.y);
+ float boty = min(P.y, Q.y);
+
+ for (uint i = 0; i < inputCount; i++) {
+ Vector2 p = input[ranks[i]];
+ if (p.y >= boty) top.append(p);
+ }
+
+ for (uint i = 0; i < inputCount; i++) {
+ Vector2 p = input[ranks[inputCount-1-i]];
+ if (p.y <= topy) bottom.append(p);
+ }
+
+ // Filter top list.
+ output.clear();
+ output.append(top[0]);
+ output.append(top[1]);
+
+ for (uint i = 2; i < top.count(); ) {
+ Vector2 a = output[output.count()-2];
+ Vector2 b = output[output.count()-1];
+ Vector2 c = top[i];
+
+ float area = triangleArea(a, b, c);
+
+ if (area >= -epsilon) {
+ output.popBack();
+ }
+
+ if (area < -epsilon || output.count() == 1) {
+ output.append(c);
+ i++;
+ }
+ }
+
+ uint top_count = output.count();
+ output.append(bottom[1]);
+
+ // Filter bottom list.
+ for (uint i = 2; i < bottom.count(); ) {
+ Vector2 a = output[output.count()-2];
+ Vector2 b = output[output.count()-1];
+ Vector2 c = bottom[i];
+
+ float area = triangleArea(a, b, c);
+
+ if (area >= -epsilon) {
+ output.popBack();
+ }
+
+ if (area < -epsilon || output.count() == top_count) {
+ output.append(c);
+ i++;
+ }
+ }
+
+ // Remove duplicate element.
+ nvDebugCheck(output.front() == output.back());
+ output.popBack();
+}
+
+/*
+void testConvexHull() {
+
+ Array<Vector2> points;
+ points.append(Vector2(1.00, 1.00));
+ points.append(Vector2(0.00, 0.00));
+ points.append(Vector2(1.00, 1.00));
+ points.append(Vector2(1.00, -1.00));
+ points.append(Vector2(2.00, 5.00));
+ points.append(Vector2(-5.00, 3.00));
+ points.append(Vector2(-4.00, -3.00));
+ points.append(Vector2(7.00, -4.00));
+
+ Array<Vector2> hull;
+ convexHull(points, hull);
+
+}
+*/
+
diff --git a/thirdparty/thekla_atlas/nvmath/ConvexHull.h b/thirdparty/thekla_atlas/nvmath/ConvexHull.h
new file mode 100644
index 0000000000..6c2db5d73f
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/ConvexHull.h
@@ -0,0 +1,17 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#pragma once
+#ifndef NV_MATH_CONVEXHULL_H
+#define NV_MATH_CONVEXHULL_H
+
+#include "nvmath.h"
+#include "nvcore/Array.h"
+
+namespace nv {
+ class Vector2;
+
+ void convexHull(const Array<Vector2> & input, Array<Vector2> & output, float epsilon = 0);
+
+} // namespace nv
+
+#endif // NV_MATH_CONVEXHULL_H
diff --git a/thirdparty/thekla_atlas/nvmath/Fitting.cpp b/thirdparty/thekla_atlas/nvmath/Fitting.cpp
new file mode 100644
index 0000000000..6cd5cb0f32
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Fitting.cpp
@@ -0,0 +1,1205 @@
+// This code is in the public domain -- Ignacio CastaÃąo <castano@gmail.com>
+
+#include "Fitting.h"
+#include "Vector.inl"
+#include "Plane.inl"
+
+#include "nvcore/Array.inl"
+#include "nvcore/Utils.h" // max, swap
+
+#include <float.h> // FLT_MAX
+//#include <vector>
+#include <string.h>
+
+using namespace nv;
+
+// @@ Move to EigenSolver.h
+
+// @@ We should be able to do something cheaper...
+static Vector3 estimatePrincipalComponent(const float * __restrict matrix)
+{
+ const Vector3 row0(matrix[0], matrix[1], matrix[2]);
+ const Vector3 row1(matrix[1], matrix[3], matrix[4]);
+ const Vector3 row2(matrix[2], matrix[4], matrix[5]);
+
+ float r0 = lengthSquared(row0);
+ float r1 = lengthSquared(row1);
+ float r2 = lengthSquared(row2);
+
+ if (r0 > r1 && r0 > r2) return row0;
+ if (r1 > r2) return row1;
+ return row2;
+}
+
+
+static inline Vector3 firstEigenVector_PowerMethod(const float *__restrict matrix)
+{
+ if (matrix[0] == 0 && matrix[3] == 0 && matrix[5] == 0)
+ {
+ return Vector3(0.0f);
+ }
+
+ Vector3 v = estimatePrincipalComponent(matrix);
+
+ const int NUM = 8;
+ for (int i = 0; i < NUM; i++)
+ {
+ float x = v.x * matrix[0] + v.y * matrix[1] + v.z * matrix[2];
+ float y = v.x * matrix[1] + v.y * matrix[3] + v.z * matrix[4];
+ float z = v.x * matrix[2] + v.y * matrix[4] + v.z * matrix[5];
+
+ float norm = max(max(x, y), z);
+
+ v = Vector3(x, y, z) / norm;
+ }
+
+ return v;
+}
+
+
+Vector3 nv::Fit::computeCentroid(int n, const Vector3 *__restrict points)
+{
+ Vector3 centroid(0.0f);
+
+ for (int i = 0; i < n; i++)
+ {
+ centroid += points[i];
+ }
+ centroid /= float(n);
+
+ return centroid;
+}
+
+Vector3 nv::Fit::computeCentroid(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric)
+{
+ Vector3 centroid(0.0f);
+ float total = 0.0f;
+
+ for (int i = 0; i < n; i++)
+ {
+ total += weights[i];
+ centroid += weights[i]*points[i];
+ }
+ centroid /= total;
+
+ return centroid;
+}
+
+Vector4 nv::Fit::computeCentroid(int n, const Vector4 *__restrict points)
+{
+ Vector4 centroid(0.0f);
+
+ for (int i = 0; i < n; i++)
+ {
+ centroid += points[i];
+ }
+ centroid /= float(n);
+
+ return centroid;
+}
+
+Vector4 nv::Fit::computeCentroid(int n, const Vector4 *__restrict points, const float *__restrict weights, Vector4::Arg metric)
+{
+ Vector4 centroid(0.0f);
+ float total = 0.0f;
+
+ for (int i = 0; i < n; i++)
+ {
+ total += weights[i];
+ centroid += weights[i]*points[i];
+ }
+ centroid /= total;
+
+ return centroid;
+}
+
+
+
+Vector3 nv::Fit::computeCovariance(int n, const Vector3 *__restrict points, float *__restrict covariance)
+{
+ // compute the centroid
+ Vector3 centroid = computeCentroid(n, points);
+
+ // compute covariance matrix
+ for (int i = 0; i < 6; i++)
+ {
+ covariance[i] = 0.0f;
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ Vector3 v = points[i] - centroid;
+
+ covariance[0] += v.x * v.x;
+ covariance[1] += v.x * v.y;
+ covariance[2] += v.x * v.z;
+ covariance[3] += v.y * v.y;
+ covariance[4] += v.y * v.z;
+ covariance[5] += v.z * v.z;
+ }
+
+ return centroid;
+}
+
+Vector3 nv::Fit::computeCovariance(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric, float *__restrict covariance)
+{
+ // compute the centroid
+ Vector3 centroid = computeCentroid(n, points, weights, metric);
+
+ // compute covariance matrix
+ for (int i = 0; i < 6; i++)
+ {
+ covariance[i] = 0.0f;
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ Vector3 a = (points[i] - centroid) * metric;
+ Vector3 b = weights[i]*a;
+
+ covariance[0] += a.x * b.x;
+ covariance[1] += a.x * b.y;
+ covariance[2] += a.x * b.z;
+ covariance[3] += a.y * b.y;
+ covariance[4] += a.y * b.z;
+ covariance[5] += a.z * b.z;
+ }
+
+ return centroid;
+}
+
+Vector4 nv::Fit::computeCovariance(int n, const Vector4 *__restrict points, float *__restrict covariance)
+{
+ // compute the centroid
+ Vector4 centroid = computeCentroid(n, points);
+
+ // compute covariance matrix
+ for (int i = 0; i < 10; i++)
+ {
+ covariance[i] = 0.0f;
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ Vector4 v = points[i] - centroid;
+
+ covariance[0] += v.x * v.x;
+ covariance[1] += v.x * v.y;
+ covariance[2] += v.x * v.z;
+ covariance[3] += v.x * v.w;
+
+ covariance[4] += v.y * v.y;
+ covariance[5] += v.y * v.z;
+ covariance[6] += v.y * v.w;
+
+ covariance[7] += v.z * v.z;
+ covariance[8] += v.z * v.w;
+
+ covariance[9] += v.w * v.w;
+ }
+
+ return centroid;
+}
+
+Vector4 nv::Fit::computeCovariance(int n, const Vector4 *__restrict points, const float *__restrict weights, Vector4::Arg metric, float *__restrict covariance)
+{
+ // compute the centroid
+ Vector4 centroid = computeCentroid(n, points, weights, metric);
+
+ // compute covariance matrix
+ for (int i = 0; i < 10; i++)
+ {
+ covariance[i] = 0.0f;
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ Vector4 a = (points[i] - centroid) * metric;
+ Vector4 b = weights[i]*a;
+
+ covariance[0] += a.x * b.x;
+ covariance[1] += a.x * b.y;
+ covariance[2] += a.x * b.z;
+ covariance[3] += a.x * b.w;
+
+ covariance[4] += a.y * b.y;
+ covariance[5] += a.y * b.z;
+ covariance[6] += a.y * b.w;
+
+ covariance[7] += a.z * b.z;
+ covariance[8] += a.z * b.w;
+
+ covariance[9] += a.w * b.w;
+ }
+
+ return centroid;
+}
+
+
+
+Vector3 nv::Fit::computePrincipalComponent_PowerMethod(int n, const Vector3 *__restrict points)
+{
+ float matrix[6];
+ computeCovariance(n, points, matrix);
+
+ return firstEigenVector_PowerMethod(matrix);
+}
+
+Vector3 nv::Fit::computePrincipalComponent_PowerMethod(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric)
+{
+ float matrix[6];
+ computeCovariance(n, points, weights, metric, matrix);
+
+ return firstEigenVector_PowerMethod(matrix);
+}
+
+
+
+static inline Vector3 firstEigenVector_EigenSolver3(const float *__restrict matrix)
+{
+ if (matrix[0] == 0 && matrix[3] == 0 && matrix[5] == 0)
+ {
+ return Vector3(0.0f);
+ }
+
+ float eigenValues[3];
+ Vector3 eigenVectors[3];
+ if (!nv::Fit::eigenSolveSymmetric3(matrix, eigenValues, eigenVectors))
+ {
+ return Vector3(0.0f);
+ }
+
+ return eigenVectors[0];
+}
+
+Vector3 nv::Fit::computePrincipalComponent_EigenSolver(int n, const Vector3 *__restrict points)
+{
+ float matrix[6];
+ computeCovariance(n, points, matrix);
+
+ return firstEigenVector_EigenSolver3(matrix);
+}
+
+Vector3 nv::Fit::computePrincipalComponent_EigenSolver(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric)
+{
+ float matrix[6];
+ computeCovariance(n, points, weights, metric, matrix);
+
+ return firstEigenVector_EigenSolver3(matrix);
+}
+
+
+
+static inline Vector4 firstEigenVector_EigenSolver4(const float *__restrict matrix)
+{
+ if (matrix[0] == 0 && matrix[4] == 0 && matrix[7] == 0&& matrix[9] == 0)
+ {
+ return Vector4(0.0f);
+ }
+
+ float eigenValues[4];
+ Vector4 eigenVectors[4];
+ if (!nv::Fit::eigenSolveSymmetric4(matrix, eigenValues, eigenVectors))
+ {
+ return Vector4(0.0f);
+ }
+
+ return eigenVectors[0];
+}
+
+Vector4 nv::Fit::computePrincipalComponent_EigenSolver(int n, const Vector4 *__restrict points)
+{
+ float matrix[10];
+ computeCovariance(n, points, matrix);
+
+ return firstEigenVector_EigenSolver4(matrix);
+}
+
+Vector4 nv::Fit::computePrincipalComponent_EigenSolver(int n, const Vector4 *__restrict points, const float *__restrict weights, Vector4::Arg metric)
+{
+ float matrix[10];
+ computeCovariance(n, points, weights, metric, matrix);
+
+ return firstEigenVector_EigenSolver4(matrix);
+}
+
+
+
+void ArvoSVD(int rows, int cols, float * Q, float * diag, float * R);
+
+Vector3 nv::Fit::computePrincipalComponent_SVD(int n, const Vector3 *__restrict points)
+{
+ // Store the points in an n x n matrix
+ Array<float> Q; Q.resize(n*n, 0.0f);
+ for (int i = 0; i < n; ++i)
+ {
+ Q[i*n+0] = points[i].x;
+ Q[i*n+1] = points[i].y;
+ Q[i*n+2] = points[i].z;
+ }
+
+ // Alloc space for the SVD outputs
+ Array<float> diag; diag.resize(n, 0.0f);
+ Array<float> R; R.resize(n*n, 0.0f);
+
+ ArvoSVD(n, n, &Q[0], &diag[0], &R[0]);
+
+ // Get the principal component
+ return Vector3(R[0], R[1], R[2]);
+}
+
+Vector4 nv::Fit::computePrincipalComponent_SVD(int n, const Vector4 *__restrict points)
+{
+ // Store the points in an n x n matrix
+ Array<float> Q; Q.resize(n*n, 0.0f);
+ for (int i = 0; i < n; ++i)
+ {
+ Q[i*n+0] = points[i].x;
+ Q[i*n+1] = points[i].y;
+ Q[i*n+2] = points[i].z;
+ Q[i*n+3] = points[i].w;
+ }
+
+ // Alloc space for the SVD outputs
+ Array<float> diag; diag.resize(n, 0.0f);
+ Array<float> R; R.resize(n*n, 0.0f);
+
+ ArvoSVD(n, n, &Q[0], &diag[0], &R[0]);
+
+ // Get the principal component
+ return Vector4(R[0], R[1], R[2], R[3]);
+}
+
+
+
+Plane nv::Fit::bestPlane(int n, const Vector3 *__restrict points)
+{
+ // compute the centroid and covariance
+ float matrix[6];
+ Vector3 centroid = computeCovariance(n, points, matrix);
+
+ if (matrix[0] == 0 && matrix[3] == 0 && matrix[5] == 0)
+ {
+ // If no plane defined, then return a horizontal plane.
+ return Plane(Vector3(0, 0, 1), centroid);
+ }
+
+ float eigenValues[3];
+ Vector3 eigenVectors[3];
+ if (!eigenSolveSymmetric3(matrix, eigenValues, eigenVectors)) {
+ // If no plane defined, then return a horizontal plane.
+ return Plane(Vector3(0, 0, 1), centroid);
+ }
+
+ return Plane(eigenVectors[2], centroid);
+}
+
+bool nv::Fit::isPlanar(int n, const Vector3 * points, float epsilon/*=NV_EPSILON*/)
+{
+ // compute the centroid and covariance
+ float matrix[6];
+ computeCovariance(n, points, matrix);
+
+ float eigenValues[3];
+ Vector3 eigenVectors[3];
+ if (!eigenSolveSymmetric3(matrix, eigenValues, eigenVectors)) {
+ return false;
+ }
+
+ return eigenValues[2] < epsilon;
+}
+
+
+
+// Tridiagonal solver from Charles Bloom.
+// Householder transforms followed by QL decomposition.
+// Seems to be based on the code from Numerical Recipes in C.
+
+static void EigenSolver3_Tridiagonal(float mat[3][3], float * diag, float * subd);
+static bool EigenSolver3_QLAlgorithm(float mat[3][3], float * diag, float * subd);
+
+bool nv::Fit::eigenSolveSymmetric3(const float matrix[6], float eigenValues[3], Vector3 eigenVectors[3])
+{
+ nvDebugCheck(matrix != NULL && eigenValues != NULL && eigenVectors != NULL);
+
+ float subd[3];
+ float diag[3];
+ float work[3][3];
+
+ work[0][0] = matrix[0];
+ work[0][1] = work[1][0] = matrix[1];
+ work[0][2] = work[2][0] = matrix[2];
+ work[1][1] = matrix[3];
+ work[1][2] = work[2][1] = matrix[4];
+ work[2][2] = matrix[5];
+
+ EigenSolver3_Tridiagonal(work, diag, subd);
+ if (!EigenSolver3_QLAlgorithm(work, diag, subd))
+ {
+ for (int i = 0; i < 3; i++) {
+ eigenValues[i] = 0;
+ eigenVectors[i] = Vector3(0);
+ }
+ return false;
+ }
+
+ for (int i = 0; i < 3; i++) {
+ eigenValues[i] = (float)diag[i];
+ }
+
+ // eigenvectors are the columns; make them the rows :
+
+ for (int i=0; i < 3; i++)
+ {
+ for (int j = 0; j < 3; j++)
+ {
+ eigenVectors[j].component[i] = (float) work[i][j];
+ }
+ }
+
+ // shuffle to sort by singular value :
+ if (eigenValues[2] > eigenValues[0] && eigenValues[2] > eigenValues[1])
+ {
+ swap(eigenValues[0], eigenValues[2]);
+ swap(eigenVectors[0], eigenVectors[2]);
+ }
+ if (eigenValues[1] > eigenValues[0])
+ {
+ swap(eigenValues[0], eigenValues[1]);
+ swap(eigenVectors[0], eigenVectors[1]);
+ }
+ if (eigenValues[2] > eigenValues[1])
+ {
+ swap(eigenValues[1], eigenValues[2]);
+ swap(eigenVectors[1], eigenVectors[2]);
+ }
+
+ nvDebugCheck(eigenValues[0] >= eigenValues[1] && eigenValues[0] >= eigenValues[2]);
+ nvDebugCheck(eigenValues[1] >= eigenValues[2]);
+
+ return true;
+}
+
+static void EigenSolver3_Tridiagonal(float mat[3][3], float * diag, float * subd)
+{
+ // Householder reduction T = Q^t M Q
+ // Input:
+ // mat, symmetric 3x3 matrix M
+ // Output:
+ // mat, orthogonal matrix Q
+ // diag, diagonal entries of T
+ // subd, subdiagonal entries of T (T is symmetric)
+ const float epsilon = 1e-08f;
+
+ float a = mat[0][0];
+ float b = mat[0][1];
+ float c = mat[0][2];
+ float d = mat[1][1];
+ float e = mat[1][2];
+ float f = mat[2][2];
+
+ diag[0] = a;
+ subd[2] = 0.f;
+ if (fabsf(c) >= epsilon)
+ {
+ const float ell = sqrtf(b*b+c*c);
+ b /= ell;
+ c /= ell;
+ const float q = 2*b*e+c*(f-d);
+ diag[1] = d+c*q;
+ diag[2] = f-c*q;
+ subd[0] = ell;
+ subd[1] = e-b*q;
+ mat[0][0] = 1; mat[0][1] = 0; mat[0][2] = 0;
+ mat[1][0] = 0; mat[1][1] = b; mat[1][2] = c;
+ mat[2][0] = 0; mat[2][1] = c; mat[2][2] = -b;
+ }
+ else
+ {
+ diag[1] = d;
+ diag[2] = f;
+ subd[0] = b;
+ subd[1] = e;
+ mat[0][0] = 1; mat[0][1] = 0; mat[0][2] = 0;
+ mat[1][0] = 0; mat[1][1] = 1; mat[1][2] = 0;
+ mat[2][0] = 0; mat[2][1] = 0; mat[2][2] = 1;
+ }
+}
+
+static bool EigenSolver3_QLAlgorithm(float mat[3][3], float * diag, float * subd)
+{
+ // QL iteration with implicit shifting to reduce matrix from tridiagonal
+ // to diagonal
+ const int maxiter = 32;
+
+ for (int ell = 0; ell < 3; ell++)
+ {
+ int iter;
+ for (iter = 0; iter < maxiter; iter++)
+ {
+ int m;
+ for (m = ell; m <= 1; m++)
+ {
+ float dd = fabsf(diag[m]) + fabsf(diag[m+1]);
+ if ( fabsf(subd[m]) + dd == dd )
+ break;
+ }
+ if ( m == ell )
+ break;
+
+ float g = (diag[ell+1]-diag[ell])/(2*subd[ell]);
+ float r = sqrtf(g*g+1);
+ if ( g < 0 )
+ g = diag[m]-diag[ell]+subd[ell]/(g-r);
+ else
+ g = diag[m]-diag[ell]+subd[ell]/(g+r);
+ float s = 1, c = 1, p = 0;
+ for (int i = m-1; i >= ell; i--)
+ {
+ float f = s*subd[i], b = c*subd[i];
+ if ( fabsf(f) >= fabsf(g) )
+ {
+ c = g/f;
+ r = sqrtf(c*c+1);
+ subd[i+1] = f*r;
+ c *= (s = 1/r);
+ }
+ else
+ {
+ s = f/g;
+ r = sqrtf(s*s+1);
+ subd[i+1] = g*r;
+ s *= (c = 1/r);
+ }
+ g = diag[i+1]-p;
+ r = (diag[i]-g)*s+2*b*c;
+ p = s*r;
+ diag[i+1] = g+p;
+ g = c*r-b;
+
+ for (int k = 0; k < 3; k++)
+ {
+ f = mat[k][i+1];
+ mat[k][i+1] = s*mat[k][i]+c*f;
+ mat[k][i] = c*mat[k][i]-s*f;
+ }
+ }
+ diag[ell] -= p;
+ subd[ell] = g;
+ subd[m] = 0;
+ }
+
+ if ( iter == maxiter )
+ // should not get here under normal circumstances
+ return false;
+ }
+
+ return true;
+}
+
+
+
+// Tridiagonal solver for 4x4 symmetric matrices.
+
+static void EigenSolver4_Tridiagonal(float mat[4][4], float * diag, float * subd);
+static bool EigenSolver4_QLAlgorithm(float mat[4][4], float * diag, float * subd);
+
+bool nv::Fit::eigenSolveSymmetric4(const float matrix[10], float eigenValues[4], Vector4 eigenVectors[4])
+{
+ nvDebugCheck(matrix != NULL && eigenValues != NULL && eigenVectors != NULL);
+
+ float subd[4];
+ float diag[4];
+ float work[4][4];
+
+ work[0][0] = matrix[0];
+ work[0][1] = work[1][0] = matrix[1];
+ work[0][2] = work[2][0] = matrix[2];
+ work[0][3] = work[3][0] = matrix[3];
+ work[1][1] = matrix[4];
+ work[1][2] = work[2][1] = matrix[5];
+ work[1][3] = work[3][1] = matrix[6];
+ work[2][2] = matrix[7];
+ work[2][3] = work[3][2] = matrix[8];
+ work[3][3] = matrix[9];
+
+ EigenSolver4_Tridiagonal(work, diag, subd);
+ if (!EigenSolver4_QLAlgorithm(work, diag, subd))
+ {
+ for (int i = 0; i < 4; i++) {
+ eigenValues[i] = 0;
+ eigenVectors[i] = Vector4(0);
+ }
+ return false;
+ }
+
+ for (int i = 0; i < 4; i++) {
+ eigenValues[i] = (float)diag[i];
+ }
+
+ // eigenvectors are the columns; make them the rows
+
+ for (int i = 0; i < 4; i++)
+ {
+ for (int j = 0; j < 4; j++)
+ {
+ eigenVectors[j].component[i] = (float) work[i][j];
+ }
+ }
+
+ // sort by singular value
+
+ for (int i = 0; i < 3; ++i)
+ {
+ for (int j = i+1; j < 4; ++j)
+ {
+ if (eigenValues[j] > eigenValues[i])
+ {
+ swap(eigenValues[i], eigenValues[j]);
+ swap(eigenVectors[i], eigenVectors[j]);
+ }
+ }
+ }
+
+ nvDebugCheck(eigenValues[0] >= eigenValues[1] && eigenValues[0] >= eigenValues[2] && eigenValues[0] >= eigenValues[3]);
+ nvDebugCheck(eigenValues[1] >= eigenValues[2] && eigenValues[1] >= eigenValues[3]);
+ nvDebugCheck(eigenValues[2] >= eigenValues[2]);
+
+ return true;
+}
+
+#include "nvmath/Matrix.inl"
+
+inline float signNonzero(float x)
+{
+ return (x >= 0.0f) ? 1.0f : -1.0f;
+}
+
+static void EigenSolver4_Tridiagonal(float mat[4][4], float * diag, float * subd)
+{
+ // Householder reduction T = Q^t M Q
+ // Input:
+ // mat, symmetric 3x3 matrix M
+ // Output:
+ // mat, orthogonal matrix Q
+ // diag, diagonal entries of T
+ // subd, subdiagonal entries of T (T is symmetric)
+
+ static const int n = 4;
+
+ // Set epsilon relative to size of elements in matrix
+ static const float relEpsilon = 1e-6f;
+ float maxElement = FLT_MAX;
+ for (int i = 0; i < n; ++i)
+ for (int j = 0; j < n; ++j)
+ maxElement = max(maxElement, fabsf(mat[i][j]));
+ float epsilon = relEpsilon * maxElement;
+
+ // Iterative algorithm, works for any size of matrix but might be slower than
+ // a closed-form solution for symmetric 4x4 matrices. Based on this article:
+ // http://en.wikipedia.org/wiki/Householder_transformation#Tridiagonalization
+
+ Matrix A, Q(identity);
+ memcpy(&A, mat, sizeof(float)*n*n);
+
+ // We proceed from left to right, making the off-tridiagonal entries zero in
+ // one column of the matrix at a time.
+ for (int k = 0; k < n - 2; ++k)
+ {
+ float sum = 0.0f;
+ for (int j = k+1; j < n; ++j)
+ sum += A(j,k)*A(j,k);
+ float alpha = -signNonzero(A(k+1,k)) * sqrtf(sum);
+ float r = sqrtf(0.5f * (alpha*alpha - A(k+1,k)*alpha));
+
+ // If r is zero, skip this column - already in tridiagonal form
+ if (fabsf(r) < epsilon)
+ continue;
+
+ float v[n] = {};
+ v[k+1] = 0.5f * (A(k+1,k) - alpha) / r;
+ for (int j = k+2; j < n; ++j)
+ v[j] = 0.5f * A(j,k) / r;
+
+ Matrix P(identity);
+ for (int i = 0; i < n; ++i)
+ for (int j = 0; j < n; ++j)
+ P(i,j) -= 2.0f * v[i] * v[j];
+
+ A = mul(mul(P, A), P);
+ Q = mul(Q, P);
+ }
+
+ nvDebugCheck(fabsf(A(2,0)) < epsilon);
+ nvDebugCheck(fabsf(A(0,2)) < epsilon);
+ nvDebugCheck(fabsf(A(3,0)) < epsilon);
+ nvDebugCheck(fabsf(A(0,3)) < epsilon);
+ nvDebugCheck(fabsf(A(3,1)) < epsilon);
+ nvDebugCheck(fabsf(A(1,3)) < epsilon);
+
+ for (int i = 0; i < n; ++i)
+ diag[i] = A(i,i);
+ for (int i = 0; i < n - 1; ++i)
+ subd[i] = A(i+1,i);
+ subd[n-1] = 0.0f;
+
+ memcpy(mat, &Q, sizeof(float)*n*n);
+}
+
+static bool EigenSolver4_QLAlgorithm(float mat[4][4], float * diag, float * subd)
+{
+ // QL iteration with implicit shifting to reduce matrix from tridiagonal
+ // to diagonal
+ const int maxiter = 32;
+
+ for (int ell = 0; ell < 4; ell++)
+ {
+ int iter;
+ for (iter = 0; iter < maxiter; iter++)
+ {
+ int m;
+ for (m = ell; m < 3; m++)
+ {
+ float dd = fabsf(diag[m]) + fabsf(diag[m+1]);
+ if ( fabsf(subd[m]) + dd == dd )
+ break;
+ }
+ if ( m == ell )
+ break;
+
+ float g = (diag[ell+1]-diag[ell])/(2*subd[ell]);
+ float r = sqrtf(g*g+1);
+ if ( g < 0 )
+ g = diag[m]-diag[ell]+subd[ell]/(g-r);
+ else
+ g = diag[m]-diag[ell]+subd[ell]/(g+r);
+ float s = 1, c = 1, p = 0;
+ for (int i = m-1; i >= ell; i--)
+ {
+ float f = s*subd[i], b = c*subd[i];
+ if ( fabsf(f) >= fabsf(g) )
+ {
+ c = g/f;
+ r = sqrtf(c*c+1);
+ subd[i+1] = f*r;
+ c *= (s = 1/r);
+ }
+ else
+ {
+ s = f/g;
+ r = sqrtf(s*s+1);
+ subd[i+1] = g*r;
+ s *= (c = 1/r);
+ }
+ g = diag[i+1]-p;
+ r = (diag[i]-g)*s+2*b*c;
+ p = s*r;
+ diag[i+1] = g+p;
+ g = c*r-b;
+
+ for (int k = 0; k < 4; k++)
+ {
+ f = mat[k][i+1];
+ mat[k][i+1] = s*mat[k][i]+c*f;
+ mat[k][i] = c*mat[k][i]-s*f;
+ }
+ }
+ diag[ell] -= p;
+ subd[ell] = g;
+ subd[m] = 0;
+ }
+
+ if ( iter == maxiter )
+ // should not get here under normal circumstances
+ return false;
+ }
+
+ return true;
+}
+
+
+
+int nv::Fit::compute4Means(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric, Vector3 *__restrict cluster)
+{
+ // Compute principal component.
+ float matrix[6];
+ Vector3 centroid = computeCovariance(n, points, weights, metric, matrix);
+ Vector3 principal = firstEigenVector_PowerMethod(matrix);
+
+ // Pick initial solution.
+ int mini, maxi;
+ mini = maxi = 0;
+
+ float mindps, maxdps;
+ mindps = maxdps = dot(points[0] - centroid, principal);
+
+ for (int i = 1; i < n; ++i)
+ {
+ float dps = dot(points[i] - centroid, principal);
+
+ if (dps < mindps) {
+ mindps = dps;
+ mini = i;
+ }
+ else {
+ maxdps = dps;
+ maxi = i;
+ }
+ }
+
+ cluster[0] = centroid + mindps * principal;
+ cluster[1] = centroid + maxdps * principal;
+ cluster[2] = (2.0f * cluster[0] + cluster[1]) / 3.0f;
+ cluster[3] = (2.0f * cluster[1] + cluster[0]) / 3.0f;
+
+ // Now we have to iteratively refine the clusters.
+ while (true)
+ {
+ Vector3 newCluster[4] = { Vector3(0.0f), Vector3(0.0f), Vector3(0.0f), Vector3(0.0f) };
+ float total[4] = {0, 0, 0, 0};
+
+ for (int i = 0; i < n; ++i)
+ {
+ // Find nearest cluster.
+ int nearest = 0;
+ float mindist = FLT_MAX;
+ for (int j = 0; j < 4; j++)
+ {
+ float dist = lengthSquared((cluster[j] - points[i]) * metric);
+ if (dist < mindist)
+ {
+ mindist = dist;
+ nearest = j;
+ }
+ }
+
+ newCluster[nearest] += weights[i] * points[i];
+ total[nearest] += weights[i];
+ }
+
+ for (int j = 0; j < 4; j++)
+ {
+ if (total[j] != 0)
+ newCluster[j] /= total[j];
+ }
+
+ if (equal(cluster[0], newCluster[0]) && equal(cluster[1], newCluster[1]) &&
+ equal(cluster[2], newCluster[2]) && equal(cluster[3], newCluster[3]))
+ {
+ return (total[0] != 0) + (total[1] != 0) + (total[2] != 0) + (total[3] != 0);
+ }
+
+ cluster[0] = newCluster[0];
+ cluster[1] = newCluster[1];
+ cluster[2] = newCluster[2];
+ cluster[3] = newCluster[3];
+
+ // Sort clusters by weight.
+ for (int i = 0; i < 4; i++)
+ {
+ for (int j = i; j > 0 && total[j] > total[j - 1]; j--)
+ {
+ swap( total[j], total[j - 1] );
+ swap( cluster[j], cluster[j - 1] );
+ }
+ }
+ }
+}
+
+
+
+// Adaptation of James Arvo's SVD code, as found in ZOH.
+
+inline float Sqr(float x) { return x*x; }
+
+inline float svd_pythag( float a, float b )
+{
+ float at = fabsf(a);
+ float bt = fabsf(b);
+ if( at > bt )
+ return at * sqrtf( 1.0f + Sqr( bt / at ) );
+ else if( bt > 0.0f )
+ return bt * sqrtf( 1.0f + Sqr( at / bt ) );
+ else return 0.0f;
+}
+
+inline float SameSign( float a, float b )
+{
+ float t;
+ if( b >= 0.0f ) t = fabsf( a );
+ else t = -fabsf( a );
+ return t;
+}
+
+void ArvoSVD(int rows, int cols, float * Q, float * diag, float * R)
+{
+ static const int MaxIterations = 30;
+
+ int i, j, k, l, p, q, iter;
+ float c, f, h, s, x, y, z;
+ float norm = 0.0f;
+ float g = 0.0f;
+ float scale = 0.0f;
+
+ Array<float> temp; temp.resize(cols, 0.0f);
+
+ for( i = 0; i < cols; i++ )
+ {
+ temp[i] = scale * g;
+ scale = 0.0f;
+ g = 0.0f;
+ s = 0.0f;
+ l = i + 1;
+
+ if( i < rows )
+ {
+ for( k = i; k < rows; k++ ) scale += fabsf( Q[k*cols+i] );
+ if( scale != 0.0f )
+ {
+ for( k = i; k < rows; k++ )
+ {
+ Q[k*cols+i] /= scale;
+ s += Sqr( Q[k*cols+i] );
+ }
+ f = Q[i*cols+i];
+ g = -SameSign( sqrtf(s), f );
+ h = f * g - s;
+ Q[i*cols+i] = f - g;
+ if( i != cols - 1 )
+ {
+ for( j = l; j < cols; j++ )
+ {
+ s = 0.0f;
+ for( k = i; k < rows; k++ ) s += Q[k*cols+i] * Q[k*cols+j];
+ f = s / h;
+ for( k = i; k < rows; k++ ) Q[k*cols+j] += f * Q[k*cols+i];
+ }
+ }
+ for( k = i; k < rows; k++ ) Q[k*cols+i] *= scale;
+ }
+ }
+
+ diag[i] = scale * g;
+ g = 0.0f;
+ s = 0.0f;
+ scale = 0.0f;
+
+ if( i < rows && i != cols - 1 )
+ {
+ for( k = l; k < cols; k++ ) scale += fabsf( Q[i*cols+k] );
+ if( scale != 0.0f )
+ {
+ for( k = l; k < cols; k++ )
+ {
+ Q[i*cols+k] /= scale;
+ s += Sqr( Q[i*cols+k] );
+ }
+ f = Q[i*cols+l];
+ g = -SameSign( sqrtf(s), f );
+ h = f * g - s;
+ Q[i*cols+l] = f - g;
+ for( k = l; k < cols; k++ ) temp[k] = Q[i*cols+k] / h;
+ if( i != rows - 1 )
+ {
+ for( j = l; j < rows; j++ )
+ {
+ s = 0.0f;
+ for( k = l; k < cols; k++ ) s += Q[j*cols+k] * Q[i*cols+k];
+ for( k = l; k < cols; k++ ) Q[j*cols+k] += s * temp[k];
+ }
+ }
+ for( k = l; k < cols; k++ ) Q[i*cols+k] *= scale;
+ }
+ }
+ norm = max( norm, fabsf( diag[i] ) + fabsf( temp[i] ) );
+ }
+
+
+ for( i = cols - 1; i >= 0; i-- )
+ {
+ if( i < cols - 1 )
+ {
+ if( g != 0.0f )
+ {
+ for( j = l; j < cols; j++ ) R[i*cols+j] = ( Q[i*cols+j] / Q[i*cols+l] ) / g;
+ for( j = l; j < cols; j++ )
+ {
+ s = 0.0f;
+ for( k = l; k < cols; k++ ) s += Q[i*cols+k] * R[j*cols+k];
+ for( k = l; k < cols; k++ ) R[j*cols+k] += s * R[i*cols+k];
+ }
+ }
+ for( j = l; j < cols; j++ )
+ {
+ R[i*cols+j] = 0.0f;
+ R[j*cols+i] = 0.0f;
+ }
+ }
+ R[i*cols+i] = 1.0f;
+ g = temp[i];
+ l = i;
+ }
+
+
+ for( i = cols - 1; i >= 0; i-- )
+ {
+ l = i + 1;
+ g = diag[i];
+ if( i < cols - 1 ) for( j = l; j < cols; j++ ) Q[i*cols+j] = 0.0f;
+ if( g != 0.0f )
+ {
+ g = 1.0f / g;
+ if( i != cols - 1 )
+ {
+ for( j = l; j < cols; j++ )
+ {
+ s = 0.0f;
+ for( k = l; k < rows; k++ ) s += Q[k*cols+i] * Q[k*cols+j];
+ f = ( s / Q[i*cols+i] ) * g;
+ for( k = i; k < rows; k++ ) Q[k*cols+j] += f * Q[k*cols+i];
+ }
+ }
+ for( j = i; j < rows; j++ ) Q[j*cols+i] *= g;
+ }
+ else
+ {
+ for( j = i; j < rows; j++ ) Q[j*cols+i] = 0.0f;
+ }
+ Q[i*cols+i] += 1.0f;
+ }
+
+
+ for( k = cols - 1; k >= 0; k-- )
+ {
+ for( iter = 1; iter <= MaxIterations; iter++ )
+ {
+ int jump = 0;
+
+ for( l = k; l >= 0; l-- )
+ {
+ q = l - 1;
+ if( fabsf( temp[l] ) + norm == norm ) { jump = 1; break; }
+ if( fabsf( diag[q] ) + norm == norm ) { jump = 0; break; }
+ }
+
+ if( !jump )
+ {
+ c = 0.0f;
+ s = 1.0f;
+ for( i = l; i <= k; i++ )
+ {
+ f = s * temp[i];
+ temp[i] *= c;
+ if( fabsf( f ) + norm == norm ) break;
+ g = diag[i];
+ h = svd_pythag( f, g );
+ diag[i] = h;
+ h = 1.0f / h;
+ c = g * h;
+ s = -f * h;
+ for( j = 0; j < rows; j++ )
+ {
+ y = Q[j*cols+q];
+ z = Q[j*cols+i];
+ Q[j*cols+q] = y * c + z * s;
+ Q[j*cols+i] = z * c - y * s;
+ }
+ }
+ }
+
+ z = diag[k];
+ if( l == k )
+ {
+ if( z < 0.0f )
+ {
+ diag[k] = -z;
+ for( j = 0; j < cols; j++ ) R[k*cols+j] *= -1.0f;
+ }
+ break;
+ }
+ if( iter >= MaxIterations ) return;
+ x = diag[l];
+ q = k - 1;
+ y = diag[q];
+ g = temp[q];
+ h = temp[k];
+ f = ( ( y - z ) * ( y + z ) + ( g - h ) * ( g + h ) ) / ( 2.0f * h * y );
+ g = svd_pythag( f, 1.0f );
+ f = ( ( x - z ) * ( x + z ) + h * ( ( y / ( f + SameSign( g, f ) ) ) - h ) ) / x;
+ c = 1.0f;
+ s = 1.0f;
+ for( j = l; j <= q; j++ )
+ {
+ i = j + 1;
+ g = temp[i];
+ y = diag[i];
+ h = s * g;
+ g = c * g;
+ z = svd_pythag( f, h );
+ temp[j] = z;
+ c = f / z;
+ s = h / z;
+ f = x * c + g * s;
+ g = g * c - x * s;
+ h = y * s;
+ y = y * c;
+ for( p = 0; p < cols; p++ )
+ {
+ x = R[j*cols+p];
+ z = R[i*cols+p];
+ R[j*cols+p] = x * c + z * s;
+ R[i*cols+p] = z * c - x * s;
+ }
+ z = svd_pythag( f, h );
+ diag[j] = z;
+ if( z != 0.0f )
+ {
+ z = 1.0f / z;
+ c = f * z;
+ s = h * z;
+ }
+ f = c * g + s * y;
+ x = c * y - s * g;
+ for( p = 0; p < rows; p++ )
+ {
+ y = Q[p*cols+j];
+ z = Q[p*cols+i];
+ Q[p*cols+j] = y * c + z * s;
+ Q[p*cols+i] = z * c - y * s;
+ }
+ }
+ temp[l] = 0.0f;
+ temp[k] = f;
+ diag[k] = x;
+ }
+ }
+
+ // Sort the singular values into descending order.
+
+ for( i = 0; i < cols - 1; i++ )
+ {
+ float biggest = diag[i]; // Biggest singular value so far.
+ int bindex = i; // The row/col it occurred in.
+ for( j = i + 1; j < cols; j++ )
+ {
+ if( diag[j] > biggest )
+ {
+ biggest = diag[j];
+ bindex = j;
+ }
+ }
+ if( bindex != i ) // Need to swap rows and columns.
+ {
+ // Swap columns in Q.
+ for (int j = 0; j < rows; ++j)
+ swap(Q[j*cols+i], Q[j*cols+bindex]);
+
+ // Swap rows in R.
+ for (int j = 0; j < rows; ++j)
+ swap(R[i*cols+j], R[bindex*cols+j]);
+
+ // Swap elements in diag.
+ swap(diag[i], diag[bindex]);
+ }
+ }
+}
diff --git a/thirdparty/thekla_atlas/nvmath/Fitting.h b/thirdparty/thekla_atlas/nvmath/Fitting.h
new file mode 100644
index 0000000000..7a88cd28fd
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Fitting.h
@@ -0,0 +1,50 @@
+// This code is in the public domain -- Ignacio CastaÃąo <castano@gmail.com>
+
+#pragma once
+#ifndef NV_MATH_FITTING_H
+#define NV_MATH_FITTING_H
+
+#include "Vector.h"
+#include "Plane.h"
+
+namespace nv
+{
+ namespace Fit
+ {
+ Vector3 computeCentroid(int n, const Vector3 * points);
+ Vector3 computeCentroid(int n, const Vector3 * points, const float * weights, const Vector3 & metric);
+
+ Vector4 computeCentroid(int n, const Vector4 * points);
+ Vector4 computeCentroid(int n, const Vector4 * points, const float * weights, const Vector4 & metric);
+
+ Vector3 computeCovariance(int n, const Vector3 * points, float * covariance);
+ Vector3 computeCovariance(int n, const Vector3 * points, const float * weights, const Vector3 & metric, float * covariance);
+
+ Vector4 computeCovariance(int n, const Vector4 * points, float * covariance);
+ Vector4 computeCovariance(int n, const Vector4 * points, const float * weights, const Vector4 & metric, float * covariance);
+
+ Vector3 computePrincipalComponent_PowerMethod(int n, const Vector3 * points);
+ Vector3 computePrincipalComponent_PowerMethod(int n, const Vector3 * points, const float * weights, const Vector3 & metric);
+
+ Vector3 computePrincipalComponent_EigenSolver(int n, const Vector3 * points);
+ Vector3 computePrincipalComponent_EigenSolver(int n, const Vector3 * points, const float * weights, const Vector3 & metric);
+
+ Vector4 computePrincipalComponent_EigenSolver(int n, const Vector4 * points);
+ Vector4 computePrincipalComponent_EigenSolver(int n, const Vector4 * points, const float * weights, const Vector4 & metric);
+
+ Vector3 computePrincipalComponent_SVD(int n, const Vector3 * points);
+ Vector4 computePrincipalComponent_SVD(int n, const Vector4 * points);
+
+ Plane bestPlane(int n, const Vector3 * points);
+ bool isPlanar(int n, const Vector3 * points, float epsilon = NV_EPSILON);
+
+ bool eigenSolveSymmetric3(const float matrix[6], float eigenValues[3], Vector3 eigenVectors[3]);
+ bool eigenSolveSymmetric4(const float matrix[10], float eigenValues[4], Vector4 eigenVectors[4]);
+
+ // Returns number of clusters [1-4].
+ int compute4Means(int n, const Vector3 * points, const float * weights, const Vector3 & metric, Vector3 * cluster);
+ }
+
+} // nv namespace
+
+#endif // NV_MATH_FITTING_H
diff --git a/thirdparty/thekla_atlas/nvmath/KahanSum.h b/thirdparty/thekla_atlas/nvmath/KahanSum.h
new file mode 100644
index 0000000000..18d475e7cb
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/KahanSum.h
@@ -0,0 +1,39 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#pragma once
+#ifndef NV_MATH_KAHANSUM_H
+#define NV_MATH_KAHANSUM_H
+
+#include "nvmath.h"
+
+namespace nv
+{
+
+ class KahanSum
+ {
+ public:
+ KahanSum() : accum(0.0f), err(0) {};
+
+ void add(float f)
+ {
+ float compensated = f + err;
+ float tmp = accum + compensated;
+ err = accum - tmp;
+ err += compensated;
+ accum = tmp;
+ }
+
+ float sum() const
+ {
+ return accum;
+ }
+
+ private:
+ float accum;
+ float err;
+ };
+
+} // nv namespace
+
+
+#endif // NV_MATH_KAHANSUM_H
diff --git a/thirdparty/thekla_atlas/nvmath/Matrix.cpp b/thirdparty/thekla_atlas/nvmath/Matrix.cpp
new file mode 100644
index 0000000000..29bd19f5f8
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Matrix.cpp
@@ -0,0 +1,441 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#include "Matrix.inl"
+#include "Vector.inl"
+
+#include "nvcore/Array.inl"
+
+#include <float.h>
+
+#if !NV_CC_MSVC && !NV_OS_ORBIS
+#include <alloca.h>
+#endif
+
+using namespace nv;
+
+
+// Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
+// permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
+// indx[1..n] is an output vector that records the row permutation effected by the partial
+// pivoting; d is output as -1 depending on whether the number of row interchanges was even
+// or odd, respectively. This routine is used in combination with lubksb to solve linear equations
+// or invert a matrix.
+static bool ludcmp(float **a, int n, int *indx, float *d)
+{
+ const float TINY = 1.0e-20f;
+
+ float * vv = (float*)alloca(sizeof(float) * n); // vv stores the implicit scaling of each row.
+
+ *d = 1.0; // No row interchanges yet.
+ for (int i = 0; i < n; i++) { // Loop over rows to get the implicit scaling information.
+
+ float big = 0.0;
+ for (int j = 0; j < n; j++) {
+ big = max(big, fabsf(a[i][j]));
+ }
+ if (big == 0) {
+ return false; // Singular matrix
+ }
+
+ // No nonzero largest element.
+ vv[i] = 1.0f / big; // Save the scaling.
+ }
+
+ for (int j = 0; j < n; j++) { // This is the loop over columns of Crout's method.
+ for (int i = 0; i < j; i++) { // This is equation (2.3.12) except for i = j.
+ float sum = a[i][j];
+ for (int k = 0; k < i; k++) sum -= a[i][k]*a[k][j];
+ a[i][j] = sum;
+ }
+
+ int imax = -1;
+ float big = 0.0; // Initialize for the search for largest pivot element.
+ for (int i = j; i < n; i++) { // This is i = j of equation (2.3.12) and i = j+ 1 : : : N
+ float sum = a[i][j]; // of equation (2.3.13).
+ for (int k = 0; k < j; k++) {
+ sum -= a[i][k]*a[k][j];
+ }
+ a[i][j]=sum;
+
+ float dum = vv[i]*fabs(sum);
+ if (dum >= big) {
+ // Is the figure of merit for the pivot better than the best so far?
+ big = dum;
+ imax = i;
+ }
+ }
+ nvDebugCheck(imax != -1);
+
+ if (j != imax) { // Do we need to interchange rows?
+ for (int k = 0; k < n; k++) { // Yes, do so...
+ swap(a[imax][k], a[j][k]);
+ }
+ *d = -(*d); // ...and change the parity of d.
+ vv[imax]=vv[j]; // Also interchange the scale factor.
+ }
+
+ indx[j]=imax;
+ if (a[j][j] == 0.0) a[j][j] = TINY;
+
+ // If the pivot element is zero the matrix is singular (at least to the precision of the
+ // algorithm). For some applications on singular matrices, it is desirable to substitute
+ // TINY for zero.
+ if (j != n-1) { // Now, finally, divide by the pivot element.
+ float dum = 1.0f / a[j][j];
+ for (int i = j+1; i < n; i++) a[i][j] *= dum;
+ }
+ } // Go back for the next column in the reduction.
+
+ return true;
+}
+
+
+// Solves the set of n linear equations Ax = b. Here a[1..n][1..n] is input, not as the matrix
+// A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input
+// as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
+// B, and returns with the solution vector X. a, n, and indx are not modified by this routine
+// and can be left in place for successive calls with different right-hand sides b. This routine takes
+// into account the possibility that b will begin with many zero elements, so it is efficient for use
+// in matrix inversion.
+static void lubksb(float **a, int n, int *indx, float b[])
+{
+ int ii = 0;
+ for (int i=0; i<n; i++) { // When ii is set to a positive value, it will become
+ int ip = indx[i]; // the index of the first nonvanishing element of b. We now
+ float sum = b[ip]; // do the forward substitution, equation (2.3.6). The
+ b[ip] = b[i]; // only new wrinkle is to unscramble the permutation as we go.
+ if (ii != 0) {
+ for (int j = ii-1; j < i; j++) sum -= a[i][j]*b[j];
+ }
+ else if (sum != 0.0f) {
+ ii = i+1; // A nonzero element was encountered, so from now on we
+ }
+ b[i] = sum; // will have to do the sums in the loop above.
+ }
+ for (int i=n-1; i>=0; i--) { // Now we do the backsubstitution, equation (2.3.7).
+ float sum = b[i];
+ for (int j = i+1; j < n; j++) {
+ sum -= a[i][j]*b[j];
+ }
+ b[i] = sum/a[i][i]; // Store a component of the solution vector X.
+ } // All done!
+}
+
+
+bool nv::solveLU(const Matrix & A, const Vector4 & b, Vector4 * x)
+{
+ nvDebugCheck(x != NULL);
+
+ float m[4][4];
+ float *a[4] = {m[0], m[1], m[2], m[3]};
+ int idx[4];
+ float d;
+
+ for (int y = 0; y < 4; y++) {
+ for (int x = 0; x < 4; x++) {
+ a[x][y] = A(x, y);
+ }
+ }
+
+ // Create LU decomposition.
+ if (!ludcmp(a, 4, idx, &d)) {
+ // Singular matrix.
+ return false;
+ }
+
+ // Init solution.
+ *x = b;
+
+ // Do back substitution.
+ lubksb(a, 4, idx, x->component);
+
+ return true;
+}
+
+// @@ Not tested.
+Matrix nv::inverseLU(const Matrix & A)
+{
+ Vector4 Ai[4];
+
+ solveLU(A, Vector4(1, 0, 0, 0), &Ai[0]);
+ solveLU(A, Vector4(0, 1, 0, 0), &Ai[1]);
+ solveLU(A, Vector4(0, 0, 1, 0), &Ai[2]);
+ solveLU(A, Vector4(0, 0, 0, 1), &Ai[3]);
+
+ return Matrix(Ai[0], Ai[1], Ai[2], Ai[3]);
+}
+
+
+
+bool nv::solveLU(const Matrix3 & A, const Vector3 & b, Vector3 * x)
+{
+ nvDebugCheck(x != NULL);
+
+ float m[3][3];
+ float *a[3] = {m[0], m[1], m[2]};
+ int idx[3];
+ float d;
+
+ for (int y = 0; y < 3; y++) {
+ for (int x = 0; x < 3; x++) {
+ a[x][y] = A(x, y);
+ }
+ }
+
+ // Create LU decomposition.
+ if (!ludcmp(a, 3, idx, &d)) {
+ // Singular matrix.
+ return false;
+ }
+
+ // Init solution.
+ *x = b;
+
+ // Do back substitution.
+ lubksb(a, 3, idx, x->component);
+
+ return true;
+}
+
+
+bool nv::solveCramer(const Matrix & A, const Vector4 & b, Vector4 * x)
+{
+ nvDebugCheck(x != NULL);
+
+ *x = transform(inverseCramer(A), b);
+
+ return true; // @@ Return false if determinant(A) == 0 !
+}
+
+bool nv::solveCramer(const Matrix3 & A, const Vector3 & b, Vector3 * x)
+{
+ nvDebugCheck(x != NULL);
+
+ const float det = A.determinant();
+ if (equal(det, 0.0f)) { // @@ Use input epsilon.
+ return false;
+ }
+
+ Matrix3 Ai = inverseCramer(A);
+
+ *x = transform(Ai, b);
+
+ return true;
+}
+
+
+
+// Inverse using gaussian elimination. From Jon's code.
+Matrix nv::inverse(const Matrix & m) {
+
+ Matrix A = m;
+ Matrix B(identity);
+
+ int i, j, k;
+ float max, t, det, pivot;
+
+ det = 1.0;
+ for (i=0; i<4; i++) { /* eliminate in column i, below diag */
+ max = -1.;
+ for (k=i; k<4; k++) /* find pivot for column i */
+ if (fabs(A(k, i)) > max) {
+ max = fabs(A(k, i));
+ j = k;
+ }
+ if (max<=0.) return B; /* if no nonzero pivot, PUNT */
+ if (j!=i) { /* swap rows i and j */
+ for (k=i; k<4; k++)
+ swap(A(i, k), A(j, k));
+ for (k=0; k<4; k++)
+ swap(B(i, k), B(j, k));
+ det = -det;
+ }
+ pivot = A(i, i);
+ det *= pivot;
+ for (k=i+1; k<4; k++) /* only do elems to right of pivot */
+ A(i, k) /= pivot;
+ for (k=0; k<4; k++)
+ B(i, k) /= pivot;
+ /* we know that A(i, i) will be set to 1, so don't bother to do it */
+
+ for (j=i+1; j<4; j++) { /* eliminate in rows below i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=i+1; k<4; k++) /* subtract scaled row i from row j */
+ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
+ for (k=0; k<4; k++)
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ /*---------- backward elimination ----------*/
+
+ for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */
+ for (j=0; j<i; j++) { /* eliminate in rows above i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=0; k<4; k++) /* subtract scaled row i from row j */
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ return B;
+}
+
+
+Matrix3 nv::inverse(const Matrix3 & m) {
+
+ Matrix3 A = m;
+ Matrix3 B(identity);
+
+ int i, j, k;
+ float max, t, det, pivot;
+
+ det = 1.0;
+ for (i=0; i<3; i++) { /* eliminate in column i, below diag */
+ max = -1.;
+ for (k=i; k<3; k++) /* find pivot for column i */
+ if (fabs(A(k, i)) > max) {
+ max = fabs(A(k, i));
+ j = k;
+ }
+ if (max<=0.) return B; /* if no nonzero pivot, PUNT */
+ if (j!=i) { /* swap rows i and j */
+ for (k=i; k<3; k++)
+ swap(A(i, k), A(j, k));
+ for (k=0; k<3; k++)
+ swap(B(i, k), B(j, k));
+ det = -det;
+ }
+ pivot = A(i, i);
+ det *= pivot;
+ for (k=i+1; k<3; k++) /* only do elems to right of pivot */
+ A(i, k) /= pivot;
+ for (k=0; k<3; k++)
+ B(i, k) /= pivot;
+ /* we know that A(i, i) will be set to 1, so don't bother to do it */
+
+ for (j=i+1; j<3; j++) { /* eliminate in rows below i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=i+1; k<3; k++) /* subtract scaled row i from row j */
+ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
+ for (k=0; k<3; k++)
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ /*---------- backward elimination ----------*/
+
+ for (i=3-1; i>0; i--) { /* eliminate in column i, above diag */
+ for (j=0; j<i; j++) { /* eliminate in rows above i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=0; k<3; k++) /* subtract scaled row i from row j */
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ return B;
+}
+
+
+
+
+
+#if 0
+
+// Copyright (C) 1999-2004 Michael Garland.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a
+// copy of this software and associated documentation files (the
+// "Software"), to deal in the Software without restriction, including
+// without limitation the rights to use, copy, modify, merge, publish,
+// distribute, and/or sell copies of the Software, and to permit persons
+// to whom the Software is furnished to do so, provided that the above
+// copyright notice(s) and this permission notice appear in all copies of
+// the Software and that both the above copyright notice(s) and this
+// permission notice appear in supporting documentation.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
+// OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+// HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
+// INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
+// FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
+// NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
+// WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+//
+// Except as contained in this notice, the name of a copyright holder
+// shall not be used in advertising or otherwise to promote the sale, use
+// or other dealings in this Software without prior written authorization
+// of the copyright holder.
+
+
+// Matrix inversion code for 4x4 matrices using Gaussian elimination
+// with partial pivoting. This is a specialized version of a
+// procedure originally due to Paul Heckbert <ph@cs.cmu.edu>.
+//
+// Returns determinant of A, and B=inverse(A)
+// If matrix A is singular, returns 0 and leaves trash in B.
+//
+#define SWAP(a, b, t) {t = a; a = b; b = t;}
+double invert(Mat4& B, const Mat4& m)
+{
+ Mat4 A = m;
+ int i, j, k;
+ double max, t, det, pivot;
+
+ /*---------- forward elimination ----------*/
+
+ for (i=0; i<4; i++) /* put identity matrix in B */
+ for (j=0; j<4; j++)
+ B(i, j) = (double)(i==j);
+
+ det = 1.0;
+ for (i=0; i<4; i++) { /* eliminate in column i, below diag */
+ max = -1.;
+ for (k=i; k<4; k++) /* find pivot for column i */
+ if (fabs(A(k, i)) > max) {
+ max = fabs(A(k, i));
+ j = k;
+ }
+ if (max<=0.) return 0.; /* if no nonzero pivot, PUNT */
+ if (j!=i) { /* swap rows i and j */
+ for (k=i; k<4; k++)
+ SWAP(A(i, k), A(j, k), t);
+ for (k=0; k<4; k++)
+ SWAP(B(i, k), B(j, k), t);
+ det = -det;
+ }
+ pivot = A(i, i);
+ det *= pivot;
+ for (k=i+1; k<4; k++) /* only do elems to right of pivot */
+ A(i, k) /= pivot;
+ for (k=0; k<4; k++)
+ B(i, k) /= pivot;
+ /* we know that A(i, i) will be set to 1, so don't bother to do it */
+
+ for (j=i+1; j<4; j++) { /* eliminate in rows below i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=i+1; k<4; k++) /* subtract scaled row i from row j */
+ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
+ for (k=0; k<4; k++)
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ /*---------- backward elimination ----------*/
+
+ for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */
+ for (j=0; j<i; j++) { /* eliminate in rows above i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=0; k<4; k++) /* subtract scaled row i from row j */
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ return det;
+}
+
+#endif // 0
+
+
+
diff --git a/thirdparty/thekla_atlas/nvmath/Matrix.h b/thirdparty/thekla_atlas/nvmath/Matrix.h
new file mode 100644
index 0000000000..506bdad1ca
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Matrix.h
@@ -0,0 +1,113 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_MATRIX_H
+#define NV_MATH_MATRIX_H
+
+#include "Vector.h"
+
+// - Matrices are stored in memory in *column major* order.
+// - Points are to be though of as column vectors.
+// - Transformation of a point p by a matrix M is: p' = M * p
+
+namespace nv
+{
+ enum identity_t { identity };
+
+ // 3x3 matrix.
+ class NVMATH_CLASS Matrix3
+ {
+ public:
+ Matrix3();
+ explicit Matrix3(float f);
+ explicit Matrix3(identity_t);
+ Matrix3(const Matrix3 & m);
+ Matrix3(Vector3::Arg v0, Vector3::Arg v1, Vector3::Arg v2);
+
+ float data(uint idx) const;
+ float & data(uint idx);
+ float get(uint row, uint col) const;
+ float operator()(uint row, uint col) const;
+ float & operator()(uint row, uint col);
+
+ Vector3 row(uint i) const;
+ Vector3 column(uint i) const;
+
+ void operator*=(float s);
+ void operator/=(float s);
+ void operator+=(const Matrix3 & m);
+ void operator-=(const Matrix3 & m);
+
+ void scale(float s);
+ void scale(Vector3::Arg s);
+ float determinant() const;
+
+ private:
+ float m_data[9];
+ };
+
+ // Solve equation system using LU decomposition and back-substitution.
+ extern bool solveLU(const Matrix3 & m, const Vector3 & b, Vector3 * x);
+
+ // Solve equation system using Cramer's inverse.
+ extern bool solveCramer(const Matrix3 & A, const Vector3 & b, Vector3 * x);
+
+
+ // 4x4 matrix.
+ class NVMATH_CLASS Matrix
+ {
+ public:
+ typedef Matrix const & Arg;
+
+ Matrix();
+ explicit Matrix(float f);
+ explicit Matrix(identity_t);
+ Matrix(const Matrix3 & m);
+ Matrix(const Matrix & m);
+ Matrix(Vector4::Arg v0, Vector4::Arg v1, Vector4::Arg v2, Vector4::Arg v3);
+ //explicit Matrix(const float m[]); // m is assumed to contain 16 elements
+
+ float data(uint idx) const;
+ float & data(uint idx);
+ float get(uint row, uint col) const;
+ float operator()(uint row, uint col) const;
+ float & operator()(uint row, uint col);
+ const float * ptr() const;
+
+ Vector4 row(uint i) const;
+ Vector4 column(uint i) const;
+
+ void zero();
+ void identity();
+
+ void scale(float s);
+ void scale(Vector3::Arg s);
+ void translate(Vector3::Arg t);
+ void rotate(float theta, float v0, float v1, float v2);
+ float determinant() const;
+
+ void operator+=(const Matrix & m);
+ void operator-=(const Matrix & m);
+
+ void apply(Matrix::Arg m);
+
+ private:
+ float m_data[16];
+ };
+
+ // Solve equation system using LU decomposition and back-substitution.
+ extern bool solveLU(const Matrix & A, const Vector4 & b, Vector4 * x);
+
+ // Solve equation system using Cramer's inverse.
+ extern bool solveCramer(const Matrix & A, const Vector4 & b, Vector4 * x);
+
+ // Compute inverse using LU decomposition.
+ extern Matrix inverseLU(const Matrix & m);
+
+ // Compute inverse using Gaussian elimination and partial pivoting.
+ extern Matrix inverse(const Matrix & m);
+ extern Matrix3 inverse(const Matrix3 & m);
+
+} // nv namespace
+
+#endif // NV_MATH_MATRIX_H
diff --git a/thirdparty/thekla_atlas/nvmath/Matrix.inl b/thirdparty/thekla_atlas/nvmath/Matrix.inl
new file mode 100644
index 0000000000..c0d99d9fe0
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Matrix.inl
@@ -0,0 +1,1274 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_MATRIX_INL
+#define NV_MATH_MATRIX_INL
+
+#include "Matrix.h"
+
+namespace nv
+{
+ inline Matrix3::Matrix3() {}
+
+ inline Matrix3::Matrix3(float f)
+ {
+ for(int i = 0; i < 9; i++) {
+ m_data[i] = f;
+ }
+ }
+
+ inline Matrix3::Matrix3(identity_t)
+ {
+ for(int i = 0; i < 3; i++) {
+ for(int j = 0; j < 3; j++) {
+ m_data[3*j+i] = (i == j) ? 1.0f : 0.0f;
+ }
+ }
+ }
+
+ inline Matrix3::Matrix3(const Matrix3 & m)
+ {
+ for(int i = 0; i < 9; i++) {
+ m_data[i] = m.m_data[i];
+ }
+ }
+
+ inline Matrix3::Matrix3(Vector3::Arg v0, Vector3::Arg v1, Vector3::Arg v2)
+ {
+ m_data[0] = v0.x; m_data[1] = v0.y; m_data[2] = v0.z;
+ m_data[3] = v1.x; m_data[4] = v1.y; m_data[5] = v1.z;
+ m_data[6] = v2.x; m_data[7] = v2.y; m_data[8] = v2.z;
+ }
+
+ inline float Matrix3::data(uint idx) const
+ {
+ nvDebugCheck(idx < 9);
+ return m_data[idx];
+ }
+ inline float & Matrix3::data(uint idx)
+ {
+ nvDebugCheck(idx < 9);
+ return m_data[idx];
+ }
+ inline float Matrix3::get(uint row, uint col) const
+ {
+ nvDebugCheck(row < 3 && col < 3);
+ return m_data[col * 3 + row];
+ }
+ inline float Matrix3::operator()(uint row, uint col) const
+ {
+ nvDebugCheck(row < 3 && col < 3);
+ return m_data[col * 3 + row];
+ }
+ inline float & Matrix3::operator()(uint row, uint col)
+ {
+ nvDebugCheck(row < 3 && col < 3);
+ return m_data[col * 3 + row];
+ }
+
+ inline Vector3 Matrix3::row(uint i) const
+ {
+ nvDebugCheck(i < 3);
+ return Vector3(get(i, 0), get(i, 1), get(i, 2));
+ }
+ inline Vector3 Matrix3::column(uint i) const
+ {
+ nvDebugCheck(i < 3);
+ return Vector3(get(0, i), get(1, i), get(2, i));
+ }
+
+ inline void Matrix3::operator*=(float s)
+ {
+ for(int i = 0; i < 9; i++) {
+ m_data[i] *= s;
+ }
+ }
+
+ inline void Matrix3::operator/=(float s)
+ {
+ float is = 1.0f /s;
+ for(int i = 0; i < 9; i++) {
+ m_data[i] *= is;
+ }
+ }
+
+ inline void Matrix3::operator+=(const Matrix3 & m)
+ {
+ for(int i = 0; i < 9; i++) {
+ m_data[i] += m.m_data[i];
+ }
+ }
+
+ inline void Matrix3::operator-=(const Matrix3 & m)
+ {
+ for(int i = 0; i < 9; i++) {
+ m_data[i] -= m.m_data[i];
+ }
+ }
+
+ inline Matrix3 operator+(const Matrix3 & a, const Matrix3 & b)
+ {
+ Matrix3 m = a;
+ m += b;
+ return m;
+ }
+
+ inline Matrix3 operator-(const Matrix3 & a, const Matrix3 & b)
+ {
+ Matrix3 m = a;
+ m -= b;
+ return m;
+ }
+
+ inline Matrix3 operator*(const Matrix3 & a, float s)
+ {
+ Matrix3 m = a;
+ m *= s;
+ return m;
+ }
+
+ inline Matrix3 operator*(float s, const Matrix3 & a)
+ {
+ Matrix3 m = a;
+ m *= s;
+ return m;
+ }
+
+ inline Matrix3 operator/(const Matrix3 & a, float s)
+ {
+ Matrix3 m = a;
+ m /= s;
+ return m;
+ }
+
+ inline Matrix3 mul(const Matrix3 & a, const Matrix3 & b)
+ {
+ Matrix3 m;
+
+ for(int i = 0; i < 3; i++) {
+ const float ai0 = a(i,0), ai1 = a(i,1), ai2 = a(i,2);
+ m(i, 0) = ai0 * b(0,0) + ai1 * b(1,0) + ai2 * b(2,0);
+ m(i, 1) = ai0 * b(0,1) + ai1 * b(1,1) + ai2 * b(2,1);
+ m(i, 2) = ai0 * b(0,2) + ai1 * b(1,2) + ai2 * b(2,2);
+ }
+
+ return m;
+ }
+
+ inline Matrix3 operator*(const Matrix3 & a, const Matrix3 & b)
+ {
+ return mul(a, b);
+ }
+
+ // Transform the given 3d vector with the given matrix.
+ inline Vector3 transform(const Matrix3 & m, const Vector3 & p)
+ {
+ return Vector3(
+ p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2),
+ p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2),
+ p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2));
+ }
+
+ inline void Matrix3::scale(float s)
+ {
+ for (int i = 0; i < 9; i++) {
+ m_data[i] *= s;
+ }
+ }
+
+ inline void Matrix3::scale(Vector3::Arg s)
+ {
+ m_data[0] *= s.x; m_data[1] *= s.x; m_data[2] *= s.x;
+ m_data[3] *= s.y; m_data[4] *= s.y; m_data[5] *= s.y;
+ m_data[6] *= s.z; m_data[7] *= s.z; m_data[8] *= s.z;
+ }
+
+ inline float Matrix3::determinant() const
+ {
+ return
+ get(0,0) * get(1,1) * get(2,2) +
+ get(0,1) * get(1,2) * get(2,0) +
+ get(0,2) * get(1,0) * get(2,1) -
+ get(0,2) * get(1,1) * get(2,0) -
+ get(0,1) * get(1,0) * get(2,2) -
+ get(0,0) * get(1,2) * get(2,1);
+ }
+
+ // Inverse using Cramer's rule.
+ inline Matrix3 inverseCramer(const Matrix3 & m)
+ {
+ const float det = m.determinant();
+ if (equal(det, 0.0f, 0.0f)) {
+ return Matrix3(0);
+ }
+
+ Matrix3 r;
+
+ r.data(0) = - m.data(5) * m.data(7) + m.data(4) * m.data(8);
+ r.data(1) = + m.data(5) * m.data(6) - m.data(3) * m.data(8);
+ r.data(2) = - m.data(4) * m.data(6) + m.data(3) * m.data(7);
+
+ r.data(3) = + m.data(2) * m.data(7) - m.data(1) * m.data(8);
+ r.data(4) = - m.data(2) * m.data(6) + m.data(0) * m.data(8);
+ r.data(5) = + m.data(1) * m.data(6) - m.data(0) * m.data(7);
+
+ r.data(6) = - m.data(2) * m.data(4) + m.data(1) * m.data(5);
+ r.data(7) = + m.data(2) * m.data(3) - m.data(0) * m.data(5);
+ r.data(8) = - m.data(1) * m.data(3) + m.data(0) * m.data(4);
+
+ r.scale(1.0f / det);
+
+ return r;
+ }
+
+
+
+ inline Matrix::Matrix()
+ {
+ }
+
+ inline Matrix::Matrix(float f)
+ {
+ for(int i = 0; i < 16; i++) {
+ m_data[i] = 0.0f;
+ }
+ }
+
+ inline Matrix::Matrix(identity_t)
+ {
+ for(int i = 0; i < 4; i++) {
+ for(int j = 0; j < 4; j++) {
+ m_data[4*j+i] = (i == j) ? 1.0f : 0.0f;
+ }
+ }
+ }
+
+ inline Matrix::Matrix(const Matrix & m)
+ {
+ for(int i = 0; i < 16; i++) {
+ m_data[i] = m.m_data[i];
+ }
+ }
+
+ inline Matrix::Matrix(const Matrix3 & m)
+ {
+ for(int i = 0; i < 3; i++) {
+ for(int j = 0; j < 3; j++) {
+ operator()(i, j) = m.get(i, j);
+ }
+ }
+ for(int i = 0; i < 4; i++) {
+ operator()(3, i) = 0;
+ operator()(i, 3) = 0;
+ }
+ }
+
+ inline Matrix::Matrix(Vector4::Arg v0, Vector4::Arg v1, Vector4::Arg v2, Vector4::Arg v3)
+ {
+ m_data[ 0] = v0.x; m_data[ 1] = v0.y; m_data[ 2] = v0.z; m_data[ 3] = v0.w;
+ m_data[ 4] = v1.x; m_data[ 5] = v1.y; m_data[ 6] = v1.z; m_data[ 7] = v1.w;
+ m_data[ 8] = v2.x; m_data[ 9] = v2.y; m_data[10] = v2.z; m_data[11] = v2.w;
+ m_data[12] = v3.x; m_data[13] = v3.y; m_data[14] = v3.z; m_data[15] = v3.w;
+ }
+
+ /*inline Matrix::Matrix(const float m[])
+ {
+ for(int i = 0; i < 16; i++) {
+ m_data[i] = m[i];
+ }
+ }*/
+
+
+ // Accessors
+ inline float Matrix::data(uint idx) const
+ {
+ nvDebugCheck(idx < 16);
+ return m_data[idx];
+ }
+ inline float & Matrix::data(uint idx)
+ {
+ nvDebugCheck(idx < 16);
+ return m_data[idx];
+ }
+ inline float Matrix::get(uint row, uint col) const
+ {
+ nvDebugCheck(row < 4 && col < 4);
+ return m_data[col * 4 + row];
+ }
+ inline float Matrix::operator()(uint row, uint col) const
+ {
+ nvDebugCheck(row < 4 && col < 4);
+ return m_data[col * 4 + row];
+ }
+ inline float & Matrix::operator()(uint row, uint col)
+ {
+ nvDebugCheck(row < 4 && col < 4);
+ return m_data[col * 4 + row];
+ }
+
+ inline const float * Matrix::ptr() const
+ {
+ return m_data;
+ }
+
+ inline Vector4 Matrix::row(uint i) const
+ {
+ nvDebugCheck(i < 4);
+ return Vector4(get(i, 0), get(i, 1), get(i, 2), get(i, 3));
+ }
+
+ inline Vector4 Matrix::column(uint i) const
+ {
+ nvDebugCheck(i < 4);
+ return Vector4(get(0, i), get(1, i), get(2, i), get(3, i));
+ }
+
+ inline void Matrix::zero()
+ {
+ m_data[0] = 0; m_data[1] = 0; m_data[2] = 0; m_data[3] = 0;
+ m_data[4] = 0; m_data[5] = 0; m_data[6] = 0; m_data[7] = 0;
+ m_data[8] = 0; m_data[9] = 0; m_data[10] = 0; m_data[11] = 0;
+ m_data[12] = 0; m_data[13] = 0; m_data[14] = 0; m_data[15] = 0;
+ }
+
+ inline void Matrix::identity()
+ {
+ m_data[0] = 1; m_data[1] = 0; m_data[2] = 0; m_data[3] = 0;
+ m_data[4] = 0; m_data[5] = 1; m_data[6] = 0; m_data[7] = 0;
+ m_data[8] = 0; m_data[9] = 0; m_data[10] = 1; m_data[11] = 0;
+ m_data[12] = 0; m_data[13] = 0; m_data[14] = 0; m_data[15] = 1;
+ }
+
+ // Apply scale.
+ inline void Matrix::scale(float s)
+ {
+ m_data[0] *= s; m_data[1] *= s; m_data[2] *= s; m_data[3] *= s;
+ m_data[4] *= s; m_data[5] *= s; m_data[6] *= s; m_data[7] *= s;
+ m_data[8] *= s; m_data[9] *= s; m_data[10] *= s; m_data[11] *= s;
+ m_data[12] *= s; m_data[13] *= s; m_data[14] *= s; m_data[15] *= s;
+ }
+
+ // Apply scale.
+ inline void Matrix::scale(Vector3::Arg s)
+ {
+ m_data[0] *= s.x; m_data[1] *= s.x; m_data[2] *= s.x; m_data[3] *= s.x;
+ m_data[4] *= s.y; m_data[5] *= s.y; m_data[6] *= s.y; m_data[7] *= s.y;
+ m_data[8] *= s.z; m_data[9] *= s.z; m_data[10] *= s.z; m_data[11] *= s.z;
+ }
+
+ // Apply translation.
+ inline void Matrix::translate(Vector3::Arg t)
+ {
+ m_data[12] = m_data[0] * t.x + m_data[4] * t.y + m_data[8] * t.z + m_data[12];
+ m_data[13] = m_data[1] * t.x + m_data[5] * t.y + m_data[9] * t.z + m_data[13];
+ m_data[14] = m_data[2] * t.x + m_data[6] * t.y + m_data[10] * t.z + m_data[14];
+ m_data[15] = m_data[3] * t.x + m_data[7] * t.y + m_data[11] * t.z + m_data[15];
+ }
+
+ Matrix rotation(float theta, float v0, float v1, float v2);
+
+ // Apply rotation.
+ inline void Matrix::rotate(float theta, float v0, float v1, float v2)
+ {
+ Matrix R(rotation(theta, v0, v1, v2));
+ apply(R);
+ }
+
+ // Apply transform.
+ inline void Matrix::apply(Matrix::Arg m)
+ {
+ nvDebugCheck(this != &m);
+
+ for(int i = 0; i < 4; i++) {
+ const float ai0 = get(i,0), ai1 = get(i,1), ai2 = get(i,2), ai3 = get(i,3);
+ m_data[0 + i] = ai0 * m(0,0) + ai1 * m(1,0) + ai2 * m(2,0) + ai3 * m(3,0);
+ m_data[4 + i] = ai0 * m(0,1) + ai1 * m(1,1) + ai2 * m(2,1) + ai3 * m(3,1);
+ m_data[8 + i] = ai0 * m(0,2) + ai1 * m(1,2) + ai2 * m(2,2) + ai3 * m(3,2);
+ m_data[12+ i] = ai0 * m(0,3) + ai1 * m(1,3) + ai2 * m(2,3) + ai3 * m(3,3);
+ }
+ }
+
+ // Get scale matrix.
+ inline Matrix scale(Vector3::Arg s)
+ {
+ Matrix m(identity);
+ m(0,0) = s.x;
+ m(1,1) = s.y;
+ m(2,2) = s.z;
+ return m;
+ }
+
+ // Get scale matrix.
+ inline Matrix scale(float s)
+ {
+ Matrix m(identity);
+ m(0,0) = m(1,1) = m(2,2) = s;
+ return m;
+ }
+
+ // Get translation matrix.
+ inline Matrix translation(Vector3::Arg t)
+ {
+ Matrix m(identity);
+ m(0,3) = t.x;
+ m(1,3) = t.y;
+ m(2,3) = t.z;
+ return m;
+ }
+
+ // Get rotation matrix.
+ inline Matrix rotation(float theta, float v0, float v1, float v2)
+ {
+ float cost = cosf(theta);
+ float sint = sinf(theta);
+
+ Matrix m(identity);
+
+ if( 1 == v0 && 0 == v1 && 0 == v2 ) {
+ m(1,1) = cost; m(2,1) = -sint;
+ m(1,2) = sint; m(2,2) = cost;
+ }
+ else if( 0 == v0 && 1 == v1 && 0 == v2 ) {
+ m(0,0) = cost; m(2,0) = sint;
+ m(1,2) = -sint; m(2,2) = cost;
+ }
+ else if( 0 == v0 && 0 == v1 && 1 == v2 ) {
+ m(0,0) = cost; m(1,0) = -sint;
+ m(0,1) = sint; m(1,1) = cost;
+ }
+ else {
+ float a2, b2, c2;
+ a2 = v0 * v0;
+ b2 = v1 * v1;
+ c2 = v2 * v2;
+
+ float iscale = 1.0f / sqrtf(a2 + b2 + c2);
+ v0 *= iscale;
+ v1 *= iscale;
+ v2 *= iscale;
+
+ float abm, acm, bcm;
+ float mcos, asin, bsin, csin;
+ mcos = 1.0f - cost;
+ abm = v0 * v1 * mcos;
+ acm = v0 * v2 * mcos;
+ bcm = v1 * v2 * mcos;
+ asin = v0 * sint;
+ bsin = v1 * sint;
+ csin = v2 * sint;
+ m(0,0) = a2 * mcos + cost;
+ m(1,0) = abm - csin;
+ m(2,0) = acm + bsin;
+ m(3,0) = abm + csin;
+ m(1,1) = b2 * mcos + cost;
+ m(2,1) = bcm - asin;
+ m(3,1) = acm - bsin;
+ m(1,2) = bcm + asin;
+ m(2,2) = c2 * mcos + cost;
+ }
+ return m;
+ }
+
+ //Matrix rotation(float yaw, float pitch, float roll);
+ //Matrix skew(float angle, Vector3::Arg v1, Vector3::Arg v2);
+
+ // Get frustum matrix.
+ inline Matrix frustum(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar)
+ {
+ Matrix m(0.0f);
+
+ float doubleznear = 2.0f * zNear;
+ float one_deltax = 1.0f / (xmax - xmin);
+ float one_deltay = 1.0f / (ymax - ymin);
+ float one_deltaz = 1.0f / (zFar - zNear);
+
+ m(0,0) = doubleznear * one_deltax;
+ m(1,1) = doubleznear * one_deltay;
+ m(0,2) = (xmax + xmin) * one_deltax;
+ m(1,2) = (ymax + ymin) * one_deltay;
+ m(2,2) = -(zFar + zNear) * one_deltaz;
+ m(3,2) = -1.0f;
+ m(2,3) = -(zFar * doubleznear) * one_deltaz;
+
+ return m;
+ }
+
+ // Get inverse frustum matrix.
+ inline Matrix frustumInverse(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar)
+ {
+ Matrix m(0.0f);
+
+ float one_doubleznear = 1.0f / (2.0f * zNear);
+ float one_doubleznearzfar = 1.0f / (2.0f * zNear * zFar);
+
+ m(0,0) = (xmax - xmin) * one_doubleznear;
+ m(0,3) = (xmax + xmin) * one_doubleznear;
+ m(1,1) = (ymax - ymin) * one_doubleznear;
+ m(1,3) = (ymax + ymin) * one_doubleznear;
+ m(2,3) = -1;
+ m(3,2) = -(zFar - zNear) * one_doubleznearzfar;
+ m(3,3) = (zFar + zNear) * one_doubleznearzfar;
+
+ return m;
+ }
+
+ // Get infinite frustum matrix.
+ inline Matrix frustum(float xmin, float xmax, float ymin, float ymax, float zNear)
+ {
+ Matrix m(0.0f);
+
+ float doubleznear = 2.0f * zNear;
+ float one_deltax = 1.0f / (xmax - xmin);
+ float one_deltay = 1.0f / (ymax - ymin);
+ float nudge = 1.0; // 0.999;
+
+ m(0,0) = doubleznear * one_deltax;
+ m(1,1) = doubleznear * one_deltay;
+ m(0,2) = (xmax + xmin) * one_deltax;
+ m(1,2) = (ymax + ymin) * one_deltay;
+ m(2,2) = -1.0f * nudge;
+ m(3,2) = -1.0f;
+ m(2,3) = -doubleznear * nudge;
+
+ return m;
+ }
+
+ // Get perspective matrix.
+ inline Matrix perspective(float fovy, float aspect, float zNear, float zFar)
+ {
+ float xmax = zNear * tan(fovy / 2);
+ float xmin = -xmax;
+
+ float ymax = xmax / aspect;
+ float ymin = -ymax;
+
+ return frustum(xmin, xmax, ymin, ymax, zNear, zFar);
+ }
+
+ // Get inverse perspective matrix.
+ inline Matrix perspectiveInverse(float fovy, float aspect, float zNear, float zFar)
+ {
+ float xmax = zNear * tan(fovy / 2);
+ float xmin = -xmax;
+
+ float ymax = xmax / aspect;
+ float ymin = -ymax;
+
+ return frustumInverse(xmin, xmax, ymin, ymax, zNear, zFar);
+ }
+
+ // Get infinite perspective matrix.
+ inline Matrix perspective(float fovy, float aspect, float zNear)
+ {
+ float x = zNear * tan(fovy / 2);
+ float y = x / aspect;
+ return frustum( -x, x, -y, y, zNear );
+ }
+
+ // Get matrix determinant.
+ inline float Matrix::determinant() const
+ {
+ return
+ m_data[3] * m_data[6] * m_data[ 9] * m_data[12] - m_data[2] * m_data[7] * m_data[ 9] * m_data[12] - m_data[3] * m_data[5] * m_data[10] * m_data[12] + m_data[1] * m_data[7] * m_data[10] * m_data[12] +
+ m_data[2] * m_data[5] * m_data[11] * m_data[12] - m_data[1] * m_data[6] * m_data[11] * m_data[12] - m_data[3] * m_data[6] * m_data[ 8] * m_data[13] + m_data[2] * m_data[7] * m_data[ 8] * m_data[13] +
+ m_data[3] * m_data[4] * m_data[10] * m_data[13] - m_data[0] * m_data[7] * m_data[10] * m_data[13] - m_data[2] * m_data[4] * m_data[11] * m_data[13] + m_data[0] * m_data[6] * m_data[11] * m_data[13] +
+ m_data[3] * m_data[5] * m_data[ 8] * m_data[14] - m_data[1] * m_data[7] * m_data[ 8] * m_data[14] - m_data[3] * m_data[4] * m_data[ 9] * m_data[14] + m_data[0] * m_data[7] * m_data[ 9] * m_data[14] +
+ m_data[1] * m_data[4] * m_data[11] * m_data[14] - m_data[0] * m_data[5] * m_data[11] * m_data[14] - m_data[2] * m_data[5] * m_data[ 8] * m_data[15] + m_data[1] * m_data[6] * m_data[ 8] * m_data[15] +
+ m_data[2] * m_data[4] * m_data[ 9] * m_data[15] - m_data[0] * m_data[6] * m_data[ 9] * m_data[15] - m_data[1] * m_data[4] * m_data[10] * m_data[15] + m_data[0] * m_data[5] * m_data[10] * m_data[15];
+ }
+
+ inline Matrix transpose(Matrix::Arg m)
+ {
+ Matrix r;
+ for (int i = 0; i < 4; i++)
+ {
+ for (int j = 0; j < 4; j++)
+ {
+ r(i, j) = m(j, i);
+ }
+ }
+ return r;
+ }
+
+ // Inverse using Cramer's rule.
+ inline Matrix inverseCramer(Matrix::Arg m)
+ {
+ Matrix r;
+ r.data( 0) = m.data(6)*m.data(11)*m.data(13) - m.data(7)*m.data(10)*m.data(13) + m.data(7)*m.data(9)*m.data(14) - m.data(5)*m.data(11)*m.data(14) - m.data(6)*m.data(9)*m.data(15) + m.data(5)*m.data(10)*m.data(15);
+ r.data( 1) = m.data(3)*m.data(10)*m.data(13) - m.data(2)*m.data(11)*m.data(13) - m.data(3)*m.data(9)*m.data(14) + m.data(1)*m.data(11)*m.data(14) + m.data(2)*m.data(9)*m.data(15) - m.data(1)*m.data(10)*m.data(15);
+ r.data( 2) = m.data(2)*m.data( 7)*m.data(13) - m.data(3)*m.data( 6)*m.data(13) + m.data(3)*m.data(5)*m.data(14) - m.data(1)*m.data( 7)*m.data(14) - m.data(2)*m.data(5)*m.data(15) + m.data(1)*m.data( 6)*m.data(15);
+ r.data( 3) = m.data(3)*m.data( 6)*m.data( 9) - m.data(2)*m.data( 7)*m.data( 9) - m.data(3)*m.data(5)*m.data(10) + m.data(1)*m.data( 7)*m.data(10) + m.data(2)*m.data(5)*m.data(11) - m.data(1)*m.data( 6)*m.data(11);
+ r.data( 4) = m.data(7)*m.data(10)*m.data(12) - m.data(6)*m.data(11)*m.data(12) - m.data(7)*m.data(8)*m.data(14) + m.data(4)*m.data(11)*m.data(14) + m.data(6)*m.data(8)*m.data(15) - m.data(4)*m.data(10)*m.data(15);
+ r.data( 5) = m.data(2)*m.data(11)*m.data(12) - m.data(3)*m.data(10)*m.data(12) + m.data(3)*m.data(8)*m.data(14) - m.data(0)*m.data(11)*m.data(14) - m.data(2)*m.data(8)*m.data(15) + m.data(0)*m.data(10)*m.data(15);
+ r.data( 6) = m.data(3)*m.data( 6)*m.data(12) - m.data(2)*m.data( 7)*m.data(12) - m.data(3)*m.data(4)*m.data(14) + m.data(0)*m.data( 7)*m.data(14) + m.data(2)*m.data(4)*m.data(15) - m.data(0)*m.data( 6)*m.data(15);
+ r.data( 7) = m.data(2)*m.data( 7)*m.data( 8) - m.data(3)*m.data( 6)*m.data( 8) + m.data(3)*m.data(4)*m.data(10) - m.data(0)*m.data( 7)*m.data(10) - m.data(2)*m.data(4)*m.data(11) + m.data(0)*m.data( 6)*m.data(11);
+ r.data( 8) = m.data(5)*m.data(11)*m.data(12) - m.data(7)*m.data( 9)*m.data(12) + m.data(7)*m.data(8)*m.data(13) - m.data(4)*m.data(11)*m.data(13) - m.data(5)*m.data(8)*m.data(15) + m.data(4)*m.data( 9)*m.data(15);
+ r.data( 9) = m.data(3)*m.data( 9)*m.data(12) - m.data(1)*m.data(11)*m.data(12) - m.data(3)*m.data(8)*m.data(13) + m.data(0)*m.data(11)*m.data(13) + m.data(1)*m.data(8)*m.data(15) - m.data(0)*m.data( 9)*m.data(15);
+ r.data(10) = m.data(1)*m.data( 7)*m.data(12) - m.data(3)*m.data( 5)*m.data(12) + m.data(3)*m.data(4)*m.data(13) - m.data(0)*m.data( 7)*m.data(13) - m.data(1)*m.data(4)*m.data(15) + m.data(0)*m.data( 5)*m.data(15);
+ r.data(11) = m.data(3)*m.data( 5)*m.data( 8) - m.data(1)*m.data( 7)*m.data( 8) - m.data(3)*m.data(4)*m.data( 9) + m.data(0)*m.data( 7)*m.data( 9) + m.data(1)*m.data(4)*m.data(11) - m.data(0)*m.data( 5)*m.data(11);
+ r.data(12) = m.data(6)*m.data( 9)*m.data(12) - m.data(5)*m.data(10)*m.data(12) - m.data(6)*m.data(8)*m.data(13) + m.data(4)*m.data(10)*m.data(13) + m.data(5)*m.data(8)*m.data(14) - m.data(4)*m.data( 9)*m.data(14);
+ r.data(13) = m.data(1)*m.data(10)*m.data(12) - m.data(2)*m.data( 9)*m.data(12) + m.data(2)*m.data(8)*m.data(13) - m.data(0)*m.data(10)*m.data(13) - m.data(1)*m.data(8)*m.data(14) + m.data(0)*m.data( 9)*m.data(14);
+ r.data(14) = m.data(2)*m.data( 5)*m.data(12) - m.data(1)*m.data( 6)*m.data(12) - m.data(2)*m.data(4)*m.data(13) + m.data(0)*m.data( 6)*m.data(13) + m.data(1)*m.data(4)*m.data(14) - m.data(0)*m.data( 5)*m.data(14);
+ r.data(15) = m.data(1)*m.data( 6)*m.data( 8) - m.data(2)*m.data( 5)*m.data( 8) + m.data(2)*m.data(4)*m.data( 9) - m.data(0)*m.data( 6)*m.data( 9) - m.data(1)*m.data(4)*m.data(10) + m.data(0)*m.data( 5)*m.data(10);
+ r.scale(1.0f / m.determinant());
+ return r;
+ }
+
+ inline Matrix isometryInverse(Matrix::Arg m)
+ {
+ Matrix r(identity);
+
+ // transposed 3x3 upper left matrix
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = 0; j < 3; j++)
+ {
+ r(i, j) = m(j, i);
+ }
+ }
+
+ // translate by the negative offsets
+ r.translate(-Vector3(m.data(12), m.data(13), m.data(14)));
+
+ return r;
+ }
+
+ // Transform the given 3d point with the given matrix.
+ inline Vector3 transformPoint(Matrix::Arg m, Vector3::Arg p)
+ {
+ return Vector3(
+ p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2) + m(0,3),
+ p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2) + m(1,3),
+ p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2) + m(2,3));
+ }
+
+ // Transform the given 3d vector with the given matrix.
+ inline Vector3 transformVector(Matrix::Arg m, Vector3::Arg p)
+ {
+ return Vector3(
+ p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2),
+ p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2),
+ p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2));
+ }
+
+ // Transform the given 4d vector with the given matrix.
+ inline Vector4 transform(Matrix::Arg m, Vector4::Arg p)
+ {
+ return Vector4(
+ p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2) + p.w * m(0,3),
+ p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2) + p.w * m(1,3),
+ p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2) + p.w * m(2,3),
+ p.x * m(3,0) + p.y * m(3,1) + p.z * m(3,2) + p.w * m(3,3));
+ }
+
+ inline Matrix mul(Matrix::Arg a, Matrix::Arg b)
+ {
+ // @@ Is this the right order? mul(a, b) = b * a
+ Matrix m = a;
+ m.apply(b);
+ return m;
+ }
+
+ inline void Matrix::operator+=(const Matrix & m)
+ {
+ for(int i = 0; i < 16; i++) {
+ m_data[i] += m.m_data[i];
+ }
+ }
+
+ inline void Matrix::operator-=(const Matrix & m)
+ {
+ for(int i = 0; i < 16; i++) {
+ m_data[i] -= m.m_data[i];
+ }
+ }
+
+ inline Matrix operator+(const Matrix & a, const Matrix & b)
+ {
+ Matrix m = a;
+ m += b;
+ return m;
+ }
+
+ inline Matrix operator-(const Matrix & a, const Matrix & b)
+ {
+ Matrix m = a;
+ m -= b;
+ return m;
+ }
+
+
+} // nv namespace
+
+
+#if 0 // old code.
+/** @name Special matrices. */
+//@{
+/** Generate a translation matrix. */
+void TranslationMatrix(const Vec3 & v) {
+ data[0] = 1; data[1] = 0; data[2] = 0; data[3] = 0;
+ data[4] = 0; data[5] = 1; data[6] = 0; data[7] = 0;
+ data[8] = 0; data[9] = 0; data[10] = 1; data[11] = 0;
+ data[12] = v.x; data[13] = v.y; data[14] = v.z; data[15] = 1;
+}
+
+/** Rotate theta degrees around v. */
+void RotationMatrix( float theta, float v0, float v1, float v2 ) {
+ float cost = cos(theta);
+ float sint = sin(theta);
+
+ if( 1 == v0 && 0 == v1 && 0 == v2 ) {
+ data[0] = 1.0f; data[1] = 0.0f; data[2] = 0.0f; data[3] = 0.0f;
+ data[4] = 0.0f; data[5] = cost; data[6] = -sint;data[7] = 0.0f;
+ data[8] = 0.0f; data[9] = sint; data[10] = cost;data[11] = 0.0f;
+ data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f;
+ }
+ else if( 0 == v0 && 1 == v1 && 0 == v2 ) {
+ data[0] = cost; data[1] = 0.0f; data[2] = sint; data[3] = 0.0f;
+ data[4] = 0.0f; data[5] = 1.0f; data[6] = 0.0f; data[7] = 0.0f;
+ data[8] = -sint;data[9] = 0.0f;data[10] = cost; data[11] = 0.0f;
+ data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f;
+ }
+ else if( 0 == v0 && 0 == v1 && 1 == v2 ) {
+ data[0] = cost; data[1] = -sint;data[2] = 0.0f; data[3] = 0.0f;
+ data[4] = sint; data[5] = cost; data[6] = 0.0f; data[7] = 0.0f;
+ data[8] = 0.0f; data[9] = 0.0f; data[10] = 1.0f;data[11] = 0.0f;
+ data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f;
+ }
+ else {
+ //we need scale a,b,c to unit length.
+ float a2, b2, c2;
+ a2 = v0 * v0;
+ b2 = v1 * v1;
+ c2 = v2 * v2;
+
+ float iscale = 1.0f / sqrtf(a2 + b2 + c2);
+ v0 *= iscale;
+ v1 *= iscale;
+ v2 *= iscale;
+
+ float abm, acm, bcm;
+ float mcos, asin, bsin, csin;
+ mcos = 1.0f - cost;
+ abm = v0 * v1 * mcos;
+ acm = v0 * v2 * mcos;
+ bcm = v1 * v2 * mcos;
+ asin = v0 * sint;
+ bsin = v1 * sint;
+ csin = v2 * sint;
+ data[0] = a2 * mcos + cost;
+ data[1] = abm - csin;
+ data[2] = acm + bsin;
+ data[3] = abm + csin;
+ data[4] = 0.0f;
+ data[5] = b2 * mcos + cost;
+ data[6] = bcm - asin;
+ data[7] = acm - bsin;
+ data[8] = 0.0f;
+ data[9] = bcm + asin;
+ data[10] = c2 * mcos + cost;
+ data[11] = 0.0f;
+ data[12] = 0.0f;
+ data[13] = 0.0f;
+ data[14] = 0.0f;
+ data[15] = 1.0f;
+ }
+}
+
+/*
+void SkewMatrix(float angle, const Vec3 & v1, const Vec3 & v2) {
+v1.Normalize();
+v2.Normalize();
+
+Vec3 v3;
+v3.Cross(v1, v2);
+v3.Normalize();
+
+// Get skew factor.
+float costheta = Vec3DotProduct(v1, v2);
+float sintheta = Real.Sqrt(1 - costheta * costheta);
+float skew = tan(Trig.DegreesToRadians(angle) + acos(sintheta)) * sintheta - costheta;
+
+// Build orthonormal matrix.
+v1 = FXVector3.Cross(v3, v2);
+v1.Normalize();
+
+Matrix R = Matrix::Identity;
+R[0, 0] = v3.X; // Not sure this is in the correct order...
+R[1, 0] = v3.Y;
+R[2, 0] = v3.Z;
+R[0, 1] = v1.X;
+R[1, 1] = v1.Y;
+R[2, 1] = v1.Z;
+R[0, 2] = v2.X;
+R[1, 2] = v2.Y;
+R[2, 2] = v2.Z;
+
+// Build skew matrix.
+Matrix S = Matrix::Identity;
+S[2, 1] = -skew;
+
+// Return skew transform.
+return R * S * R.Transpose; // Not sure this is in the correct order...
+}
+*/
+
+/**
+* Generate rotation matrix for the euler angles. This is the same as computing
+* 3 rotation matrices and multiplying them together in our custom order.
+*
+* @todo Have to recompute this code for our new convention.
+**/
+void RotationMatrix( float yaw, float pitch, float roll ) {
+ float sy = sin(yaw+ToRadian(90));
+ float cy = cos(yaw+ToRadian(90));
+ float sp = sin(pitch-ToRadian(90));
+ float cp = cos(pitch-ToRadian(90));
+ float sr = sin(roll);
+ float cr = cos(roll);
+
+ data[0] = cr*cy + sr*sp*sy;
+ data[1] = cp*sy;
+ data[2] = -sr*cy + cr*sp*sy;
+ data[3] = 0;
+
+ data[4] = -cr*sy + sr*sp*cy;
+ data[5] = cp*cy;
+ data[6] = sr*sy + cr*sp*cy;
+ data[7] = 0;
+
+ data[8] = sr*cp;
+ data[9] = -sp;
+ data[10] = cr*cp;
+ data[11] = 0;
+
+ data[12] = 0;
+ data[13] = 0;
+ data[14] = 0;
+ data[15] = 1;
+}
+
+/** Create a frustum matrix with the far plane at the infinity. */
+void Frustum( float xmin, float xmax, float ymin, float ymax, float zNear, float zFar ) {
+ float one_deltax, one_deltay, one_deltaz, doubleznear;
+
+ doubleznear = 2.0f * zNear;
+ one_deltax = 1.0f / (xmax - xmin);
+ one_deltay = 1.0f / (ymax - ymin);
+ one_deltaz = 1.0f / (zFar - zNear);
+
+ data[0] = (float)(doubleznear * one_deltax);
+ data[1] = 0.0f;
+ data[2] = 0.0f;
+ data[3] = 0.0f;
+ data[4] = 0.0f;
+ data[5] = (float)(doubleznear * one_deltay);
+ data[6] = 0.f;
+ data[7] = 0.f;
+ data[8] = (float)((xmax + xmin) * one_deltax);
+ data[9] = (float)((ymax + ymin) * one_deltay);
+ data[10] = (float)(-(zFar + zNear) * one_deltaz);
+ data[11] = -1.f;
+ data[12] = 0.f;
+ data[13] = 0.f;
+ data[14] = (float)(-(zFar * doubleznear) * one_deltaz);
+ data[15] = 0.f;
+}
+
+/** Create a frustum matrix with the far plane at the infinity. */
+void FrustumInf( float xmin, float xmax, float ymin, float ymax, float zNear ) {
+ float one_deltax, one_deltay, doubleznear, nudge;
+
+ doubleznear = 2.0f * zNear;
+ one_deltax = 1.0f / (xmax - xmin);
+ one_deltay = 1.0f / (ymax - ymin);
+ nudge = 1.0; // 0.999;
+
+ data[0] = doubleznear * one_deltax;
+ data[1] = 0.0f;
+ data[2] = 0.0f;
+ data[3] = 0.0f;
+
+ data[4] = 0.0f;
+ data[5] = doubleznear * one_deltay;
+ data[6] = 0.f;
+ data[7] = 0.f;
+
+ data[8] = (xmax + xmin) * one_deltax;
+ data[9] = (ymax + ymin) * one_deltay;
+ data[10] = -1.0f * nudge;
+ data[11] = -1.0f;
+
+ data[12] = 0.f;
+ data[13] = 0.f;
+ data[14] = -doubleznear * nudge;
+ data[15] = 0.f;
+}
+
+/** Create an inverse frustum matrix with the far plane at the infinity. */
+void FrustumInfInv( float left, float right, float bottom, float top, float zNear ) {
+ // this matrix is wrong (not tested floatly) I think it should be transposed.
+ data[0] = (right - left) / (2 * zNear);
+ data[1] = 0;
+ data[2] = 0;
+ data[3] = (right + left) / (2 * zNear);
+ data[4] = 0;
+ data[5] = (top - bottom) / (2 * zNear);
+ data[6] = 0;
+ data[7] = (top + bottom) / (2 * zNear);
+ data[8] = 0;
+ data[9] = 0;
+ data[10] = 0;
+ data[11] = -1;
+ data[12] = 0;
+ data[13] = 0;
+ data[14] = -1 / (2 * zNear);
+ data[15] = 1 / (2 * zNear);
+}
+
+/** Create an homogeneous projection matrix. */
+void Perspective( float fov, float aspect, float zNear, float zFar ) {
+ float xmin, xmax, ymin, ymax;
+
+ xmax = zNear * tan( fov/2 );
+ xmin = -xmax;
+
+ ymax = xmax / aspect;
+ ymin = -ymax;
+
+ Frustum(xmin, xmax, ymin, ymax, zNear, zFar);
+}
+
+/** Create a projection matrix with the far plane at the infinity. */
+void PerspectiveInf( float fov, float aspect, float zNear ) {
+ float x = zNear * tan( fov/2 );
+ float y = x / aspect;
+ FrustumInf( -x, x, -y, y, zNear );
+}
+
+/** Create an inverse projection matrix with far plane at the infinity. */
+void PerspectiveInfInv( float fov, float aspect, float zNear ) {
+ float x = zNear * tan( fov/2 );
+ float y = x / aspect;
+ FrustumInfInv( -x, x, -y, y, zNear );
+}
+
+/** Build bone matrix from quatertion and offset. */
+void BoneMatrix(const Quat & q, const Vec3 & offset) {
+ float x2, y2, z2, xx, xy, xz, yy, yz, zz, wx, wy, wz;
+
+ // calculate coefficients
+ x2 = q.x + q.x;
+ y2 = q.y + q.y;
+ z2 = q.z + q.z;
+
+ xx = q.x * x2; xy = q.x * y2; xz = q.x * z2;
+ yy = q.y * y2; yz = q.y * z2; zz = q.z * z2;
+ wx = q.w * x2; wy = q.w * y2; wz = q.w * z2;
+
+ data[0] = 1.0f - (yy + zz);
+ data[1] = xy - wz;
+ data[2] = xz + wy;
+ data[3] = 0.0f;
+
+ data[4] = xy + wz;
+ data[5] = 1.0f - (xx + zz);
+ data[6] = yz - wx;
+ data[7] = 0.0f;
+
+ data[8] = xz - wy;
+ data[9] = yz + wx;
+ data[10] = 1.0f - (xx + yy);
+ data[11] = 0.0f;
+
+ data[12] = offset.x;
+ data[13] = offset.y;
+ data[14] = offset.z;
+ data[15] = 1.0f;
+}
+
+//@}
+
+
+/** @name Transformations: */
+//@{
+
+/** Apply a general scale. */
+void Scale( float x, float y, float z ) {
+ data[0] *= x; data[4] *= y; data[8] *= z;
+ data[1] *= x; data[5] *= y; data[9] *= z;
+ data[2] *= x; data[6] *= y; data[10] *= z;
+ data[3] *= x; data[7] *= y; data[11] *= z;
+}
+
+/** Apply a rotation of theta degrees around the axis v*/
+void Rotate( float theta, const Vec3 & v ) {
+ Matrix b;
+ b.RotationMatrix( theta, v[0], v[1], v[2] );
+ Multiply4x3( b );
+}
+
+/** Apply a rotation of theta degrees around the axis v*/
+void Rotate( float theta, float v0, float v1, float v2 ) {
+ Matrix b;
+ b.RotationMatrix( theta, v0, v1, v2 );
+ Multiply4x3( b );
+}
+
+/**
+* Translate the matrix by t. This is the same as multiplying by a
+* translation matrix with the given offset.
+* this = T * this
+*/
+void Translate( const Vec3 &t ) {
+ data[12] = data[0] * t.x + data[4] * t.y + data[8] * t.z + data[12];
+ data[13] = data[1] * t.x + data[5] * t.y + data[9] * t.z + data[13];
+ data[14] = data[2] * t.x + data[6] * t.y + data[10] * t.z + data[14];
+ data[15] = data[3] * t.x + data[7] * t.y + data[11] * t.z + data[15];
+}
+
+/**
+* Translate the matrix by x, y, z. This is the same as multiplying by a
+* translation matrix with the given offsets.
+*/
+void Translate( float x, float y, float z ) {
+ data[12] = data[0] * x + data[4] * y + data[8] * z + data[12];
+ data[13] = data[1] * x + data[5] * y + data[9] * z + data[13];
+ data[14] = data[2] * x + data[6] * y + data[10] * z + data[14];
+ data[15] = data[3] * x + data[7] * y + data[11] * z + data[15];
+}
+
+/** Compute the transposed matrix. */
+void Transpose() {
+ piSwap(data[1], data[4]);
+ piSwap(data[2], data[8]);
+ piSwap(data[6], data[9]);
+ piSwap(data[3], data[12]);
+ piSwap(data[7], data[13]);
+ piSwap(data[11], data[14]);
+}
+
+/** Compute the inverse of a rigid-body/isometry/orthonormal matrix. */
+void IsometryInverse() {
+ // transposed 3x3 upper left matrix
+ piSwap(data[1], data[4]);
+ piSwap(data[2], data[8]);
+ piSwap(data[6], data[9]);
+
+ // translate by the negative offsets
+ Vec3 v(-data[12], -data[13], -data[14]);
+ data[12] = data[13] = data[14] = 0;
+ Translate(v);
+}
+
+/** Compute the inverse of the affine portion of this matrix. */
+void AffineInverse() {
+ data[12] = data[13] = data[14] = 0;
+ Transpose();
+}
+//@}
+
+/** @name Matrix operations: */
+//@{
+
+/** Return the determinant of this matrix. */
+float Determinant() const {
+ return data[0] * data[5] * data[10] * data[15] +
+ data[1] * data[6] * data[11] * data[12] +
+ data[2] * data[7] * data[ 8] * data[13] +
+ data[3] * data[4] * data[ 9] * data[14] -
+ data[3] * data[6] * data[ 9] * data[12] -
+ data[2] * data[5] * data[ 8] * data[15] -
+ data[1] * data[4] * data[11] * data[14] -
+ data[0] * data[7] * data[10] * data[12];
+}
+
+
+/** Standard matrix product: this *= B. */
+void Multiply4x4( const Matrix & restrict B ) {
+ Multiply4x4(*this, B);
+}
+
+/** Standard matrix product: this = A * B. this != B*/
+void Multiply4x4( const Matrix & A, const Matrix & restrict B ) {
+ piDebugCheck(this != &B);
+
+ for(int i = 0; i < 4; i++) {
+ const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3);
+ GetElem(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
+ GetElem(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
+ GetElem(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
+ GetElem(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
+ }
+
+ /* Unrolled but does not allow this == A
+ data[0] = A.data[0] * B.data[0] + A.data[4] * B.data[1] + A.data[8] * B.data[2] + A.data[12] * B.data[3];
+ data[1] = A.data[1] * B.data[0] + A.data[5] * B.data[1] + A.data[9] * B.data[2] + A.data[13] * B.data[3];
+ data[2] = A.data[2] * B.data[0] + A.data[6] * B.data[1] + A.data[10] * B.data[2] + A.data[14] * B.data[3];
+ data[3] = A.data[3] * B.data[0] + A.data[7] * B.data[1] + A.data[11] * B.data[2] + A.data[15] * B.data[3];
+ data[4] = A.data[0] * B.data[4] + A.data[4] * B.data[5] + A.data[8] * B.data[6] + A.data[12] * B.data[7];
+ data[5] = A.data[1] * B.data[4] + A.data[5] * B.data[5] + A.data[9] * B.data[6] + A.data[13] * B.data[7];
+ data[6] = A.data[2] * B.data[4] + A.data[6] * B.data[5] + A.data[10] * B.data[6] + A.data[14] * B.data[7];
+ data[7] = A.data[3] * B.data[4] + A.data[7] * B.data[5] + A.data[11] * B.data[6] + A.data[15] * B.data[7];
+ data[8] = A.data[0] * B.data[8] + A.data[4] * B.data[9] + A.data[8] * B.data[10] + A.data[12] * B.data[11];
+ data[9] = A.data[1] * B.data[8] + A.data[5] * B.data[9] + A.data[9] * B.data[10] + A.data[13] * B.data[11];
+ data[10]= A.data[2] * B.data[8] + A.data[6] * B.data[9] + A.data[10] * B.data[10] + A.data[14] * B.data[11];
+ data[11]= A.data[3] * B.data[8] + A.data[7] * B.data[9] + A.data[11] * B.data[10] + A.data[15] * B.data[11];
+ data[12]= A.data[0] * B.data[12] + A.data[4] * B.data[13] + A.data[8] * B.data[14] + A.data[12] * B.data[15];
+ data[13]= A.data[1] * B.data[12] + A.data[5] * B.data[13] + A.data[9] * B.data[14] + A.data[13] * B.data[15];
+ data[14]= A.data[2] * B.data[12] + A.data[6] * B.data[13] + A.data[10] * B.data[14] + A.data[14] * B.data[15];
+ data[15]= A.data[3] * B.data[12] + A.data[7] * B.data[13] + A.data[11] * B.data[14] + A.data[15] * B.data[15];
+ */
+}
+
+/** Standard matrix product: this *= B. */
+void Multiply4x3( const Matrix & restrict B ) {
+ Multiply4x3(*this, B);
+}
+
+/** Standard product of matrices, where the last row is [0 0 0 1]. */
+void Multiply4x3( const Matrix & A, const Matrix & restrict B ) {
+ piDebugCheck(this != &B);
+
+ for(int i = 0; i < 3; i++) {
+ const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3);
+ GetElem(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
+ GetElem(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
+ GetElem(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
+ GetElem(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
+ }
+ data[3] = 0.0f; data[7] = 0.0f; data[11] = 0.0f; data[15] = 1.0f;
+
+ /* Unrolled but does not allow this == A
+ data[0] = a.data[0] * b.data[0] + a.data[4] * b.data[1] + a.data[8] * b.data[2] + a.data[12] * b.data[3];
+ data[1] = a.data[1] * b.data[0] + a.data[5] * b.data[1] + a.data[9] * b.data[2] + a.data[13] * b.data[3];
+ data[2] = a.data[2] * b.data[0] + a.data[6] * b.data[1] + a.data[10] * b.data[2] + a.data[14] * b.data[3];
+ data[3] = 0.0f;
+ data[4] = a.data[0] * b.data[4] + a.data[4] * b.data[5] + a.data[8] * b.data[6] + a.data[12] * b.data[7];
+ data[5] = a.data[1] * b.data[4] + a.data[5] * b.data[5] + a.data[9] * b.data[6] + a.data[13] * b.data[7];
+ data[6] = a.data[2] * b.data[4] + a.data[6] * b.data[5] + a.data[10] * b.data[6] + a.data[14] * b.data[7];
+ data[7] = 0.0f;
+ data[8] = a.data[0] * b.data[8] + a.data[4] * b.data[9] + a.data[8] * b.data[10] + a.data[12] * b.data[11];
+ data[9] = a.data[1] * b.data[8] + a.data[5] * b.data[9] + a.data[9] * b.data[10] + a.data[13] * b.data[11];
+ data[10]= a.data[2] * b.data[8] + a.data[6] * b.data[9] + a.data[10] * b.data[10] + a.data[14] * b.data[11];
+ data[11]= 0.0f;
+ data[12]= a.data[0] * b.data[12] + a.data[4] * b.data[13] + a.data[8] * b.data[14] + a.data[12] * b.data[15];
+ data[13]= a.data[1] * b.data[12] + a.data[5] * b.data[13] + a.data[9] * b.data[14] + a.data[13] * b.data[15];
+ data[14]= a.data[2] * b.data[12] + a.data[6] * b.data[13] + a.data[10] * b.data[14] + a.data[14] * b.data[15];
+ data[15]= 1.0f;
+ */
+}
+//@}
+
+
+/** @name Vector operations: */
+//@{
+
+/** Transform 3d vector (w=0). */
+void TransformVec3(const Vec3 & restrict orig, Vec3 * restrict dest) const {
+ piDebugCheck(&orig != dest);
+ dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8];
+ dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9];
+ dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10];
+}
+/** Transform 3d vector by the transpose (w=0). */
+void TransformVec3T(const Vec3 & restrict orig, Vec3 * restrict dest) const {
+ piDebugCheck(&orig != dest);
+ dest->x = orig.x * data[0] + orig.y * data[1] + orig.z * data[2];
+ dest->y = orig.x * data[4] + orig.y * data[5] + orig.z * data[6];
+ dest->z = orig.x * data[8] + orig.y * data[9] + orig.z * data[10];
+}
+
+/** Transform a 3d homogeneous vector, where the fourth coordinate is assumed to be 1. */
+void TransformPoint(const Vec3 & restrict orig, Vec3 * restrict dest) const {
+ piDebugCheck(&orig != dest);
+ dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12];
+ dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13];
+ dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14];
+}
+
+/** Transform a point, normalize it, and return w. */
+float TransformPointAndNormalize(const Vec3 & restrict orig, Vec3 * restrict dest) const {
+ piDebugCheck(&orig != dest);
+ float w;
+ dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12];
+ dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13];
+ dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14];
+ w = 1 / (orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]);
+ *dest *= w;
+ return w;
+}
+
+/** Transform a point and return w. */
+float TransformPointReturnW(const Vec3 & restrict orig, Vec3 * restrict dest) const {
+ piDebugCheck(&orig != dest);
+ dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12];
+ dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13];
+ dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14];
+ return orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15];
+}
+
+/** Transform a normalized 3d point by a 4d matrix and return the resulting 4d vector. */
+void TransformVec4(const Vec3 & orig, Vec4 * dest) const {
+ dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12];
+ dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13];
+ dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14];
+ dest->w = orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15];
+}
+//@}
+
+/** @name Matrix analysis. */
+//@{
+
+/** Get the ZYZ euler angles from the matrix. Assumes the matrix is orthonormal. */
+void GetEulerAnglesZYZ(float * s, float * t, float * r) const {
+ if( GetElem(2,2) < 1.0f ) {
+ if( GetElem(2,2) > -1.0f ) {
+ // cs*ct*cr-ss*sr -ss*ct*cr-cs*sr st*cr
+ // cs*ct*sr+ss*cr -ss*ct*sr+cs*cr st*sr
+ // -cs*st ss*st ct
+ *s = atan2(GetElem(1,2), -GetElem(0,2));
+ *t = acos(GetElem(2,2));
+ *r = atan2(GetElem(2,1), GetElem(2,0));
+ }
+ else {
+ // -c(s-r) s(s-r) 0
+ // s(s-r) c(s-r) 0
+ // 0 0 -1
+ *s = atan2(GetElem(0, 1), -GetElem(0, 0)); // = s-r
+ *t = PI;
+ *r = 0;
+ }
+ }
+ else {
+ // c(s+r) -s(s+r) 0
+ // s(s+r) c(s+r) 0
+ // 0 0 1
+ *s = atan2(GetElem(0, 1), GetElem(0, 0)); // = s+r
+ *t = 0;
+ *r = 0;
+ }
+}
+
+//@}
+
+MATHLIB_API friend PiStream & operator<< ( PiStream & s, Matrix & m );
+
+/** Print to debug output. */
+void Print() const {
+ piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[0], data[4], data[8], data[12] );
+ piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[1], data[5], data[9], data[13] );
+ piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[2], data[6], data[10], data[14] );
+ piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[3], data[7], data[11], data[15] );
+}
+
+
+public:
+
+ float data[16];
+
+};
+#endif
+
+
+#endif // NV_MATH_MATRIX_INL
diff --git a/thirdparty/thekla_atlas/nvmath/Morton.h b/thirdparty/thekla_atlas/nvmath/Morton.h
new file mode 100644
index 0000000000..10e0d8152a
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Morton.h
@@ -0,0 +1,83 @@
+
+// Code from ryg:
+// http://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/
+
+
+// "Insert" a 0 bit after each of the 16 low bits of x
+inline uint32 part1By1(uint32 x)
+{
+ x &= 0x0000ffff; // x = ---- ---- ---- ---- fedc ba98 7654 3210
+ x = (x ^ (x << 8)) & 0x00ff00ff; // x = ---- ---- fedc ba98 ---- ---- 7654 3210
+ x = (x ^ (x << 4)) & 0x0f0f0f0f; // x = ---- fedc ---- ba98 ---- 7654 ---- 3210
+ x = (x ^ (x << 2)) & 0x33333333; // x = --fe --dc --ba --98 --76 --54 --32 --10
+ x = (x ^ (x << 1)) & 0x55555555; // x = -f-e -d-c -b-a -9-8 -7-6 -5-4 -3-2 -1-0
+ return x;
+}
+
+// "Insert" two 0 bits after each of the 10 low bits of x
+inline uint32 part1By2(uint32 x)
+{
+ x &= 0x000003ff; // x = ---- ---- ---- ---- ---- --98 7654 3210
+ x = (x ^ (x << 16)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210
+ x = (x ^ (x << 8)) & 0x0300f00f; // x = ---- --98 ---- ---- 7654 ---- ---- 3210
+ x = (x ^ (x << 4)) & 0x030c30c3; // x = ---- --98 ---- 76-- --54 ---- 32-- --10
+ x = (x ^ (x << 2)) & 0x09249249; // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0
+ return x;
+}
+
+inline uint32 encodeMorton2(uint32 x, uint32 y)
+{
+ return (part1By1(y) << 1) + part1By1(x);
+}
+
+inline uint32 encodeMorton3(uint32 x, uint32 y, uint32 z)
+{
+ return (part1By2(z) << 2) + (part1By2(y) << 1) + part1By2(x);
+}
+
+// Inverse of part1By1 - "delete" all odd-indexed bits
+inline uint32 compact1By1(uint32 x)
+{
+ x &= 0x55555555; // x = -f-e -d-c -b-a -9-8 -7-6 -5-4 -3-2 -1-0
+ x = (x ^ (x >> 1)) & 0x33333333; // x = --fe --dc --ba --98 --76 --54 --32 --10
+ x = (x ^ (x >> 2)) & 0x0f0f0f0f; // x = ---- fedc ---- ba98 ---- 7654 ---- 3210
+ x = (x ^ (x >> 4)) & 0x00ff00ff; // x = ---- ---- fedc ba98 ---- ---- 7654 3210
+ x = (x ^ (x >> 8)) & 0x0000ffff; // x = ---- ---- ---- ---- fedc ba98 7654 3210
+ return x;
+}
+
+// Inverse of part1By2 - "delete" all bits not at positions divisible by 3
+inline uint32 compact1By2(uint32 x)
+{
+ x &= 0x09249249; // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0
+ x = (x ^ (x >> 2)) & 0x030c30c3; // x = ---- --98 ---- 76-- --54 ---- 32-- --10
+ x = (x ^ (x >> 4)) & 0x0300f00f; // x = ---- --98 ---- ---- 7654 ---- ---- 3210
+ x = (x ^ (x >> 8)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210
+ x = (x ^ (x >> 16)) & 0x000003ff; // x = ---- ---- ---- ---- ---- --98 7654 3210
+ return x;
+}
+
+inline uint32 decodeMorton2X(uint32 code)
+{
+ return compact1By1(code >> 0);
+}
+
+inline uint32 decodeMorton2Y(uint32 code)
+{
+ return compact1By1(code >> 1);
+}
+
+inline uint32 decodeMorton3X(uint32 code)
+{
+ return compact1By2(code >> 0);
+}
+
+inline uint32 decodeMorton3Y(uint32 code)
+{
+ return compact1By2(code >> 1);
+}
+
+inline uint32 decodeMorton3Z(uint32 code)
+{
+ return compact1By2(code >> 2);
+} \ No newline at end of file
diff --git a/thirdparty/thekla_atlas/nvmath/Plane.cpp b/thirdparty/thekla_atlas/nvmath/Plane.cpp
new file mode 100644
index 0000000000..8b54f829ad
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Plane.cpp
@@ -0,0 +1,27 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#include "Plane.h"
+#include "Plane.inl"
+#include "Matrix.inl"
+
+namespace nv
+{
+ Plane transformPlane(const Matrix & m, const Plane & p)
+ {
+ Vector3 newVec = transformVector(m, p.vector());
+
+ Vector3 ptInPlane = p.offset() * p.vector();
+ ptInPlane = transformPoint(m, ptInPlane);
+
+ return Plane(newVec, ptInPlane);
+ }
+
+ Vector3 planeIntersection(const Plane & a, const Plane & b, const Plane & c)
+ {
+ return dot(a.vector(), cross(b.vector(), c.vector())) * (
+ a.offset() * cross(b.vector(), c.vector()) +
+ c.offset() * cross(a.vector(), b.vector()) +
+ b.offset() * cross(c.vector(), a.vector()));
+ }
+
+} // nv namespace
diff --git a/thirdparty/thekla_atlas/nvmath/Plane.h b/thirdparty/thekla_atlas/nvmath/Plane.h
new file mode 100644
index 0000000000..dc468b28e2
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Plane.h
@@ -0,0 +1,42 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#pragma once
+#ifndef NV_MATH_PLANE_H
+#define NV_MATH_PLANE_H
+
+#include "nvmath.h"
+#include "Vector.h"
+
+namespace nv
+{
+ class Matrix;
+
+ class NVMATH_CLASS Plane
+ {
+ public:
+ Plane();
+ Plane(float x, float y, float z, float w);
+ Plane(const Vector4 & v);
+ Plane(const Vector3 & v, float d);
+ Plane(const Vector3 & normal, const Vector3 & point);
+ Plane(const Vector3 & v0, const Vector3 & v1, const Vector3 & v2);
+
+ const Plane & operator=(const Plane & v);
+
+ Vector3 vector() const;
+ float offset() const;
+ Vector3 normal() const;
+
+ void operator*=(float s);
+
+ Vector4 v;
+ };
+
+ Plane transformPlane(const Matrix &, const Plane &);
+
+ Vector3 planeIntersection(const Plane & a, const Plane & b, const Plane & c);
+
+
+} // nv namespace
+
+#endif // NV_MATH_PLANE_H
diff --git a/thirdparty/thekla_atlas/nvmath/Plane.inl b/thirdparty/thekla_atlas/nvmath/Plane.inl
new file mode 100644
index 0000000000..2277e38cd5
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Plane.inl
@@ -0,0 +1,50 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#pragma once
+#ifndef NV_MATH_PLANE_INL
+#define NV_MATH_PLANE_INL
+
+#include "Plane.h"
+#include "Vector.inl"
+
+namespace nv
+{
+ inline Plane::Plane() {}
+ inline Plane::Plane(float x, float y, float z, float w) : v(x, y, z, w) {}
+ inline Plane::Plane(const Vector4 & v) : v(v) {}
+ inline Plane::Plane(const Vector3 & v, float d) : v(v, d) {}
+ inline Plane::Plane(const Vector3 & normal, const Vector3 & point) : v(normal, -dot(normal, point)) {}
+ inline Plane::Plane(const Vector3 & v0, const Vector3 & v1, const Vector3 & v2) {
+ Vector3 n = cross(v1-v0, v2-v0);
+ float d = -dot(n, v0);
+ v = Vector4(n, d);
+ }
+
+ inline const Plane & Plane::operator=(const Plane & p) { v = p.v; return *this; }
+
+ inline Vector3 Plane::vector() const { return v.xyz(); }
+ inline float Plane::offset() const { return v.w; }
+ inline Vector3 Plane::normal() const { return normalize(vector(), 0.0f); }
+
+ // Normalize plane.
+ inline Plane normalize(const Plane & plane, float epsilon = NV_EPSILON)
+ {
+ const float len = length(plane.vector());
+ const float inv = isZero(len, epsilon) ? 0 : 1.0f / len;
+ return Plane(plane.v * inv);
+ }
+
+ // Get the signed distance from the given point to this plane.
+ inline float distance(const Plane & plane, const Vector3 & point)
+ {
+ return dot(plane.vector(), point) + plane.offset();
+ }
+
+ inline void Plane::operator*=(float s)
+ {
+ v *= s;
+ }
+
+} // nv namespace
+
+#endif // NV_MATH_PLANE_H
diff --git a/thirdparty/thekla_atlas/nvmath/ProximityGrid.cpp b/thirdparty/thekla_atlas/nvmath/ProximityGrid.cpp
new file mode 100644
index 0000000000..3553e48f64
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/ProximityGrid.cpp
@@ -0,0 +1,158 @@
+#include "ProximityGrid.h"
+
+#include "Box.inl"
+#include "Morton.h"
+
+
+using namespace nv;
+
+ProximityGrid::ProximityGrid() {
+}
+
+void ProximityGrid::reset() {
+ cellArray.clear();
+}
+
+void ProximityGrid::init(const Array<Vector3> & pointArray) {
+
+ // Compute bounding box.
+ Box box;
+ box.clearBounds();
+
+ const uint count = pointArray.count();
+
+ for (uint i = 0; i < count; i++) {
+ box.addPointToBounds(pointArray[i]);
+ }
+
+ init(box, count);
+
+ // Insert all points.
+ for (uint i = 0; i < count; i++) {
+ add(pointArray[i], i);
+ }
+}
+
+
+void ProximityGrid::init(const Box & box, uint count) {
+ reset();
+
+ // Determine grid size.
+ float cellWidth;
+
+ Vector3 diagonal = box.extents() * 2.f;
+ float volume = box.volume();
+
+ if (equal(volume, 0)) {
+ // Degenerate box, treat like a quad.
+ Vector2 quad;
+ if (diagonal.x < diagonal.y && diagonal.x < diagonal.z) {
+ quad.x = diagonal.y;
+ quad.y = diagonal.z;
+ }
+ else if (diagonal.y < diagonal.x && diagonal.y < diagonal.z) {
+ quad.x = diagonal.x;
+ quad.y = diagonal.z;
+ }
+ else {
+ quad.x = diagonal.x;
+ quad.y = diagonal.y;
+ }
+
+ float cellArea = quad.x * quad.y / count;
+ cellWidth = sqrtf(cellArea); // pow(cellArea, 1.0f / 2.0f);
+ }
+ else {
+ // Ideally we want one cell per point.
+ float cellVolume = volume / count;
+ cellWidth = pow(cellVolume, 1.0f / 3.0f);
+ }
+
+ nvDebugCheck(cellWidth != 0);
+
+ sx = max(1, ftoi_ceil(diagonal.x / cellWidth));
+ sy = max(1, ftoi_ceil(diagonal.y / cellWidth));
+ sz = max(1, ftoi_ceil(diagonal.z / cellWidth));
+
+ invCellSize.x = float(sx) / diagonal.x;
+ invCellSize.y = float(sy) / diagonal.y;
+ invCellSize.z = float(sz) / diagonal.z;
+
+ cellArray.resize(sx * sy * sz);
+
+ corner = box.minCorner; // @@ Align grid better?
+}
+
+// Gather all points inside the given sphere.
+// Radius is assumed to be small, so we don't bother culling the cells.
+void ProximityGrid::gather(const Vector3 & position, float radius, Array<uint> & indexArray) {
+ int x0 = index_x(position.x - radius);
+ int x1 = index_x(position.x + radius);
+
+ int y0 = index_y(position.y - radius);
+ int y1 = index_y(position.y + radius);
+
+ int z0 = index_z(position.z - radius);
+ int z1 = index_z(position.z + radius);
+
+ for (int z = z0; z <= z1; z++) {
+ for (int y = y0; y <= y1; y++) {
+ for (int x = x0; x <= x1; x++) {
+ int idx = index(x, y, z);
+ indexArray.append(cellArray[idx].indexArray);
+ }
+ }
+ }
+}
+
+
+uint32 ProximityGrid::mortonCount() const {
+ uint64 s = U64(max3(sx, sy, sz));
+ s = nextPowerOfTwo(s);
+
+ if (s > 1024) {
+ return U32(s * s * min3(sx, sy, sz));
+ }
+
+ return U32(s * s * s);
+}
+
+int ProximityGrid::mortonIndex(uint32 code) const {
+ uint32 x, y, z;
+
+ uint s = U32(max3(sx, sy, sz));
+ if (s > 1024) {
+ // Use layered two-dimensional morton order.
+ s = nextPowerOfTwo(s);
+ uint layer = code / (s * s);
+ code = code % (s * s);
+
+ uint layer_count = U32(min3(sx, sy, sz));
+ if (sx == layer_count) {
+ x = layer;
+ y = decodeMorton2X(code);
+ z = decodeMorton2Y(code);
+ }
+ else if (sy == layer_count) {
+ x = decodeMorton2Y(code);
+ y = layer;
+ z = decodeMorton2X(code);
+ }
+ else /*if (sz == layer_count)*/ {
+ x = decodeMorton2X(code);
+ y = decodeMorton2Y(code);
+ z = layer;
+ }
+ }
+ else {
+ x = decodeMorton3X(code);
+ y = decodeMorton3Y(code);
+ z = decodeMorton3Z(code);
+ }
+
+ if (x >= U32(sx) || y >= U32(sy) || z >= U32(sz)) {
+ return -1;
+ }
+
+ return index(x, y, z);
+}
diff --git a/thirdparty/thekla_atlas/nvmath/ProximityGrid.h b/thirdparty/thekla_atlas/nvmath/ProximityGrid.h
new file mode 100644
index 0000000000..a21bb3bd68
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/ProximityGrid.h
@@ -0,0 +1,99 @@
+#pragma once
+#ifndef NV_MATH_PROXIMITYGRID_H
+#define NV_MATH_PROXIMITYGRID_H
+
+#include "Vector.h"
+#include "ftoi.h"
+
+#include "nvcore/Array.inl"
+
+
+// A simple, dynamic proximity grid based on Jon's code.
+// Instead of storing pointers here I store indices.
+
+namespace nv {
+
+ class Box;
+
+ struct Cell {
+ Array<uint> indexArray;
+ };
+
+ struct ProximityGrid {
+ ProximityGrid();
+
+ void reset();
+ void init(const Array<Vector3> & pointArray);
+ void init(const Box & box, uint count);
+
+ int index_x(float x) const;
+ int index_y(float y) const;
+ int index_z(float z) const;
+ int index(int x, int y, int z) const;
+ int index(const Vector3 & pos) const;
+
+ uint32 mortonCount() const;
+ int mortonIndex(uint32 code) const;
+
+ void add(const Vector3 & pos, uint key);
+ bool remove(const Vector3 & pos, uint key);
+
+ void gather(const Vector3 & pos, float radius, Array<uint> & indices);
+
+ Array<Cell> cellArray;
+
+ Vector3 corner;
+ Vector3 invCellSize;
+ int sx, sy, sz;
+ };
+
+ // For morton traversal, do:
+ // for (int code = 0; code < mortonCount(); code++) {
+ // int idx = mortonIndex(code);
+ // if (idx < 0) continue;
+ // }
+
+
+
+ inline int ProximityGrid::index_x(float x) const {
+ return clamp(ftoi_floor((x - corner.x) * invCellSize.x), 0, sx-1);
+ }
+
+ inline int ProximityGrid::index_y(float y) const {
+ return clamp(ftoi_floor((y - corner.y) * invCellSize.y), 0, sy-1);
+ }
+
+ inline int ProximityGrid::index_z(float z) const {
+ return clamp(ftoi_floor((z - corner.z) * invCellSize.z), 0, sz-1);
+ }
+
+ inline int ProximityGrid::index(int x, int y, int z) const {
+ nvDebugCheck(x >= 0 && x < sx);
+ nvDebugCheck(y >= 0 && y < sy);
+ nvDebugCheck(z >= 0 && z < sz);
+ int idx = (z * sy + y) * sx + x;
+ nvDebugCheck(idx >= 0 && uint(idx) < cellArray.count());
+ return idx;
+ }
+
+ inline int ProximityGrid::index(const Vector3 & pos) const {
+ int x = index_x(pos.x);
+ int y = index_y(pos.y);
+ int z = index_z(pos.z);
+ return index(x, y, z);
+ }
+
+
+ inline void ProximityGrid::add(const Vector3 & pos, uint key) {
+ uint idx = index(pos);
+ cellArray[idx].indexArray.append(key);
+ }
+
+ inline bool ProximityGrid::remove(const Vector3 & pos, uint key) {
+ uint idx = index(pos);
+ return cellArray[idx].indexArray.remove(key);
+ }
+
+} // nv namespace
+
+#endif // NV_MATH_PROXIMITYGRID_H
diff --git a/thirdparty/thekla_atlas/nvmath/Quaternion.h b/thirdparty/thekla_atlas/nvmath/Quaternion.h
new file mode 100644
index 0000000000..dc5219e5e4
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Quaternion.h
@@ -0,0 +1,213 @@
+// This code is in the public domain -- castano@gmail.com
+
+#pragma once
+#ifndef NV_MATH_QUATERNION_H
+#define NV_MATH_QUATERNION_H
+
+#include "nvmath/nvmath.h"
+#include "nvmath/Vector.inl" // @@ Do not include inl files from header files.
+#include "nvmath/Matrix.h"
+
+namespace nv
+{
+
+ class NVMATH_CLASS Quaternion
+ {
+ public:
+ typedef Quaternion const & Arg;
+
+ Quaternion();
+ explicit Quaternion(float f);
+ Quaternion(float x, float y, float z, float w);
+ Quaternion(Vector4::Arg v);
+
+ const Quaternion & operator=(Quaternion::Arg v);
+
+ Vector4 asVector() const;
+
+ union {
+ struct {
+ float x, y, z, w;
+ };
+ float component[4];
+ };
+ };
+
+ inline Quaternion::Quaternion() {}
+ inline Quaternion::Quaternion(float f) : x(f), y(f), z(f), w(f) {}
+ inline Quaternion::Quaternion(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
+ inline Quaternion::Quaternion(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
+
+ // @@ Move all these to Quaternion.inl!
+
+ inline const Quaternion & Quaternion::operator=(Quaternion::Arg v) {
+ x = v.x;
+ y = v.y;
+ z = v.z;
+ w = v.w;
+ return *this;
+ }
+
+ inline Vector4 Quaternion::asVector() const { return Vector4(x, y, z, w); }
+
+ inline Quaternion mul(Quaternion::Arg a, Quaternion::Arg b)
+ {
+ return Quaternion(
+ + a.x*b.w + a.y*b.z - a.z*b.y + a.w*b.x,
+ - a.x*b.z + a.y*b.w + a.z*b.x + a.w*b.y,
+ + a.x*b.y - a.y*b.x + a.z*b.w + a.w*b.z,
+ - a.x*b.x - a.y*b.y - a.z*b.z + a.w*b.w);
+ }
+
+ inline Quaternion mul(Quaternion::Arg a, Vector3::Arg b)
+ {
+ return Quaternion(
+ + a.y*b.z - a.z*b.y + a.w*b.x,
+ - a.x*b.z + a.z*b.x + a.w*b.y,
+ + a.x*b.y - a.y*b.x + a.w*b.z,
+ - a.x*b.x - a.y*b.y - a.z*b.z );
+ }
+
+ inline Quaternion mul(Vector3::Arg a, Quaternion::Arg b)
+ {
+ return Quaternion(
+ + a.x*b.w + a.y*b.z - a.z*b.y,
+ - a.x*b.z + a.y*b.w + a.z*b.x,
+ + a.x*b.y - a.y*b.x + a.z*b.w,
+ - a.x*b.x - a.y*b.y - a.z*b.z);
+ }
+
+ inline Quaternion operator *(Quaternion::Arg a, Quaternion::Arg b)
+ {
+ return mul(a, b);
+ }
+
+ inline Quaternion operator *(Quaternion::Arg a, Vector3::Arg b)
+ {
+ return mul(a, b);
+ }
+
+ inline Quaternion operator *(Vector3::Arg a, Quaternion::Arg b)
+ {
+ return mul(a, b);
+ }
+
+
+ inline Quaternion scale(Quaternion::Arg q, float s)
+ {
+ return scale(q.asVector(), s);
+ }
+ inline Quaternion operator *(Quaternion::Arg q, float s)
+ {
+ return scale(q, s);
+ }
+ inline Quaternion operator *(float s, Quaternion::Arg q)
+ {
+ return scale(q, s);
+ }
+
+ inline Quaternion scale(Quaternion::Arg q, Vector4::Arg s)
+ {
+ return scale(q.asVector(), s);
+ }
+ /*inline Quaternion operator *(Quaternion::Arg q, Vector4::Arg s)
+ {
+ return scale(q, s);
+ }
+ inline Quaternion operator *(Vector4::Arg s, Quaternion::Arg q)
+ {
+ return scale(q, s);
+ }*/
+
+ inline Quaternion conjugate(Quaternion::Arg q)
+ {
+ return scale(q, Vector4(-1, -1, -1, 1));
+ }
+
+ inline float length(Quaternion::Arg q)
+ {
+ return length(q.asVector());
+ }
+
+ inline bool isNormalized(Quaternion::Arg q, float epsilon = NV_NORMAL_EPSILON)
+ {
+ return equal(length(q), 1, epsilon);
+ }
+
+ inline Quaternion normalize(Quaternion::Arg q, float epsilon = NV_EPSILON)
+ {
+ float l = length(q);
+ nvDebugCheck(!isZero(l, epsilon));
+ Quaternion n = scale(q, 1.0f / l);
+ nvDebugCheck(isNormalized(n));
+ return n;
+ }
+
+ inline Quaternion inverse(Quaternion::Arg q)
+ {
+ return conjugate(normalize(q));
+ }
+
+ /// Create a rotation quaternion for @a angle alpha around normal vector @a v.
+ inline Quaternion axisAngle(Vector3::Arg v, float alpha)
+ {
+ float s = sinf(alpha * 0.5f);
+ float c = cosf(alpha * 0.5f);
+ return Quaternion(Vector4(v * s, c));
+ }
+
+ inline Vector3 imag(Quaternion::Arg q)
+ {
+ return q.asVector().xyz();
+ }
+
+ inline float real(Quaternion::Arg q)
+ {
+ return q.w;
+ }
+
+
+ /// Transform vector.
+ inline Vector3 transform(Quaternion::Arg q, Vector3::Arg v)
+ {
+ //Quaternion t = q * v * conjugate(q);
+ //return imag(t);
+
+ // Faster method by Fabian Giesen and others:
+ // http://molecularmusings.wordpress.com/2013/05/24/a-faster-quaternion-vector-multiplication/
+ // http://mollyrocket.com/forums/viewtopic.php?t=833&sid=3a84e00a70ccb046cfc87ac39881a3d0
+
+ Vector3 t = 2 * cross(imag(q), v);
+ return v + q.w * t + cross(imag(q), t);
+ }
+
+ // @@ Not tested.
+ // From Insomniac's Mike Day:
+ // http://www.insomniacgames.com/converting-a-rotation-matrix-to-a-quaternion/
+ inline Quaternion fromMatrix(const Matrix & m) {
+ if (m(2, 2) < 0) {
+ if (m(0, 0) < m(1,1)) {
+ float t = 1 - m(0, 0) - m(1, 1) - m(2, 2);
+ return Quaternion(t, m(0,1)+m(1,0), m(2,0)+m(0,2), m(1,2)-m(2,1));
+ }
+ else {
+ float t = 1 - m(0, 0) + m(1, 1) - m(2, 2);
+ return Quaternion(t, m(0,1) + m(1,0), m(1,2) + m(2,1), m(2,0) - m(0,2));
+ }
+ }
+ else {
+ if (m(0, 0) < -m(1, 1)) {
+ float t = 1 - m(0, 0) - m(1, 1) + m(2, 2);
+ return Quaternion(t, m(2,0) + m(0,2), m(1,2) + m(2,1), m(0,1) - m(1,0));
+ }
+ else {
+ float t = 1 + m(0, 0) + m(1, 1) + m(2, 2);
+ return Quaternion(t, m(1,2) - m(2,1), m(2,0) - m(0,2), m(0,1) - m(1,0));
+ }
+ }
+ }
+
+
+} // nv namespace
+
+#endif // NV_MATH_QUATERNION_H
diff --git a/thirdparty/thekla_atlas/nvmath/Random.cpp b/thirdparty/thekla_atlas/nvmath/Random.cpp
new file mode 100644
index 0000000000..1a60e7f5e7
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Random.cpp
@@ -0,0 +1,54 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#include <nvmath/Random.h>
+#include <time.h>
+
+using namespace nv;
+
+// Statics
+const uint16 Rand48::a0 = 0xE66D;
+const uint16 Rand48::a1 = 0xDEEC;
+const uint16 Rand48::a2 = 0x0005;
+const uint16 Rand48::c0 = 0x000B;
+
+
+/// Get a random seed based on the current time.
+uint Rand::randomSeed()
+{
+ return (uint)time(NULL);
+}
+
+
+void MTRand::initialize( uint32 seed )
+{
+ // Initialize generator state with seed
+ // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
+ // In previous versions, most significant bits (MSBs) of the seed affect
+ // only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
+ uint32 *s = state;
+ uint32 *r = state;
+ int i = 1;
+ *s++ = seed & 0xffffffffUL;
+ for( ; i < N; ++i )
+ {
+ *s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
+ r++;
+ }
+}
+
+
+void MTRand::reload()
+{
+ // Generate N new values in state
+ // Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
+ uint32 *p = state;
+ int i;
+ for( i = N - M; i--; ++p )
+ *p = twist( p[M], p[0], p[1] );
+ for( i = M; --i; ++p )
+ *p = twist( p[M-N], p[0], p[1] );
+ *p = twist( p[M-N], p[0], state[0] );
+
+ left = N, next = state;
+}
+
diff --git a/thirdparty/thekla_atlas/nvmath/Random.h b/thirdparty/thekla_atlas/nvmath/Random.h
new file mode 100644
index 0000000000..223292706a
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Random.h
@@ -0,0 +1,376 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_RANDOM_H
+#define NV_MATH_RANDOM_H
+
+#include "nvmath.h"
+#include "nvcore/Utils.h" // nextPowerOfTwo
+
+
+namespace nv
+{
+
+ /// Interface of the random number generators.
+ class Rand
+ {
+ public:
+
+ virtual ~Rand() {}
+
+ enum time_e { Time };
+
+ /// Provide a new seed.
+ virtual void seed( uint s ) { /* empty */ };
+
+ /// Get an integer random number.
+ virtual uint get() = 0;
+
+ /// Get a random number on [0, max] interval.
+ uint getRange( uint max )
+ {
+ if (max == 0) return 0;
+ if (max == NV_UINT32_MAX) return get();
+
+ const uint np2 = nextPowerOfTwo( max+1 ); // @@ This fails if max == NV_UINT32_MAX
+ const uint mask = np2 - 1;
+ uint n;
+ do { n = get() & mask; } while( n > max );
+ return n;
+ }
+
+ /// Random number on [0.0, 1.0] interval.
+ float getFloat()
+ {
+ union
+ {
+ uint32 i;
+ float f;
+ } pun;
+
+ pun.i = 0x3f800000UL | (get() & 0x007fffffUL);
+ return pun.f - 1.0f;
+ }
+
+ float getFloatRange(float min, float max) {
+ return getFloat() * (max - min) + min;
+ }
+
+ /*
+ /// Random number on [0.0, 1.0] interval.
+ double getReal()
+ {
+ return double(get()) * (1.0/4294967295.0); // 2^32-1
+ }
+
+ /// Random number on [0.0, 1.0) interval.
+ double getRealExclusive()
+ {
+ return double(get()) * (1.0/4294967296.0); // 2^32
+ }
+ */
+
+ /// Get the max value of the random number.
+ uint max() const { return NV_UINT32_MAX; }
+
+ // Get a random seed.
+ static uint randomSeed();
+
+ };
+
+
+ /// Very simple random number generator with low storage requirements.
+ class SimpleRand : public Rand
+ {
+ public:
+
+ /// Constructor that uses the current time as the seed.
+ SimpleRand( time_e )
+ {
+ seed(randomSeed());
+ }
+
+ /// Constructor that uses the given seed.
+ SimpleRand( uint s = 0 )
+ {
+ seed(s);
+ }
+
+ /// Set the given seed.
+ virtual void seed( uint s )
+ {
+ current = s;
+ }
+
+ /// Get a random number.
+ virtual uint get()
+ {
+ return current = current * 1103515245 + 12345;
+ }
+
+ private:
+
+ uint current;
+
+ };
+
+
+ /// Mersenne twister random number generator.
+ class MTRand : public Rand
+ {
+ public:
+
+ enum { N = 624 }; // length of state vector
+ enum { M = 397 };
+
+ /// Constructor that uses the current time as the seed.
+ MTRand( time_e )
+ {
+ seed(randomSeed());
+ }
+
+ /// Constructor that uses the given seed.
+ MTRand( uint s = 0 )
+ {
+ seed(s);
+ }
+
+ /// Constructor that uses the given seeds.
+ NVMATH_API MTRand( const uint * seed_array, uint length );
+
+
+ /// Provide a new seed.
+ virtual void seed( uint s )
+ {
+ initialize(s);
+ reload();
+ }
+
+ /// Get a random number between 0 - 65536.
+ virtual uint get()
+ {
+ // Pull a 32-bit integer from the generator state
+ // Every other access function simply transforms the numbers extracted here
+ if( left == 0 ) {
+ reload();
+ }
+ left--;
+
+ uint s1;
+ s1 = *next++;
+ s1 ^= (s1 >> 11);
+ s1 ^= (s1 << 7) & 0x9d2c5680U;
+ s1 ^= (s1 << 15) & 0xefc60000U;
+ return ( s1 ^ (s1 >> 18) );
+ };
+
+
+ private:
+
+ NVMATH_API void initialize( uint32 seed );
+ NVMATH_API void reload();
+
+ uint hiBit( uint u ) const { return u & 0x80000000U; }
+ uint loBit( uint u ) const { return u & 0x00000001U; }
+ uint loBits( uint u ) const { return u & 0x7fffffffU; }
+ uint mixBits( uint u, uint v ) const { return hiBit(u) | loBits(v); }
+ uint twist( uint m, uint s0, uint s1 ) const { return m ^ (mixBits(s0,s1)>>1) ^ ((~loBit(s1)+1) & 0x9908b0dfU); }
+
+ private:
+
+ uint state[N]; // internal state
+ uint * next; // next value to get from state
+ int left; // number of values left before reload needed
+
+ };
+
+
+
+ /** George Marsaglia's random number generator.
+ * Code based on Thatcher Ulrich public domain source code:
+ * http://cvs.sourceforge.net/viewcvs.py/tu-testbed/tu-testbed/base/tu_random.cpp?rev=1.7&view=auto
+ *
+ * PRNG code adapted from the complimentary-multiply-with-carry
+ * code in the article: George Marsaglia, "Seeds for Random Number
+ * Generators", Communications of the ACM, May 2003, Vol 46 No 5,
+ * pp90-93.
+ *
+ * The article says:
+ *
+ * "Any one of the choices for seed table size and multiplier will
+ * provide a RNG that has passed extensive tests of randomness,
+ * particularly those in [3], yet is simple and fast --
+ * approximately 30 million random 32-bit integers per second on a
+ * 850MHz PC. The period is a*b^n, where a is the multiplier, n
+ * the size of the seed table and b=2^32-1. (a is chosen so that
+ * b is a primitive root of the prime a*b^n + 1.)"
+ *
+ * [3] Marsaglia, G., Zaman, A., and Tsang, W. Toward a universal
+ * random number generator. _Statistics and Probability Letters
+ * 8_ (1990), 35-39.
+ */
+ class GMRand : public Rand
+ {
+ public:
+
+ enum { SEED_COUNT = 8 };
+
+ // const uint64 a = 123471786; // for SEED_COUNT=1024
+ // const uint64 a = 123554632; // for SEED_COUNT=512
+ // const uint64 a = 8001634; // for SEED_COUNT=255
+ // const uint64 a = 8007626; // for SEED_COUNT=128
+ // const uint64 a = 647535442; // for SEED_COUNT=64
+ // const uint64 a = 547416522; // for SEED_COUNT=32
+ // const uint64 a = 487198574; // for SEED_COUNT=16
+ // const uint64 a = 716514398U; // for SEED_COUNT=8
+ enum { a = 716514398U };
+
+
+ GMRand( time_e )
+ {
+ seed(randomSeed());
+ }
+
+ GMRand(uint s = 987654321)
+ {
+ seed(s);
+ }
+
+
+ /// Provide a new seed.
+ virtual void seed( uint s )
+ {
+ c = 362436;
+ i = SEED_COUNT - 1;
+
+ for(int i = 0; i < SEED_COUNT; i++) {
+ s = s ^ (s << 13);
+ s = s ^ (s >> 17);
+ s = s ^ (s << 5);
+ Q[i] = s;
+ }
+ }
+
+ /// Get a random number between 0 - 65536.
+ virtual uint get()
+ {
+ const uint32 r = 0xFFFFFFFE;
+
+ uint64 t;
+ uint32 x;
+
+ i = (i + 1) & (SEED_COUNT - 1);
+ t = a * Q[i] + c;
+ c = uint32(t >> 32);
+ x = uint32(t + c);
+
+ if( x < c ) {
+ x++;
+ c++;
+ }
+
+ uint32 val = r - x;
+ Q[i] = val;
+ return val;
+ };
+
+
+ private:
+
+ uint32 c;
+ uint32 i;
+ uint32 Q[8];
+
+ };
+
+
+ /** Random number implementation from the GNU Sci. Lib. (GSL).
+ * Adapted from Nicholas Chapman version:
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough
+ * This is the Unix rand48() generator. The generator returns the
+ * upper 32 bits from each term of the sequence,
+ *
+ * x_{n+1} = (a x_n + c) mod m
+ *
+ * using 48-bit unsigned arithmetic, with a = 0x5DEECE66D , c = 0xB
+ * and m = 2^48. The seed specifies the upper 32 bits of the initial
+ * value, x_1, with the lower 16 bits set to 0x330E.
+ *
+ * The theoretical value of x_{10001} is 244131582646046.
+ *
+ * The period of this generator is ? FIXME (probably around 2^48).
+ */
+ class Rand48 : public Rand
+ {
+ public:
+
+ Rand48( time_e )
+ {
+ seed(randomSeed());
+ }
+
+ Rand48( uint s = 0x1234ABCD )
+ {
+ seed(s);
+ }
+
+
+ /** Set the given seed. */
+ virtual void seed( uint s ) {
+ vstate.x0 = 0x330E;
+ vstate.x1 = uint16(s & 0xFFFF);
+ vstate.x2 = uint16((s >> 16) & 0xFFFF);
+ }
+
+ /** Get a random number. */
+ virtual uint get() {
+
+ advance();
+
+ uint x1 = vstate.x1;
+ uint x2 = vstate.x2;
+ return (x2 << 16) + x1;
+ }
+
+
+ private:
+
+ void advance()
+ {
+ /* work with unsigned long ints throughout to get correct integer
+ promotions of any unsigned short ints */
+ const uint32 x0 = vstate.x0;
+ const uint32 x1 = vstate.x1;
+ const uint32 x2 = vstate.x2;
+
+ uint32 a;
+ a = a0 * x0 + c0;
+
+ vstate.x0 = uint16(a & 0xFFFF);
+ a >>= 16;
+
+ /* although the next line may overflow we only need the top 16 bits
+ in the following stage, so it does not matter */
+
+ a += a0 * x1 + a1 * x0;
+ vstate.x1 = uint16(a & 0xFFFF);
+
+ a >>= 16;
+ a += a0 * x2 + a1 * x1 + a2 * x0;
+ vstate.x2 = uint16(a & 0xFFFF);
+ }
+
+
+ private:
+ NVMATH_API static const uint16 a0, a1, a2, c0;
+
+ struct rand48_state_t {
+ uint16 x0, x1, x2;
+ } vstate;
+
+ };
+
+} // nv namespace
+
+#endif // NV_MATH_RANDOM_H
diff --git a/thirdparty/thekla_atlas/nvmath/Solver.cpp b/thirdparty/thekla_atlas/nvmath/Solver.cpp
new file mode 100644
index 0000000000..191793ee29
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Solver.cpp
@@ -0,0 +1,744 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#include "Solver.h"
+#include "Sparse.h"
+
+#include "nvcore/Array.inl"
+
+using namespace nv;
+
+namespace
+{
+ class Preconditioner
+ {
+ public:
+ // Virtual dtor.
+ virtual ~Preconditioner() { }
+
+ // Apply preconditioning step.
+ virtual void apply(const FullVector & x, FullVector & y) const = 0;
+ };
+
+
+ // Jacobi preconditioner.
+ class JacobiPreconditioner : public Preconditioner
+ {
+ public:
+
+ JacobiPreconditioner(const SparseMatrix & M, bool symmetric) : m_inverseDiagonal(M.width())
+ {
+ nvCheck(M.isSquare());
+
+ for(uint x = 0; x < M.width(); x++)
+ {
+ float elem = M.getCoefficient(x, x);
+ //nvDebugCheck( elem != 0.0f ); // This can be zero in the presence of zero area triangles.
+
+ if (symmetric)
+ {
+ m_inverseDiagonal[x] = (elem != 0) ? 1.0f / sqrtf(fabsf(elem)) : 1.0f;
+ }
+ else
+ {
+ m_inverseDiagonal[x] = (elem != 0) ? 1.0f / elem : 1.0f;
+ }
+ }
+ }
+
+ void apply(const FullVector & x, FullVector & y) const
+ {
+ nvDebugCheck(x.dimension() == m_inverseDiagonal.dimension());
+ nvDebugCheck(y.dimension() == m_inverseDiagonal.dimension());
+
+ // @@ Wrap vector component-wise product into a separate function.
+ const uint D = x.dimension();
+ for (uint i = 0; i < D; i++)
+ {
+ y[i] = m_inverseDiagonal[i] * x[i];
+ }
+ }
+
+ private:
+
+ FullVector m_inverseDiagonal;
+
+ };
+
+} // namespace
+
+
+static bool ConjugateGradientSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon);
+static bool ConjugateGradientSolver(const Preconditioner & preconditioner, const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon);
+
+
+// Solve the symmetric system: At·A·x = At·b
+bool nv::LeastSquaresSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon/*1e-5f*/)
+{
+ nvDebugCheck(A.width() == x.dimension());
+ nvDebugCheck(A.height() == b.dimension());
+ nvDebugCheck(A.height() >= A.width()); // @@ If height == width we could solve it directly...
+
+ const uint D = A.width();
+
+ SparseMatrix At(A.height(), A.width());
+ transpose(A, At);
+
+ FullVector Atb(D);
+ //mult(Transposed, A, b, Atb);
+ mult(At, b, Atb);
+
+ SparseMatrix AtA(D);
+ //mult(Transposed, A, NoTransposed, A, AtA);
+ mult(At, A, AtA);
+
+ return SymmetricSolver(AtA, Atb, x, epsilon);
+}
+
+
+// See section 10.4.3 in: Mesh Parameterization: Theory and Practice, Siggraph Course Notes, August 2007
+bool nv::LeastSquaresSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, const uint * lockedParameters, uint lockedCount, float epsilon/*= 1e-5f*/)
+{
+ nvDebugCheck(A.width() == x.dimension());
+ nvDebugCheck(A.height() == b.dimension());
+ nvDebugCheck(A.height() >= A.width() - lockedCount);
+
+ // @@ This is not the most efficient way of building a system with reduced degrees of freedom. It would be faster to do it on the fly.
+
+ const uint D = A.width() - lockedCount;
+ nvDebugCheck(D > 0);
+
+ // Compute: b - Al * xl
+ FullVector b_Alxl(b);
+
+ for (uint y = 0; y < A.height(); y++)
+ {
+ const uint count = A.getRow(y).count();
+ for (uint e = 0; e < count; e++)
+ {
+ uint column = A.getRow(y)[e].x;
+
+ bool isFree = true;
+ for (uint i = 0; i < lockedCount; i++)
+ {
+ isFree &= (lockedParameters[i] != column);
+ }
+
+ if (!isFree)
+ {
+ b_Alxl[y] -= x[column] * A.getRow(y)[e].v;
+ }
+ }
+ }
+
+ // Remove locked columns from A.
+ SparseMatrix Af(D, A.height());
+
+ for (uint y = 0; y < A.height(); y++)
+ {
+ const uint count = A.getRow(y).count();
+ for (uint e = 0; e < count; e++)
+ {
+ uint column = A.getRow(y)[e].x;
+ uint ix = column;
+
+ bool isFree = true;
+ for (uint i = 0; i < lockedCount; i++)
+ {
+ isFree &= (lockedParameters[i] != column);
+ if (column > lockedParameters[i]) ix--; // shift columns
+ }
+
+ if (isFree)
+ {
+ Af.setCoefficient(ix, y, A.getRow(y)[e].v);
+ }
+ }
+ }
+
+ // Remove elements from x
+ FullVector xf(D);
+
+ for (uint i = 0, j = 0; i < A.width(); i++)
+ {
+ bool isFree = true;
+ for (uint l = 0; l < lockedCount; l++)
+ {
+ isFree &= (lockedParameters[l] != i);
+ }
+
+ if (isFree)
+ {
+ xf[j++] = x[i];
+ }
+ }
+
+ // Solve reduced system.
+ bool result = LeastSquaresSolver(Af, b_Alxl, xf, epsilon);
+
+ // Copy results back to x.
+ for (uint i = 0, j = 0; i < A.width(); i++)
+ {
+ bool isFree = true;
+ for (uint l = 0; l < lockedCount; l++)
+ {
+ isFree &= (lockedParameters[l] != i);
+ }
+
+ if (isFree)
+ {
+ x[i] = xf[j++];
+ }
+ }
+
+ return result;
+}
+
+
+bool nv::SymmetricSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon/*1e-5f*/)
+{
+ nvDebugCheck(A.height() == A.width());
+ nvDebugCheck(A.height() == b.dimension());
+ nvDebugCheck(b.dimension() == x.dimension());
+
+ JacobiPreconditioner jacobi(A, true);
+ return ConjugateGradientSolver(jacobi, A, b, x, epsilon);
+
+ //return ConjugateGradientSolver(A, b, x, epsilon);
+}
+
+
+/**
+* Compute the solution of the sparse linear system Ab=x using the Conjugate
+* Gradient method.
+*
+* Solving sparse linear systems:
+* (1) A·x = b
+*
+* The conjugate gradient algorithm solves (1) only in the case that A is
+* symmetric and positive definite. It is based on the idea of minimizing the
+* function
+*
+* (2) f(x) = 1/2·x·A·x - b·x
+*
+* This function is minimized when its gradient
+*
+* (3) df = A·x - b
+*
+* is zero, which is equivalent to (1). The minimization is carried out by
+* generating a succession of search directions p.k and improved minimizers x.k.
+* At each stage a quantity alfa.k is found that minimizes f(x.k + alfa.k·p.k),
+* and x.k+1 is set equal to the new point x.k + alfa.k·p.k. The p.k and x.k are
+* built up in such a way that x.k+1 is also the minimizer of f over the whole
+* vector space of directions already taken, {p.1, p.2, . . . , p.k}. After N
+* iterations you arrive at the minimizer over the entire vector space, i.e., the
+* solution to (1).
+*
+* For a really good explanation of the method see:
+*
+* "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain",
+* Jonhathan Richard Shewchuk.
+*
+**/
+/*static*/ bool ConjugateGradientSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon)
+{
+ nvDebugCheck( A.isSquare() );
+ nvDebugCheck( A.width() == b.dimension() );
+ nvDebugCheck( A.width() == x.dimension() );
+
+ int i = 0;
+ const int D = A.width();
+ const int i_max = 4 * D; // Convergence should be linear, but in some cases, it's not.
+
+ FullVector r(D); // residual
+ FullVector p(D); // search direction
+ FullVector q(D); //
+ float delta_0;
+ float delta_old;
+ float delta_new;
+ float alpha;
+ float beta;
+
+ // r = b - A·x;
+ copy(b, r);
+ sgemv(-1, A, x, 1, r);
+
+ // p = r;
+ copy(r, p);
+
+ delta_new = dot( r, r );
+ delta_0 = delta_new;
+
+ while (i < i_max && delta_new > epsilon*epsilon*delta_0)
+ {
+ i++;
+
+ // q = A·p
+ mult(A, p, q);
+
+ // alpha = delta_new / p·q
+ alpha = delta_new / dot( p, q );
+
+ // x = alfa·p + x
+ saxpy(alpha, p, x);
+
+ if ((i & 31) == 0) // recompute r after 32 steps
+ {
+ // r = b - A·x
+ copy(b, r);
+ sgemv(-1, A, x, 1, r);
+ }
+ else
+ {
+ // r = r - alpha·q
+ saxpy(-alpha, q, r);
+ }
+
+ delta_old = delta_new;
+ delta_new = dot( r, r );
+
+ beta = delta_new / delta_old;
+
+ // p = beta·p + r
+ scal(beta, p);
+ saxpy(1, r, p);
+ }
+
+ return delta_new <= epsilon*epsilon*delta_0;
+}
+
+
+// Conjugate gradient with preconditioner.
+/*static*/ bool ConjugateGradientSolver(const Preconditioner & preconditioner, const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon)
+{
+ nvDebugCheck( A.isSquare() );
+ nvDebugCheck( A.width() == b.dimension() );
+ nvDebugCheck( A.width() == x.dimension() );
+
+ int i = 0;
+ const int D = A.width();
+ const int i_max = 4 * D; // Convergence should be linear, but in some cases, it's not.
+
+ FullVector r(D); // residual
+ FullVector p(D); // search direction
+ FullVector q(D); //
+ FullVector s(D); // preconditioned
+ float delta_0;
+ float delta_old;
+ float delta_new;
+ float alpha;
+ float beta;
+
+ // r = b - A·x
+ copy(b, r);
+ sgemv(-1, A, x, 1, r);
+
+
+ // p = M^-1 · r
+ preconditioner.apply(r, p);
+ //copy(r, p);
+
+
+ delta_new = dot(r, p);
+ delta_0 = delta_new;
+
+ while (i < i_max && delta_new > epsilon*epsilon*delta_0)
+ {
+ i++;
+
+ // q = A·p
+ mult(A, p, q);
+
+ // alpha = delta_new / p·q
+ alpha = delta_new / dot(p, q);
+
+ // x = alfa·p + x
+ saxpy(alpha, p, x);
+
+ if ((i & 31) == 0) // recompute r after 32 steps
+ {
+ // r = b - A·x
+ copy(b, r);
+ sgemv(-1, A, x, 1, r);
+ }
+ else
+ {
+ // r = r - alfa·q
+ saxpy(-alpha, q, r);
+ }
+
+ // s = M^-1 · r
+ preconditioner.apply(r, s);
+ //copy(r, s);
+
+ delta_old = delta_new;
+ delta_new = dot( r, s );
+
+ beta = delta_new / delta_old;
+
+ // p = s + beta·p
+ scal(beta, p);
+ saxpy(1, s, p);
+ }
+
+ return delta_new <= epsilon*epsilon*delta_0;
+}
+
+
+#if 0 // Nonsymmetric solvers
+
+/** Bi-conjugate gradient method. */
+MATHLIB_API int BiConjugateGradientSolve( const SparseMatrix &A, const DenseVector &b, DenseVector &x, float epsilon ) {
+ piDebugCheck( A.IsSquare() );
+ piDebugCheck( A.Width() == b.Dim() );
+ piDebugCheck( A.Width() == x.Dim() );
+
+ int i = 0;
+ const int D = A.Width();
+ const int i_max = 4 * D;
+
+ float resid;
+ float rho_1 = 0;
+ float rho_2 = 0;
+ float alpha;
+ float beta;
+
+ DenseVector r(D);
+ DenseVector rtilde(D);
+ DenseVector p(D);
+ DenseVector ptilde(D);
+ DenseVector q(D);
+ DenseVector qtilde(D);
+ DenseVector tmp(D); // temporal vector.
+
+ // r = b - A·x;
+ A.Product( x, tmp );
+ r.Sub( b, tmp );
+
+ // rtilde = r
+ rtilde.Set( r );
+
+ // p = r;
+ p.Set( r );
+
+ // ptilde = rtilde
+ ptilde.Set( rtilde );
+
+
+
+ float normb = b.Norm();
+ if( normb == 0.0 ) normb = 1;
+
+ // test convergence
+ resid = r.Norm() / normb;
+ if( resid < epsilon ) {
+ // method converges?
+ return 0;
+ }
+
+
+ while( i < i_max ) {
+
+ i++;
+
+ rho_1 = DenseVectorDotProduct( r, rtilde );
+
+ if( rho_1 == 0 ) {
+ // method fails.
+ return -i;
+ }
+
+ if (i == 1) {
+ p.Set( r );
+ ptilde.Set( rtilde );
+ }
+ else {
+ beta = rho_1 / rho_2;
+
+ // p = r + beta * p;
+ p.Mad( r, p, beta );
+
+ // ptilde = ztilde + beta * ptilde;
+ ptilde.Mad( rtilde, ptilde, beta );
+ }
+
+ // q = A * p;
+ A.Product( p, q );
+
+ // qtilde = A^t * ptilde;
+ A.TransProduct( ptilde, qtilde );
+
+ alpha = rho_1 / DenseVectorDotProduct( ptilde, q );
+
+ // x += alpha * p;
+ x.Mad( x, p, alpha );
+
+ // r -= alpha * q;
+ r.Mad( r, q, -alpha );
+
+ // rtilde -= alpha * qtilde;
+ rtilde.Mad( rtilde, qtilde, -alpha );
+
+ rho_2 = rho_1;
+
+ // test convergence
+ resid = r.Norm() / normb;
+ if( resid < epsilon ) {
+ // method converges
+ return i;
+ }
+ }
+
+ return i;
+}
+
+
+/** Bi-conjugate gradient stabilized method. */
+int BiCGSTABSolve( const SparseMatrix &A, const DenseVector &b, DenseVector &x, float epsilon ) {
+ piDebugCheck( A.IsSquare() );
+ piDebugCheck( A.Width() == b.Dim() );
+ piDebugCheck( A.Width() == x.Dim() );
+
+ int i = 0;
+ const int D = A.Width();
+ const int i_max = 2 * D;
+
+
+ float resid;
+ float rho_1 = 0;
+ float rho_2 = 0;
+ float alpha = 0;
+ float beta = 0;
+ float omega = 0;
+
+ DenseVector p(D);
+ DenseVector phat(D);
+ DenseVector s(D);
+ DenseVector shat(D);
+ DenseVector t(D);
+ DenseVector v(D);
+
+ DenseVector r(D);
+ DenseVector rtilde(D);
+
+ DenseVector tmp(D);
+
+ // r = b - A·x;
+ A.Product( x, tmp );
+ r.Sub( b, tmp );
+
+ // rtilde = r
+ rtilde.Set( r );
+
+
+ float normb = b.Norm();
+ if( normb == 0.0 ) normb = 1;
+
+ // test convergence
+ resid = r.Norm() / normb;
+ if( resid < epsilon ) {
+ // method converges?
+ return 0;
+ }
+
+
+ while( i<i_max ) {
+
+ i++;
+
+ rho_1 = DenseVectorDotProduct( rtilde, r );
+ if( rho_1 == 0 ) {
+ // method fails
+ return -i;
+ }
+
+
+ if( i == 1 ) {
+ p.Set( r );
+ }
+ else {
+ beta = (rho_1 / rho_2) * (alpha / omega);
+
+ // p = r + beta * (p - omega * v);
+ p.Mad( p, v, -omega );
+ p.Mad( r, p, beta );
+ }
+
+ //phat = M.solve(p);
+ phat.Set( p );
+ //Precond( &phat, p );
+
+ //v = A * phat;
+ A.Product( phat, v );
+
+ alpha = rho_1 / DenseVectorDotProduct( rtilde, v );
+
+ // s = r - alpha * v;
+ s.Mad( r, v, -alpha );
+
+
+ resid = s.Norm() / normb;
+ if( resid < epsilon ) {
+ // x += alpha * phat;
+ x.Mad( x, phat, alpha );
+ return i;
+ }
+
+ //shat = M.solve(s);
+ shat.Set( s );
+ //Precond( &shat, s );
+
+ //t = A * shat;
+ A.Product( shat, t );
+
+ omega = DenseVectorDotProduct( t, s ) / DenseVectorDotProduct( t, t );
+
+ // x += alpha * phat + omega * shat;
+ x.Mad( x, shat, omega );
+ x.Mad( x, phat, alpha );
+
+ //r = s - omega * t;
+ r.Mad( s, t, -omega );
+
+ rho_2 = rho_1;
+
+ resid = r.Norm() / normb;
+ if( resid < epsilon ) {
+ return i;
+ }
+
+ if( omega == 0 ) {
+ return -i; // ???
+ }
+ }
+
+ return i;
+}
+
+
+/** Bi-conjugate gradient stabilized method. */
+int BiCGSTABPrecondSolve( const SparseMatrix &A, const DenseVector &b, DenseVector &x, const IPreconditioner &M, float epsilon ) {
+ piDebugCheck( A.IsSquare() );
+ piDebugCheck( A.Width() == b.Dim() );
+ piDebugCheck( A.Width() == x.Dim() );
+
+ int i = 0;
+ const int D = A.Width();
+ const int i_max = D;
+ // const int i_max = 1000;
+
+
+ float resid;
+ float rho_1 = 0;
+ float rho_2 = 0;
+ float alpha = 0;
+ float beta = 0;
+ float omega = 0;
+
+ DenseVector p(D);
+ DenseVector phat(D);
+ DenseVector s(D);
+ DenseVector shat(D);
+ DenseVector t(D);
+ DenseVector v(D);
+
+ DenseVector r(D);
+ DenseVector rtilde(D);
+
+ DenseVector tmp(D);
+
+ // r = b - A·x;
+ A.Product( x, tmp );
+ r.Sub( b, tmp );
+
+ // rtilde = r
+ rtilde.Set( r );
+
+
+ float normb = b.Norm();
+ if( normb == 0.0 ) normb = 1;
+
+ // test convergence
+ resid = r.Norm() / normb;
+ if( resid < epsilon ) {
+ // method converges?
+ return 0;
+ }
+
+
+ while( i<i_max ) {
+
+ i++;
+
+ rho_1 = DenseVectorDotProduct( rtilde, r );
+ if( rho_1 == 0 ) {
+ // method fails
+ return -i;
+ }
+
+
+ if( i == 1 ) {
+ p.Set( r );
+ }
+ else {
+ beta = (rho_1 / rho_2) * (alpha / omega);
+
+ // p = r + beta * (p - omega * v);
+ p.Mad( p, v, -omega );
+ p.Mad( r, p, beta );
+ }
+
+ //phat = M.solve(p);
+ //phat.Set( p );
+ M.Precond( &phat, p );
+
+ //v = A * phat;
+ A.Product( phat, v );
+
+ alpha = rho_1 / DenseVectorDotProduct( rtilde, v );
+
+ // s = r - alpha * v;
+ s.Mad( r, v, -alpha );
+
+
+ resid = s.Norm() / normb;
+
+ //printf( "--- Iteration %d: residual = %f\n", i, resid );
+
+ if( resid < epsilon ) {
+ // x += alpha * phat;
+ x.Mad( x, phat, alpha );
+ return i;
+ }
+
+ //shat = M.solve(s);
+ //shat.Set( s );
+ M.Precond( &shat, s );
+
+ //t = A * shat;
+ A.Product( shat, t );
+
+ omega = DenseVectorDotProduct( t, s ) / DenseVectorDotProduct( t, t );
+
+ // x += alpha * phat + omega * shat;
+ x.Mad( x, shat, omega );
+ x.Mad( x, phat, alpha );
+
+ //r = s - omega * t;
+ r.Mad( s, t, -omega );
+
+ rho_2 = rho_1;
+
+ resid = r.Norm() / normb;
+ if( resid < epsilon ) {
+ return i;
+ }
+
+ if( omega == 0 ) {
+ return -i; // ???
+ }
+ }
+
+ return i;
+}
+
+#endif
diff --git a/thirdparty/thekla_atlas/nvmath/Solver.h b/thirdparty/thekla_atlas/nvmath/Solver.h
new file mode 100644
index 0000000000..2bbf92736a
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Solver.h
@@ -0,0 +1,24 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_SOLVER_H
+#define NV_MATH_SOLVER_H
+
+#include "nvmath.h"
+
+namespace nv
+{
+ class SparseMatrix;
+ class FullVector;
+
+
+ // Linear solvers.
+ NVMATH_API bool LeastSquaresSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon = 1e-5f);
+ NVMATH_API bool LeastSquaresSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, const uint * lockedParameters, uint lockedCount, float epsilon = 1e-5f);
+ NVMATH_API bool SymmetricSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon = 1e-5f);
+ //NVMATH_API void NonSymmetricSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon = 1e-5f);
+
+} // nv namespace
+
+
+#endif // NV_MATH_SOLVER_H
diff --git a/thirdparty/thekla_atlas/nvmath/Sparse.cpp b/thirdparty/thekla_atlas/nvmath/Sparse.cpp
new file mode 100644
index 0000000000..421e7ee022
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Sparse.cpp
@@ -0,0 +1,889 @@
+// This code is in the public domain -- Ignacio Castaņo <castanyo@yahoo.es>
+
+#include "Sparse.h"
+#include "KahanSum.h"
+
+#include "nvcore/Array.inl"
+
+#define USE_KAHAN_SUM 0
+
+
+using namespace nv;
+
+
+FullVector::FullVector(uint dim)
+{
+ m_array.resize(dim);
+}
+
+FullVector::FullVector(const FullVector & v) : m_array(v.m_array)
+{
+}
+
+const FullVector & FullVector::operator=(const FullVector & v)
+{
+ nvCheck(dimension() == v.dimension());
+
+ m_array = v.m_array;
+
+ return *this;
+}
+
+
+void FullVector::fill(float f)
+{
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] = f;
+ }
+}
+
+void FullVector::operator+= (const FullVector & v)
+{
+ nvDebugCheck(dimension() == v.dimension());
+
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] += v.m_array[i];
+ }
+}
+
+void FullVector::operator-= (const FullVector & v)
+{
+ nvDebugCheck(dimension() == v.dimension());
+
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] -= v.m_array[i];
+ }
+}
+
+void FullVector::operator*= (const FullVector & v)
+{
+ nvDebugCheck(dimension() == v.dimension());
+
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] *= v.m_array[i];
+ }
+}
+
+void FullVector::operator+= (float f)
+{
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] += f;
+ }
+}
+
+void FullVector::operator-= (float f)
+{
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] -= f;
+ }
+}
+
+void FullVector::operator*= (float f)
+{
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] *= f;
+ }
+}
+
+
+void nv::saxpy(float a, const FullVector & x, FullVector & y)
+{
+ nvDebugCheck(x.dimension() == y.dimension());
+
+ const uint dim = x.dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ y[i] += a * x[i];
+ }
+}
+
+void nv::copy(const FullVector & x, FullVector & y)
+{
+ nvDebugCheck(x.dimension() == y.dimension());
+
+ const uint dim = x.dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ y[i] = x[i];
+ }
+}
+
+void nv::scal(float a, FullVector & x)
+{
+ const uint dim = x.dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ x[i] *= a;
+ }
+}
+
+float nv::dot(const FullVector & x, const FullVector & y)
+{
+ nvDebugCheck(x.dimension() == y.dimension());
+
+ const uint dim = x.dimension();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < dim; i++)
+ {
+ kahan.add(x[i] * y[i]);
+ }
+ return kahan.sum();
+#else
+ float sum = 0;
+ for (uint i = 0; i < dim; i++)
+ {
+ sum += x[i] * y[i];
+ }
+ return sum;
+#endif
+}
+
+
+FullMatrix::FullMatrix(uint d) : m_width(d), m_height(d)
+{
+ m_array.resize(d*d, 0.0f);
+}
+
+FullMatrix::FullMatrix(uint w, uint h) : m_width(w), m_height(h)
+{
+ m_array.resize(w*h, 0.0f);
+}
+
+FullMatrix::FullMatrix(const FullMatrix & m) : m_width(m.m_width), m_height(m.m_height)
+{
+ m_array = m.m_array;
+}
+
+const FullMatrix & FullMatrix::operator=(const FullMatrix & m)
+{
+ nvCheck(width() == m.width());
+ nvCheck(height() == m.height());
+
+ m_array = m.m_array;
+
+ return *this;
+}
+
+
+float FullMatrix::getCoefficient(uint x, uint y) const
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ return m_array[y * width() + x];
+}
+
+void FullMatrix::setCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ m_array[y * width() + x] = f;
+}
+
+void FullMatrix::addCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ m_array[y * width() + x] += f;
+}
+
+void FullMatrix::mulCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ m_array[y * width() + x] *= f;
+}
+
+float FullMatrix::dotRow(uint y, const FullVector & v) const
+{
+ nvDebugCheck( v.dimension() == width() );
+ nvDebugCheck( y < height() );
+
+ float sum = 0;
+
+ const uint count = v.dimension();
+ for (uint i = 0; i < count; i++)
+ {
+ sum += m_array[y * count + i] * v[i];
+ }
+
+ return sum;
+}
+
+void FullMatrix::madRow(uint y, float alpha, FullVector & v) const
+{
+ nvDebugCheck( v.dimension() == width() );
+ nvDebugCheck( y < height() );
+
+ const uint count = v.dimension();
+ for (uint i = 0; i < count; i++)
+ {
+ v[i] += m_array[y * count + i];
+ }
+}
+
+
+// y = M * x
+void nv::mult(const FullMatrix & M, const FullVector & x, FullVector & y)
+{
+ mult(NoTransposed, M, x, y);
+}
+
+void nv::mult(Transpose TM, const FullMatrix & M, const FullVector & x, FullVector & y)
+{
+ const uint w = M.width();
+ const uint h = M.height();
+
+ if (TM == Transposed)
+ {
+ nvDebugCheck( h == x.dimension() );
+ nvDebugCheck( w == y.dimension() );
+
+ y.fill(0.0f);
+
+ for (uint i = 0; i < h; i++)
+ {
+ M.madRow(i, x[i], y);
+ }
+ }
+ else
+ {
+ nvDebugCheck( w == x.dimension() );
+ nvDebugCheck( h == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ y[i] = M.dotRow(i, x);
+ }
+ }
+}
+
+// y = alpha*A*x + beta*y
+void nv::sgemv(float alpha, const FullMatrix & A, const FullVector & x, float beta, FullVector & y)
+{
+ sgemv(alpha, NoTransposed, A, x, beta, y);
+}
+
+void nv::sgemv(float alpha, Transpose TA, const FullMatrix & A, const FullVector & x, float beta, FullVector & y)
+{
+ const uint w = A.width();
+ const uint h = A.height();
+
+ if (TA == Transposed)
+ {
+ nvDebugCheck( h == x.dimension() );
+ nvDebugCheck( w == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ A.madRow(i, alpha * x[i], y);
+ }
+ }
+ else
+ {
+ nvDebugCheck( w == x.dimension() );
+ nvDebugCheck( h == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ y[i] = alpha * A.dotRow(i, x) + beta * y[i];
+ }
+ }
+}
+
+
+// Multiply a row of A by a column of B.
+static float dot(uint j, Transpose TA, const FullMatrix & A, uint i, Transpose TB, const FullMatrix & B)
+{
+ const uint w = (TA == NoTransposed) ? A.width() : A.height();
+ nvDebugCheck(w == ((TB == NoTransposed) ? B.height() : A.width()));
+
+ float sum = 0.0f;
+
+ for (uint k = 0; k < w; k++)
+ {
+ const float a = (TA == NoTransposed) ? A.getCoefficient(k, j) : A.getCoefficient(j, k); // @@ Move branches out of the loop?
+ const float b = (TB == NoTransposed) ? B.getCoefficient(i, k) : A.getCoefficient(k, i);
+ sum += a * b;
+ }
+
+ return sum;
+}
+
+
+// C = A * B
+void nv::mult(const FullMatrix & A, const FullMatrix & B, FullMatrix & C)
+{
+ mult(NoTransposed, A, NoTransposed, B, C);
+}
+
+void nv::mult(Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, FullMatrix & C)
+{
+ sgemm(1.0f, TA, A, TB, B, 0.0f, C);
+}
+
+// C = alpha*A*B + beta*C
+void nv::sgemm(float alpha, const FullMatrix & A, const FullMatrix & B, float beta, FullMatrix & C)
+{
+ sgemm(alpha, NoTransposed, A, NoTransposed, B, beta, C);
+}
+
+void nv::sgemm(float alpha, Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, float beta, FullMatrix & C)
+{
+ const uint w = C.width();
+ const uint h = C.height();
+
+ uint aw = (TA == NoTransposed) ? A.width() : A.height();
+ uint ah = (TA == NoTransposed) ? A.height() : A.width();
+ uint bw = (TB == NoTransposed) ? B.width() : B.height();
+ uint bh = (TB == NoTransposed) ? B.height() : B.width();
+
+ nvDebugCheck(aw == bh);
+ nvDebugCheck(bw == ah);
+ nvDebugCheck(w == bw);
+ nvDebugCheck(h == ah);
+
+ for (uint y = 0; y < h; y++)
+ {
+ for (uint x = 0; x < w; x++)
+ {
+ float c = alpha * ::dot(x, TA, A, y, TB, B) + beta * C.getCoefficient(x, y);
+ C.setCoefficient(x, y, c);
+ }
+ }
+}
+
+
+
+
+
+/// Ctor. Init the size of the sparse matrix.
+SparseMatrix::SparseMatrix(uint d) : m_width(d)
+{
+ m_array.resize(d);
+}
+
+/// Ctor. Init the size of the sparse matrix.
+SparseMatrix::SparseMatrix(uint w, uint h) : m_width(w)
+{
+ m_array.resize(h);
+}
+
+SparseMatrix::SparseMatrix(const SparseMatrix & m) : m_width(m.m_width)
+{
+ m_array = m.m_array;
+}
+
+const SparseMatrix & SparseMatrix::operator=(const SparseMatrix & m)
+{
+ nvCheck(width() == m.width());
+ nvCheck(height() == m.height());
+
+ m_array = m.m_array;
+
+ return *this;
+}
+
+
+// x is column, y is row
+float SparseMatrix::getCoefficient(uint x, uint y) const
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ if (m_array[y][i].x == x) return m_array[y][i].v;
+ }
+
+ return 0.0f;
+}
+
+void SparseMatrix::setCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ if (m_array[y][i].x == x)
+ {
+ m_array[y][i].v = f;
+ return;
+ }
+ }
+
+ if (f != 0.0f)
+ {
+ Coefficient c = { x, f };
+ m_array[y].append( c );
+ }
+}
+
+void SparseMatrix::addCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ if (f != 0.0f)
+ {
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ if (m_array[y][i].x == x)
+ {
+ m_array[y][i].v += f;
+ return;
+ }
+ }
+
+ Coefficient c = { x, f };
+ m_array[y].append( c );
+ }
+}
+
+void SparseMatrix::mulCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ if (m_array[y][i].x == x)
+ {
+ m_array[y][i].v *= f;
+ return;
+ }
+ }
+
+ if (f != 0.0f)
+ {
+ Coefficient c = { x, f };
+ m_array[y].append( c );
+ }
+}
+
+
+float SparseMatrix::sumRow(uint y) const
+{
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < count; i++)
+ {
+ kahan.add(m_array[y][i].v);
+ }
+ return kahan.sum();
+#else
+ float sum = 0;
+ for (uint i = 0; i < count; i++)
+ {
+ sum += m_array[y][i].v;
+ }
+ return sum;
+#endif
+}
+
+float SparseMatrix::dotRow(uint y, const FullVector & v) const
+{
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < count; i++)
+ {
+ kahan.add(m_array[y][i].v * v[m_array[y][i].x]);
+ }
+ return kahan.sum();
+#else
+ float sum = 0;
+ for (uint i = 0; i < count; i++)
+ {
+ sum += m_array[y][i].v * v[m_array[y][i].x];
+ }
+ return sum;
+#endif
+}
+
+void SparseMatrix::madRow(uint y, float alpha, FullVector & v) const
+{
+ nvDebugCheck(y < height());
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ v[m_array[y][i].x] += alpha * m_array[y][i].v;
+ }
+}
+
+
+void SparseMatrix::clearRow(uint y)
+{
+ nvDebugCheck( y < height() );
+
+ m_array[y].clear();
+}
+
+void SparseMatrix::scaleRow(uint y, float f)
+{
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ m_array[y][i].v *= f;
+ }
+}
+
+void SparseMatrix::normalizeRow(uint y)
+{
+ nvDebugCheck( y < height() );
+
+ float norm = 0.0f;
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ float f = m_array[y][i].v;
+ norm += f * f;
+ }
+
+ scaleRow(y, 1.0f / sqrtf(norm));
+}
+
+
+void SparseMatrix::clearColumn(uint x)
+{
+ nvDebugCheck(x < width());
+
+ for (uint y = 0; y < height(); y++)
+ {
+ const uint count = m_array[y].count();
+ for (uint e = 0; e < count; e++)
+ {
+ if (m_array[y][e].x == x)
+ {
+ m_array[y][e].v = 0.0f;
+ break;
+ }
+ }
+ }
+}
+
+void SparseMatrix::scaleColumn(uint x, float f)
+{
+ nvDebugCheck(x < width());
+
+ for (uint y = 0; y < height(); y++)
+ {
+ const uint count = m_array[y].count();
+ for (uint e = 0; e < count; e++)
+ {
+ if (m_array[y][e].x == x)
+ {
+ m_array[y][e].v *= f;
+ break;
+ }
+ }
+ }
+}
+
+const Array<SparseMatrix::Coefficient> & SparseMatrix::getRow(uint y) const
+{
+ return m_array[y];
+}
+
+
+bool SparseMatrix::isSymmetric() const
+{
+ for (uint y = 0; y < height(); y++)
+ {
+ const uint count = m_array[y].count();
+ for (uint e = 0; e < count; e++)
+ {
+ const uint x = m_array[y][e].x;
+ if (x > y) {
+ float v = m_array[y][e].v;
+
+ if (!equal(getCoefficient(y, x), v)) { // @@ epsilon
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+
+// y = M * x
+void nv::mult(const SparseMatrix & M, const FullVector & x, FullVector & y)
+{
+ mult(NoTransposed, M, x, y);
+}
+
+void nv::mult(Transpose TM, const SparseMatrix & M, const FullVector & x, FullVector & y)
+{
+ const uint w = M.width();
+ const uint h = M.height();
+
+ if (TM == Transposed)
+ {
+ nvDebugCheck( h == x.dimension() );
+ nvDebugCheck( w == y.dimension() );
+
+ y.fill(0.0f);
+
+ for (uint i = 0; i < h; i++)
+ {
+ M.madRow(i, x[i], y);
+ }
+ }
+ else
+ {
+ nvDebugCheck( w == x.dimension() );
+ nvDebugCheck( h == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ y[i] = M.dotRow(i, x);
+ }
+ }
+}
+
+// y = alpha*A*x + beta*y
+void nv::sgemv(float alpha, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y)
+{
+ sgemv(alpha, NoTransposed, A, x, beta, y);
+}
+
+void nv::sgemv(float alpha, Transpose TA, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y)
+{
+ const uint w = A.width();
+ const uint h = A.height();
+
+ if (TA == Transposed)
+ {
+ nvDebugCheck( h == x.dimension() );
+ nvDebugCheck( w == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ A.madRow(i, alpha * x[i], y);
+ }
+ }
+ else
+ {
+ nvDebugCheck( w == x.dimension() );
+ nvDebugCheck( h == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ y[i] = alpha * A.dotRow(i, x) + beta * y[i];
+ }
+ }
+}
+
+
+// dot y-row of A by x-column of B
+static float dotRowColumn(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
+{
+ const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
+
+ const uint count = row.count();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ kahan.add(c.v * B.getCoefficient(x, c.x));
+ }
+ return kahan.sum();
+#else
+ float sum = 0.0f;
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ sum += c.v * B.getCoefficient(x, c.x);
+ }
+ return sum;
+#endif
+}
+
+// dot y-row of A by x-row of B
+static float dotRowRow(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
+{
+ const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
+
+ const uint count = row.count();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ kahan.add(c.v * B.getCoefficient(c.x, x));
+ }
+ return kahan.sum();
+#else
+ float sum = 0.0f;
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ sum += c.v * B.getCoefficient(c.x, x);
+ }
+ return sum;
+#endif
+}
+
+// dot y-column of A by x-column of B
+static float dotColumnColumn(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
+{
+ nvDebugCheck(A.height() == B.height());
+
+ const uint h = A.height();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < h; i++)
+ {
+ kahan.add(A.getCoefficient(y, i) * B.getCoefficient(x, i));
+ }
+ return kahan.sum();
+#else
+ float sum = 0.0f;
+ for (uint i = 0; i < h; i++)
+ {
+ sum += A.getCoefficient(y, i) * B.getCoefficient(x, i);
+ }
+ return sum;
+#endif
+}
+
+
+void nv::transpose(const SparseMatrix & A, SparseMatrix & B)
+{
+ nvDebugCheck(A.width() == B.height());
+ nvDebugCheck(B.width() == A.height());
+
+ const uint w = A.width();
+ for (uint x = 0; x < w; x++)
+ {
+ B.clearRow(x);
+ }
+
+ const uint h = A.height();
+ for (uint y = 0; y < h; y++)
+ {
+ const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
+
+ const uint count = row.count();
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ nvDebugCheck(c.x < w);
+
+ B.setCoefficient(y, c.x, c.v);
+ }
+ }
+}
+
+// C = A * B
+void nv::mult(const SparseMatrix & A, const SparseMatrix & B, SparseMatrix & C)
+{
+ mult(NoTransposed, A, NoTransposed, B, C);
+}
+
+void nv::mult(Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, SparseMatrix & C)
+{
+ sgemm(1.0f, TA, A, TB, B, 0.0f, C);
+}
+
+// C = alpha*A*B + beta*C
+void nv::sgemm(float alpha, const SparseMatrix & A, const SparseMatrix & B, float beta, SparseMatrix & C)
+{
+ sgemm(alpha, NoTransposed, A, NoTransposed, B, beta, C);
+}
+
+void nv::sgemm(float alpha, Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, float beta, SparseMatrix & C)
+{
+ const uint w = C.width();
+ const uint h = C.height();
+
+ uint aw = (TA == NoTransposed) ? A.width() : A.height();
+ uint ah = (TA == NoTransposed) ? A.height() : A.width();
+ uint bw = (TB == NoTransposed) ? B.width() : B.height();
+ uint bh = (TB == NoTransposed) ? B.height() : B.width();
+
+ nvDebugCheck(aw == bh);
+ nvDebugCheck(bw == ah);
+ nvDebugCheck(w == bw);
+ nvDebugCheck(h == ah);
+
+
+ for (uint y = 0; y < h; y++)
+ {
+ for (uint x = 0; x < w; x++)
+ {
+ float c = beta * C.getCoefficient(x, y);
+
+ if (TA == NoTransposed && TB == NoTransposed)
+ {
+ // dot y-row of A by x-column of B.
+ c += alpha * dotRowColumn(y, A, x, B);
+ }
+ else if (TA == Transposed && TB == Transposed)
+ {
+ // dot y-column of A by x-row of B.
+ c += alpha * dotRowColumn(x, B, y, A);
+ }
+ else if (TA == Transposed && TB == NoTransposed)
+ {
+ // dot y-column of A by x-column of B.
+ c += alpha * dotColumnColumn(y, A, x, B);
+ }
+ else if (TA == NoTransposed && TB == Transposed)
+ {
+ // dot y-row of A by x-row of B.
+ c += alpha * dotRowRow(y, A, x, B);
+ }
+
+ C.setCoefficient(x, y, c);
+ }
+ }
+}
+
+// C = At * A
+void nv::sqm(const SparseMatrix & A, SparseMatrix & C)
+{
+ // This is quite expensive...
+ mult(Transposed, A, NoTransposed, A, C);
+}
diff --git a/thirdparty/thekla_atlas/nvmath/Sparse.h b/thirdparty/thekla_atlas/nvmath/Sparse.h
new file mode 100644
index 0000000000..6b03ed51f3
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Sparse.h
@@ -0,0 +1,204 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_SPARSE_H
+#define NV_MATH_SPARSE_H
+
+#include "nvmath.h"
+#include "nvcore/Array.h"
+
+
+// Full and sparse vector and matrix classes. BLAS subset.
+
+namespace nv
+{
+ class FullVector;
+ class FullMatrix;
+ class SparseMatrix;
+
+
+ /// Fixed size vector class.
+ class FullVector
+ {
+ public:
+
+ FullVector(uint dim);
+ FullVector(const FullVector & v);
+
+ const FullVector & operator=(const FullVector & v);
+
+ uint dimension() const { return m_array.count(); }
+
+ const float & operator[]( uint index ) const { return m_array[index]; }
+ float & operator[] ( uint index ) { return m_array[index]; }
+
+ void fill(float f);
+
+ void operator+= (const FullVector & v);
+ void operator-= (const FullVector & v);
+ void operator*= (const FullVector & v);
+
+ void operator+= (float f);
+ void operator-= (float f);
+ void operator*= (float f);
+
+
+ private:
+
+ Array<float> m_array;
+
+ };
+
+ // Pseudo-BLAS interface.
+ NVMATH_API void saxpy(float a, const FullVector & x, FullVector & y); // y = a * x + y
+ NVMATH_API void copy(const FullVector & x, FullVector & y);
+ NVMATH_API void scal(float a, FullVector & x);
+ NVMATH_API float dot(const FullVector & x, const FullVector & y);
+
+
+ enum Transpose
+ {
+ NoTransposed = 0,
+ Transposed = 1
+ };
+
+ /// Full matrix class.
+ class FullMatrix
+ {
+ public:
+
+ FullMatrix(uint d);
+ FullMatrix(uint w, uint h);
+ FullMatrix(const FullMatrix & m);
+
+ const FullMatrix & operator=(const FullMatrix & m);
+
+ uint width() const { return m_width; }
+ uint height() const { return m_height; }
+ bool isSquare() const { return m_width == m_height; }
+
+ float getCoefficient(uint x, uint y) const;
+
+ void setCoefficient(uint x, uint y, float f);
+ void addCoefficient(uint x, uint y, float f);
+ void mulCoefficient(uint x, uint y, float f);
+
+ float dotRow(uint y, const FullVector & v) const;
+ void madRow(uint y, float alpha, FullVector & v) const;
+
+ protected:
+
+ bool isValid() const {
+ return m_array.size() == (m_width * m_height);
+ }
+
+ private:
+
+ const uint m_width;
+ const uint m_height;
+ Array<float> m_array;
+
+ };
+
+ NVMATH_API void mult(const FullMatrix & M, const FullVector & x, FullVector & y);
+ NVMATH_API void mult(Transpose TM, const FullMatrix & M, const FullVector & x, FullVector & y);
+
+ // y = alpha*A*x + beta*y
+ NVMATH_API void sgemv(float alpha, const FullMatrix & A, const FullVector & x, float beta, FullVector & y);
+ NVMATH_API void sgemv(float alpha, Transpose TA, const FullMatrix & A, const FullVector & x, float beta, FullVector & y);
+
+ NVMATH_API void mult(const FullMatrix & A, const FullMatrix & B, FullMatrix & C);
+ NVMATH_API void mult(Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, FullMatrix & C);
+
+ // C = alpha*A*B + beta*C
+ NVMATH_API void sgemm(float alpha, const FullMatrix & A, const FullMatrix & B, float beta, FullMatrix & C);
+ NVMATH_API void sgemm(float alpha, Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, float beta, FullMatrix & C);
+
+
+ /**
+ * Sparse matrix class. The matrix is assumed to be sparse and to have
+ * very few non-zero elements, for this reason it's stored in indexed
+ * format. To multiply column vectors efficiently, the matrix stores
+ * the elements in indexed-column order, there is a list of indexed
+ * elements for each row of the matrix. As with the FullVector the
+ * dimension of the matrix is constant.
+ **/
+ class SparseMatrix
+ {
+ friend class FullMatrix;
+ public:
+
+ // An element of the sparse array.
+ struct Coefficient {
+ uint x; // column
+ float v; // value
+ };
+
+
+ public:
+
+ SparseMatrix(uint d);
+ SparseMatrix(uint w, uint h);
+ SparseMatrix(const SparseMatrix & m);
+
+ const SparseMatrix & operator=(const SparseMatrix & m);
+
+
+ uint width() const { return m_width; }
+ uint height() const { return m_array.count(); }
+ bool isSquare() const { return width() == height(); }
+
+ float getCoefficient(uint x, uint y) const; // x is column, y is row
+
+ void setCoefficient(uint x, uint y, float f);
+ void addCoefficient(uint x, uint y, float f);
+ void mulCoefficient(uint x, uint y, float f);
+
+ float sumRow(uint y) const;
+ float dotRow(uint y, const FullVector & v) const;
+ void madRow(uint y, float alpha, FullVector & v) const;
+
+ void clearRow(uint y);
+ void scaleRow(uint y, float f);
+ void normalizeRow(uint y);
+
+ void clearColumn(uint x);
+ void scaleColumn(uint x, float f);
+
+ const Array<Coefficient> & getRow(uint y) const;
+
+ bool isSymmetric() const;
+
+ private:
+
+ /// Number of columns.
+ const uint m_width;
+
+ /// Array of matrix elements.
+ Array< Array<Coefficient> > m_array;
+
+ };
+
+ NVMATH_API void transpose(const SparseMatrix & A, SparseMatrix & B);
+
+ NVMATH_API void mult(const SparseMatrix & M, const FullVector & x, FullVector & y);
+ NVMATH_API void mult(Transpose TM, const SparseMatrix & M, const FullVector & x, FullVector & y);
+
+ // y = alpha*A*x + beta*y
+ NVMATH_API void sgemv(float alpha, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y);
+ NVMATH_API void sgemv(float alpha, Transpose TA, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y);
+
+ NVMATH_API void mult(const SparseMatrix & A, const SparseMatrix & B, SparseMatrix & C);
+ NVMATH_API void mult(Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, SparseMatrix & C);
+
+ // C = alpha*A*B + beta*C
+ NVMATH_API void sgemm(float alpha, const SparseMatrix & A, const SparseMatrix & B, float beta, SparseMatrix & C);
+ NVMATH_API void sgemm(float alpha, Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, float beta, SparseMatrix & C);
+
+ // C = At * A
+ NVMATH_API void sqm(const SparseMatrix & A, SparseMatrix & C);
+
+} // nv namespace
+
+
+#endif // NV_MATH_SPARSE_H
diff --git a/thirdparty/thekla_atlas/nvmath/Sphere.cpp b/thirdparty/thekla_atlas/nvmath/Sphere.cpp
new file mode 100644
index 0000000000..e0c1ad652c
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Sphere.cpp
@@ -0,0 +1,431 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#include "Sphere.h"
+#include "Vector.inl"
+#include "Box.inl"
+
+#include <float.h> // FLT_MAX
+
+using namespace nv;
+
+const float radiusEpsilon = 1e-4f;
+
+Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1)
+{
+ if (p0 == p1) *this = Sphere(p0);
+ else {
+ center = (p0 + p1) * 0.5f;
+ radius = length(p0 - center) + radiusEpsilon;
+
+ float d0 = length(p0 - center);
+ float d1 = length(p1 - center);
+ nvDebugCheck(equal(d0, radius - radiusEpsilon));
+ nvDebugCheck(equal(d1, radius - radiusEpsilon));
+ }
+}
+
+Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2)
+{
+ if (p0 == p1 || p0 == p2) *this = Sphere(p1, p2);
+ else if (p1 == p2) *this = Sphere(p0, p2);
+ else {
+ Vector3 a = p1 - p0;
+ Vector3 b = p2 - p0;
+ Vector3 c = cross(a, b);
+
+ float denominator = 2.0f * lengthSquared(c);
+
+ if (!isZero(denominator)) {
+ Vector3 d = (lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator;
+
+ center = p0 + d;
+ radius = length(d) + radiusEpsilon;
+
+ float d0 = length(p0 - center);
+ float d1 = length(p1 - center);
+ float d2 = length(p2 - center);
+ nvDebugCheck(equal(d0, radius - radiusEpsilon));
+ nvDebugCheck(equal(d1, radius - radiusEpsilon));
+ nvDebugCheck(equal(d2, radius - radiusEpsilon));
+ }
+ else {
+ // @@ This is a specialization of the code below, but really, the only thing we need to do here is to find the two most distant points.
+ // Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest.
+ Sphere s0(p1, p2);
+ float d0 = distanceSquared(s0, p0);
+ if (d0 > 0) s0.radius = NV_FLOAT_MAX;
+
+ Sphere s1(p0, p2);
+ float d1 = distanceSquared(s1, p1);
+ if (d1 > 0) s1.radius = NV_FLOAT_MAX;
+
+ Sphere s2(p0, p1);
+ float d2 = distanceSquared(s2, p2);
+ if (d2 > 0) s1.radius = NV_FLOAT_MAX;
+
+ if (s0.radius < s1.radius && s0.radius < s2.radius) {
+ center = s0.center;
+ radius = s0.radius;
+ }
+ else if (s1.radius < s2.radius) {
+ center = s1.center;
+ radius = s1.radius;
+ }
+ else {
+ center = s2.center;
+ radius = s2.radius;
+ }
+ }
+ }
+}
+
+Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3)
+{
+ if (p0 == p1 || p0 == p2 || p0 == p3) *this = Sphere(p1, p2, p3);
+ else if (p1 == p2 || p1 == p3) *this = Sphere(p0, p2, p3);
+ else if (p2 == p3) *this = Sphere(p0, p1, p2);
+ else {
+ // @@ This only works if the points are not coplanar!
+ Vector3 a = p1 - p0;
+ Vector3 b = p2 - p0;
+ Vector3 c = p3 - p0;
+
+ float denominator = 2.0f * dot(c, cross(a, b)); // triple product.
+
+ if (!isZero(denominator)) {
+ Vector3 d = (lengthSquared(c) * cross(a, b) + lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator;
+
+ center = p0 + d;
+ radius = length(d) + radiusEpsilon;
+
+ float d0 = length(p0 - center);
+ float d1 = length(p1 - center);
+ float d2 = length(p2 - center);
+ float d3 = length(p3 - center);
+ nvDebugCheck(equal(d0, radius - radiusEpsilon));
+ nvDebugCheck(equal(d1, radius - radiusEpsilon));
+ nvDebugCheck(equal(d2, radius - radiusEpsilon));
+ nvDebugCheck(equal(d3, radius - radiusEpsilon));
+ }
+ else {
+ // Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest.
+ Sphere s0(p1, p2, p3);
+ float d0 = distanceSquared(s0, p0);
+ if (d0 > 0) s0.radius = NV_FLOAT_MAX;
+
+ Sphere s1(p0, p2, p3);
+ float d1 = distanceSquared(s1, p1);
+ if (d1 > 0) s1.radius = NV_FLOAT_MAX;
+
+ Sphere s2(p0, p1, p3);
+ float d2 = distanceSquared(s2, p2);
+ if (d2 > 0) s2.radius = NV_FLOAT_MAX;
+
+ Sphere s3(p0, p1, p2);
+ float d3 = distanceSquared(s3, p3);
+ if (d3 > 0) s2.radius = NV_FLOAT_MAX;
+
+ if (s0.radius < s1.radius && s0.radius < s2.radius && s0.radius < s3.radius) {
+ center = s0.center;
+ radius = s0.radius;
+ }
+ else if (s1.radius < s2.radius && s1.radius < s3.radius) {
+ center = s1.center;
+ radius = s1.radius;
+ }
+ else if (s1.radius < s3.radius) {
+ center = s2.center;
+ radius = s2.radius;
+ }
+ else {
+ center = s3.center;
+ radius = s3.radius;
+ }
+ }
+ }
+}
+
+
+float nv::distanceSquared(const Sphere & sphere, const Vector3 & point)
+{
+ return lengthSquared(sphere.center - point) - square(sphere.radius);
+}
+
+
+
+// Implementation of "MiniBall" based on:
+// http://www.flipcode.com/archives/Smallest_Enclosing_Spheres.shtml
+
+static Sphere recurseMini(const Vector3 *P[], uint p, uint b = 0)
+{
+ Sphere MB;
+
+ switch(b)
+ {
+ case 0:
+ MB = Sphere(*P[0]);
+ break;
+ case 1:
+ MB = Sphere(*P[-1]);
+ break;
+ case 2:
+ MB = Sphere(*P[-1], *P[-2]);
+ break;
+ case 3:
+ MB = Sphere(*P[-1], *P[-2], *P[-3]);
+ break;
+ case 4:
+ MB = Sphere(*P[-1], *P[-2], *P[-3], *P[-4]);
+ return MB;
+ }
+
+ for (uint i = 0; i < p; i++)
+ {
+ if (distanceSquared(MB, *P[i]) > 0) // Signed square distance to sphere
+ {
+ for (uint j = i; j > 0; j--)
+ {
+ swap(P[j], P[j-1]);
+ }
+
+ MB = recurseMini(P + 1, i, b + 1);
+ }
+ }
+
+ return MB;
+}
+
+static bool allInside(const Sphere & sphere, const Vector3 * pointArray, const uint pointCount) {
+ for (uint i = 0; i < pointCount; i++) {
+ if (distanceSquared(sphere, pointArray[i]) >= NV_EPSILON) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+Sphere nv::miniBall(const Vector3 * pointArray, const uint pointCount)
+{
+ nvDebugCheck(pointArray != NULL);
+ nvDebugCheck(pointCount > 0);
+
+ const Vector3 **L = new const Vector3*[pointCount];
+
+ for (uint i = 0; i < pointCount; i++) {
+ L[i] = &pointArray[i];
+ }
+
+ Sphere sphere = recurseMini(L, pointCount);
+
+ delete [] L;
+
+ nvDebugCheck(allInside(sphere, pointArray, pointCount));
+
+ return sphere;
+}
+
+
+// Approximate bounding sphere, based on "An Efficient Bounding Sphere" by Jack Ritter, from "Graphics Gems"
+Sphere nv::approximateSphere_Ritter(const Vector3 * pointArray, const uint pointCount)
+{
+ nvDebugCheck(pointArray != NULL);
+ nvDebugCheck(pointCount > 0);
+
+ Vector3 xmin, xmax, ymin, ymax, zmin, zmax;
+
+ xmin = xmax = ymin = ymax = zmin = zmax = pointArray[0];
+
+ // FIRST PASS: find 6 minima/maxima points
+ xmin.x = ymin.y = zmin.z = FLT_MAX;
+ xmax.x = ymax.y = zmax.z = -FLT_MAX;
+
+ for (uint i = 0; i < pointCount; i++)
+ {
+ const Vector3 & p = pointArray[i];
+ if (p.x < xmin.x) xmin = p;
+ if (p.x > xmax.x) xmax = p;
+ if (p.y < ymin.y) ymin = p;
+ if (p.y > ymax.y) ymax = p;
+ if (p.z < zmin.z) zmin = p;
+ if (p.z > zmax.z) zmax = p;
+ }
+
+ float xspan = lengthSquared(xmax - xmin);
+ float yspan = lengthSquared(ymax - ymin);
+ float zspan = lengthSquared(zmax - zmin);
+
+ // Set points dia1 & dia2 to the maximally separated pair.
+ Vector3 dia1 = xmin;
+ Vector3 dia2 = xmax;
+ float maxspan = xspan;
+ if (yspan > maxspan) {
+ maxspan = yspan;
+ dia1 = ymin;
+ dia2 = ymax;
+ }
+ if (zspan > maxspan) {
+ dia1 = zmin;
+ dia2 = zmax;
+ }
+
+ // |dia1-dia2| is a diameter of initial sphere
+
+ // calc initial center
+ Sphere sphere;
+ sphere.center = (dia1 + dia2) / 2.0f;
+
+ // calculate initial radius**2 and radius
+ float rad_sq = lengthSquared(dia2 - sphere.center);
+ sphere.radius = sqrtf(rad_sq);
+
+
+ // SECOND PASS: increment current sphere
+ for (uint i = 0; i < pointCount; i++)
+ {
+ const Vector3 & p = pointArray[i];
+
+ float old_to_p_sq = lengthSquared(p - sphere.center);
+
+ if (old_to_p_sq > rad_sq) // do r**2 test first
+ {
+ // this point is outside of current sphere
+ float old_to_p = sqrtf(old_to_p_sq);
+
+ // calc radius of new sphere
+ sphere.radius = (sphere.radius + old_to_p) / 2.0f;
+ rad_sq = sphere.radius * sphere.radius; // for next r**2 compare
+
+ float old_to_new = old_to_p - sphere.radius;
+
+ // calc center of new sphere
+ sphere.center = (sphere.radius * sphere.center + old_to_new * p) / old_to_p;
+ }
+ }
+
+ nvDebugCheck(allInside(sphere, pointArray, pointCount));
+
+ return sphere;
+}
+
+
+static float computeSphereRadius(const Vector3 & center, const Vector3 * pointArray, const uint pointCount) {
+
+ float maxRadius2 = 0;
+
+ for (uint i = 0; i < pointCount; i++)
+ {
+ const Vector3 & p = pointArray[i];
+
+ float r2 = lengthSquared(center - p);
+
+ if (r2 > maxRadius2) {
+ maxRadius2 = r2;
+ }
+ }
+
+ return sqrtf(maxRadius2) + radiusEpsilon;
+}
+
+
+Sphere nv::approximateSphere_AABB(const Vector3 * pointArray, const uint pointCount)
+{
+ nvDebugCheck(pointArray != NULL);
+ nvDebugCheck(pointCount > 0);
+
+ Box box;
+ box.clearBounds();
+
+ for (uint i = 0; i < pointCount; i++) {
+ box.addPointToBounds(pointArray[i]);
+ }
+
+ Sphere sphere;
+ sphere.center = box.center();
+ sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
+
+ nvDebugCheck(allInside(sphere, pointArray, pointCount));
+
+ return sphere;
+}
+
+
+static void computeExtremalPoints(const Vector3 & dir, const Vector3 * pointArray, uint pointCount, Vector3 * minPoint, Vector3 * maxPoint) {
+ nvDebugCheck(pointCount > 0);
+
+ uint mini = 0;
+ uint maxi = 0;
+ float minDist = FLT_MAX;
+ float maxDist = -FLT_MAX;
+
+ for (uint i = 0; i < pointCount; i++) {
+ float d = dot(dir, pointArray[i]);
+
+ if (d < minDist) {
+ minDist = d;
+ mini = i;
+ }
+ if (d > maxDist) {
+ maxDist = d;
+ maxi = i;
+ }
+ }
+ nvDebugCheck(minDist != FLT_MAX);
+ nvDebugCheck(maxDist != -FLT_MAX);
+
+ *minPoint = pointArray[mini];
+ *maxPoint = pointArray[maxi];
+}
+
+// EPOS algorithm based on:
+// http://www.ep.liu.se/ecp/034/009/ecp083409.pdf
+Sphere nv::approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount)
+{
+ nvDebugCheck(pointArray != NULL);
+ nvDebugCheck(pointCount > 0);
+
+ Vector3 extremalPoints[6];
+
+ // Compute 6 extremal points.
+ computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1);
+ computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3);
+ computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5);
+
+ Sphere sphere = miniBall(extremalPoints, 6);
+ sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
+
+ nvDebugCheck(allInside(sphere, pointArray, pointCount));
+
+ return sphere;
+}
+
+Sphere nv::approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount)
+{
+ nvDebugCheck(pointArray != NULL);
+ nvDebugCheck(pointCount > 0);
+
+ Vector3 extremalPoints[14];
+
+ // Compute 14 extremal points.
+ computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1);
+ computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3);
+ computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5);
+
+ float d = sqrtf(1.0f/3.0f);
+
+ computeExtremalPoints(Vector3(d, d, d), pointArray, pointCount, extremalPoints+6, extremalPoints+7);
+ computeExtremalPoints(Vector3(-d, d, d), pointArray, pointCount, extremalPoints+8, extremalPoints+9);
+ computeExtremalPoints(Vector3(-d, -d, d), pointArray, pointCount, extremalPoints+10, extremalPoints+11);
+ computeExtremalPoints(Vector3(d, -d, d), pointArray, pointCount, extremalPoints+12, extremalPoints+13);
+
+
+ Sphere sphere = miniBall(extremalPoints, 14);
+ sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
+
+ nvDebugCheck(allInside(sphere, pointArray, pointCount));
+
+ return sphere;
+}
+
+
+
diff --git a/thirdparty/thekla_atlas/nvmath/Sphere.h b/thirdparty/thekla_atlas/nvmath/Sphere.h
new file mode 100644
index 0000000000..300731af44
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Sphere.h
@@ -0,0 +1,43 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#pragma once
+#ifndef NV_MATH_SPHERE_H
+#define NV_MATH_SPHERE_H
+
+#include "Vector.h"
+
+namespace nv
+{
+
+ class Sphere
+ {
+ public:
+ Sphere() {}
+ Sphere(Vector3::Arg center, float radius) : center(center), radius(radius) {}
+
+ Sphere(Vector3::Arg center) : center(center), radius(0.0f) {}
+ Sphere(Vector3::Arg p0, Vector3::Arg p1);
+ Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2);
+ Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3);
+
+ Vector3 center;
+ float radius;
+ };
+
+ // Returns negative values if point is inside.
+ float distanceSquared(const Sphere & sphere, const Vector3 &point);
+
+
+ // Welz's algorithm. Fairly slow, recursive implementation uses large stack.
+ Sphere miniBall(const Vector3 * pointArray, uint pointCount);
+
+ Sphere approximateSphere_Ritter(const Vector3 * pointArray, uint pointCount);
+ Sphere approximateSphere_AABB(const Vector3 * pointArray, uint pointCount);
+ Sphere approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount);
+ Sphere approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount);
+
+
+} // nv namespace
+
+
+#endif // NV_MATH_SPHERE_H
diff --git a/thirdparty/thekla_atlas/nvmath/TypeSerialization.cpp b/thirdparty/thekla_atlas/nvmath/TypeSerialization.cpp
new file mode 100644
index 0000000000..72fa678f47
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/TypeSerialization.cpp
@@ -0,0 +1,54 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#include "TypeSerialization.h"
+
+#include "nvcore/Stream.h"
+
+#include "nvmath/Vector.h"
+#include "nvmath/Matrix.h"
+#include "nvmath/Quaternion.h"
+#include "nvmath/Basis.h"
+#include "nvmath/Box.h"
+#include "nvmath/Plane.inl"
+
+using namespace nv;
+
+Stream & nv::operator<< (Stream & s, Vector2 & v)
+{
+ return s << v.x << v.y;
+}
+
+Stream & nv::operator<< (Stream & s, Vector3 & v)
+{
+ return s << v.x << v.y << v.z;
+}
+
+Stream & nv::operator<< (Stream & s, Vector4 & v)
+{
+ return s << v.x << v.y << v.z << v.w;
+}
+
+Stream & nv::operator<< (Stream & s, Matrix & m)
+{
+ return s;
+}
+
+Stream & nv::operator<< (Stream & s, Quaternion & q)
+{
+ return s << q.x << q.y << q.z << q.w;
+}
+
+Stream & nv::operator<< (Stream & s, Basis & basis)
+{
+ return s << basis.tangent << basis.bitangent << basis.normal;
+}
+
+Stream & nv::operator<< (Stream & s, Box & box)
+{
+ return s << box.minCorner << box.maxCorner;
+}
+
+Stream & nv::operator<< (Stream & s, Plane & plane)
+{
+ return s << plane.v;
+}
diff --git a/thirdparty/thekla_atlas/nvmath/TypeSerialization.h b/thirdparty/thekla_atlas/nvmath/TypeSerialization.h
new file mode 100644
index 0000000000..32d6de827e
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/TypeSerialization.h
@@ -0,0 +1,35 @@
+// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com>
+
+#pragma once
+#ifndef NV_MATH_TYPESERIALIZATION_H
+#define NV_MATH_TYPESERIALIZATION_H
+
+#include "nvmath.h"
+
+namespace nv
+{
+ class Stream;
+
+ class Vector2;
+ class Vector3;
+ class Vector4;
+
+ class Matrix;
+ class Quaternion;
+ class Basis;
+ class Box;
+ class Plane;
+
+ NVMATH_API Stream & operator<< (Stream & s, Vector2 & obj);
+ NVMATH_API Stream & operator<< (Stream & s, Vector3 & obj);
+ NVMATH_API Stream & operator<< (Stream & s, Vector4 & obj);
+
+ NVMATH_API Stream & operator<< (Stream & s, Matrix & obj);
+ NVMATH_API Stream & operator<< (Stream & s, Quaternion & obj);
+ NVMATH_API Stream & operator<< (Stream & s, Basis & obj);
+ NVMATH_API Stream & operator<< (Stream & s, Box & obj);
+ NVMATH_API Stream & operator<< (Stream & s, Plane & obj);
+
+} // nv namespace
+
+#endif // NV_MATH_TYPESERIALIZATION_H
diff --git a/thirdparty/thekla_atlas/nvmath/Vector.cpp b/thirdparty/thekla_atlas/nvmath/Vector.cpp
new file mode 100644
index 0000000000..9122a1b0e9
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Vector.cpp
@@ -0,0 +1,4 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#include "Vector.h"
+#include "Vector.inl"
diff --git a/thirdparty/thekla_atlas/nvmath/Vector.h b/thirdparty/thekla_atlas/nvmath/Vector.h
new file mode 100644
index 0000000000..ad18672a8a
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Vector.h
@@ -0,0 +1,149 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_VECTOR_H
+#define NV_MATH_VECTOR_H
+
+#include "nvmath.h"
+
+namespace nv
+{
+ class NVMATH_CLASS Vector2
+ {
+ public:
+ typedef Vector2 const & Arg;
+
+ Vector2();
+ explicit Vector2(float f);
+ Vector2(float x, float y);
+ Vector2(Vector2::Arg v);
+
+ //template <typename T> explicit Vector2(const T & v) : x(v.x), y(v.y) {}
+ //template <typename T> operator T() const { return T(x, y); }
+
+ const Vector2 & operator=(Vector2::Arg v);
+
+ const float * ptr() const;
+
+ void set(float x, float y);
+
+ Vector2 operator-() const;
+ void operator+=(Vector2::Arg v);
+ void operator-=(Vector2::Arg v);
+ void operator*=(float s);
+ void operator*=(Vector2::Arg v);
+
+ friend bool operator==(Vector2::Arg a, Vector2::Arg b);
+ friend bool operator!=(Vector2::Arg a, Vector2::Arg b);
+
+ union {
+ struct {
+ float x, y;
+ };
+ float component[2];
+ };
+ };
+
+ class NVMATH_CLASS Vector3
+ {
+ public:
+ typedef Vector3 const & Arg;
+
+ Vector3();
+ explicit Vector3(float x);
+ //explicit Vector3(int x) : x(float(x)), y(float(x)), z(float(x)) {}
+ Vector3(float x, float y, float z);
+ Vector3(Vector2::Arg v, float z);
+ Vector3(Vector3::Arg v);
+
+ //template <typename T> explicit Vector3(const T & v) : x(v.x), y(v.y), z(v.z) {}
+ //template <typename T> operator T() const { return T(x, y, z); }
+
+ const Vector3 & operator=(Vector3::Arg v);
+
+ Vector2 xy() const;
+
+ const float * ptr() const;
+
+ void set(float x, float y, float z);
+
+ Vector3 operator-() const;
+ void operator+=(Vector3::Arg v);
+ void operator-=(Vector3::Arg v);
+ void operator*=(float s);
+ void operator/=(float s);
+ void operator*=(Vector3::Arg v);
+ void operator/=(Vector3::Arg v);
+
+ friend bool operator==(Vector3::Arg a, Vector3::Arg b);
+ friend bool operator!=(Vector3::Arg a, Vector3::Arg b);
+
+ union {
+ struct {
+ float x, y, z;
+ };
+ float component[3];
+ };
+ };
+
+ class NVMATH_CLASS Vector4
+ {
+ public:
+ typedef Vector4 const & Arg;
+
+ Vector4();
+ explicit Vector4(float x);
+ Vector4(float x, float y, float z, float w);
+ Vector4(Vector2::Arg v, float z, float w);
+ Vector4(Vector2::Arg v, Vector2::Arg u);
+ Vector4(Vector3::Arg v, float w);
+ Vector4(Vector4::Arg v);
+ // Vector4(const Quaternion & v);
+
+ //template <typename T> explicit Vector4(const T & v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
+ //template <typename T> operator T() const { return T(x, y, z, w); }
+
+ const Vector4 & operator=(Vector4::Arg v);
+
+ Vector2 xy() const;
+ Vector2 zw() const;
+ Vector3 xyz() const;
+
+ const float * ptr() const;
+
+ void set(float x, float y, float z, float w);
+
+ Vector4 operator-() const;
+ void operator+=(Vector4::Arg v);
+ void operator-=(Vector4::Arg v);
+ void operator*=(float s);
+ void operator/=(float s);
+ void operator*=(Vector4::Arg v);
+ void operator/=(Vector4::Arg v);
+
+ friend bool operator==(Vector4::Arg a, Vector4::Arg b);
+ friend bool operator!=(Vector4::Arg a, Vector4::Arg b);
+
+ union {
+ struct {
+ float x, y, z, w;
+ };
+ float component[4];
+ };
+ };
+
+} // nv namespace
+
+// If we had these functions, they would be ambiguous, the compiler would not know which one to pick:
+//template <typename T> Vector2 to(const T & v) { return Vector2(v.x, v.y); }
+//template <typename T> Vector3 to(const T & v) { return Vector3(v.x, v.y, v.z); }
+//template <typename T> Vector4 to(const T & v) { return Vector4(v.x, v.y, v.z, v.z); }
+
+// We could use a cast operator so that we could infer the expected type, but that doesn't work the same way in all compilers and produces horrible error messages.
+
+// Instead we simply have explicit casts:
+template <typename T> T to(const nv::Vector2 & v) { NV_COMPILER_CHECK(sizeof(T) == sizeof(nv::Vector2)); return T(v.x, v.y); }
+template <typename T> T to(const nv::Vector3 & v) { NV_COMPILER_CHECK(sizeof(T) == sizeof(nv::Vector3)); return T(v.x, v.y, v.z); }
+template <typename T> T to(const nv::Vector4 & v) { NV_COMPILER_CHECK(sizeof(T) == sizeof(nv::Vector4)); return T(v.x, v.y, v.z, v.w); }
+
+#endif // NV_MATH_VECTOR_H
diff --git a/thirdparty/thekla_atlas/nvmath/Vector.inl b/thirdparty/thekla_atlas/nvmath/Vector.inl
new file mode 100644
index 0000000000..bcaec7bf2a
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Vector.inl
@@ -0,0 +1,919 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_VECTOR_INL
+#define NV_MATH_VECTOR_INL
+
+#include "Vector.h"
+#include "nvcore/Utils.h" // min, max
+#include "nvcore/Hash.h" // hash
+
+namespace nv
+{
+
+ // Helpers to convert vector types. Assume T has x,y members and 2 argument constructor.
+ //template <typename T> T to(Vector2::Arg v) { return T(v.x, v.y); }
+
+ // Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor.
+ //template <typename T> T to(Vector3::Arg v) { return T(v.x, v.y, v.z); }
+
+ // Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor.
+ //template <typename T> T to(Vector4::Arg v) { return T(v.x, v.y, v.z, v.w); }
+
+
+ // Vector2
+ inline Vector2::Vector2() {}
+ inline Vector2::Vector2(float f) : x(f), y(f) {}
+ inline Vector2::Vector2(float x, float y) : x(x), y(y) {}
+ inline Vector2::Vector2(Vector2::Arg v) : x(v.x), y(v.y) {}
+
+ inline const Vector2 & Vector2::operator=(Vector2::Arg v)
+ {
+ x = v.x;
+ y = v.y;
+ return *this;
+ }
+
+ inline const float * Vector2::ptr() const
+ {
+ return &x;
+ }
+
+ inline void Vector2::set(float x, float y)
+ {
+ this->x = x;
+ this->y = y;
+ }
+
+ inline Vector2 Vector2::operator-() const
+ {
+ return Vector2(-x, -y);
+ }
+
+ inline void Vector2::operator+=(Vector2::Arg v)
+ {
+ x += v.x;
+ y += v.y;
+ }
+
+ inline void Vector2::operator-=(Vector2::Arg v)
+ {
+ x -= v.x;
+ y -= v.y;
+ }
+
+ inline void Vector2::operator*=(float s)
+ {
+ x *= s;
+ y *= s;
+ }
+
+ inline void Vector2::operator*=(Vector2::Arg v)
+ {
+ x *= v.x;
+ y *= v.y;
+ }
+
+ inline bool operator==(Vector2::Arg a, Vector2::Arg b)
+ {
+ return a.x == b.x && a.y == b.y;
+ }
+ inline bool operator!=(Vector2::Arg a, Vector2::Arg b)
+ {
+ return a.x != b.x || a.y != b.y;
+ }
+
+
+ // Vector3
+ inline Vector3::Vector3() {}
+ inline Vector3::Vector3(float f) : x(f), y(f), z(f) {}
+ inline Vector3::Vector3(float x, float y, float z) : x(x), y(y), z(z) {}
+ inline Vector3::Vector3(Vector2::Arg v, float z) : x(v.x), y(v.y), z(z) {}
+ inline Vector3::Vector3(Vector3::Arg v) : x(v.x), y(v.y), z(v.z) {}
+
+ inline const Vector3 & Vector3::operator=(Vector3::Arg v)
+ {
+ x = v.x;
+ y = v.y;
+ z = v.z;
+ return *this;
+ }
+
+
+ inline Vector2 Vector3::xy() const
+ {
+ return Vector2(x, y);
+ }
+
+ inline const float * Vector3::ptr() const
+ {
+ return &x;
+ }
+
+ inline void Vector3::set(float x, float y, float z)
+ {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+ }
+
+ inline Vector3 Vector3::operator-() const
+ {
+ return Vector3(-x, -y, -z);
+ }
+
+ inline void Vector3::operator+=(Vector3::Arg v)
+ {
+ x += v.x;
+ y += v.y;
+ z += v.z;
+ }
+
+ inline void Vector3::operator-=(Vector3::Arg v)
+ {
+ x -= v.x;
+ y -= v.y;
+ z -= v.z;
+ }
+
+ inline void Vector3::operator*=(float s)
+ {
+ x *= s;
+ y *= s;
+ z *= s;
+ }
+
+ inline void Vector3::operator/=(float s)
+ {
+ float is = 1.0f / s;
+ x *= is;
+ y *= is;
+ z *= is;
+ }
+
+ inline void Vector3::operator*=(Vector3::Arg v)
+ {
+ x *= v.x;
+ y *= v.y;
+ z *= v.z;
+ }
+
+ inline void Vector3::operator/=(Vector3::Arg v)
+ {
+ x /= v.x;
+ y /= v.y;
+ z /= v.z;
+ }
+
+ inline bool operator==(Vector3::Arg a, Vector3::Arg b)
+ {
+ return a.x == b.x && a.y == b.y && a.z == b.z;
+ }
+ inline bool operator!=(Vector3::Arg a, Vector3::Arg b)
+ {
+ return a.x != b.x || a.y != b.y || a.z != b.z;
+ }
+
+
+ // Vector4
+ inline Vector4::Vector4() {}
+ inline Vector4::Vector4(float f) : x(f), y(f), z(f), w(f) {}
+ inline Vector4::Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
+ inline Vector4::Vector4(Vector2::Arg v, float z, float w) : x(v.x), y(v.y), z(z), w(w) {}
+ inline Vector4::Vector4(Vector2::Arg v, Vector2::Arg u) : x(v.x), y(v.y), z(u.x), w(u.y) {}
+ inline Vector4::Vector4(Vector3::Arg v, float w) : x(v.x), y(v.y), z(v.z), w(w) {}
+ inline Vector4::Vector4(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
+
+ inline const Vector4 & Vector4::operator=(const Vector4 & v)
+ {
+ x = v.x;
+ y = v.y;
+ z = v.z;
+ w = v.w;
+ return *this;
+ }
+
+ inline Vector2 Vector4::xy() const
+ {
+ return Vector2(x, y);
+ }
+
+ inline Vector2 Vector4::zw() const
+ {
+ return Vector2(z, w);
+ }
+
+ inline Vector3 Vector4::xyz() const
+ {
+ return Vector3(x, y, z);
+ }
+
+ inline const float * Vector4::ptr() const
+ {
+ return &x;
+ }
+
+ inline void Vector4::set(float x, float y, float z, float w)
+ {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+ this->w = w;
+ }
+
+ inline Vector4 Vector4::operator-() const
+ {
+ return Vector4(-x, -y, -z, -w);
+ }
+
+ inline void Vector4::operator+=(Vector4::Arg v)
+ {
+ x += v.x;
+ y += v.y;
+ z += v.z;
+ w += v.w;
+ }
+
+ inline void Vector4::operator-=(Vector4::Arg v)
+ {
+ x -= v.x;
+ y -= v.y;
+ z -= v.z;
+ w -= v.w;
+ }
+
+ inline void Vector4::operator*=(float s)
+ {
+ x *= s;
+ y *= s;
+ z *= s;
+ w *= s;
+ }
+
+ inline void Vector4::operator/=(float s)
+ {
+ x /= s;
+ y /= s;
+ z /= s;
+ w /= s;
+ }
+
+ inline void Vector4::operator*=(Vector4::Arg v)
+ {
+ x *= v.x;
+ y *= v.y;
+ z *= v.z;
+ w *= v.w;
+ }
+
+ inline void Vector4::operator/=(Vector4::Arg v)
+ {
+ x /= v.x;
+ y /= v.y;
+ z /= v.z;
+ w /= v.w;
+ }
+
+ inline bool operator==(Vector4::Arg a, Vector4::Arg b)
+ {
+ return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w;
+ }
+ inline bool operator!=(Vector4::Arg a, Vector4::Arg b)
+ {
+ return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w;
+ }
+
+
+
+ // Functions
+
+
+ // Vector2
+
+ inline Vector2 add(Vector2::Arg a, Vector2::Arg b)
+ {
+ return Vector2(a.x + b.x, a.y + b.y);
+ }
+ inline Vector2 operator+(Vector2::Arg a, Vector2::Arg b)
+ {
+ return add(a, b);
+ }
+
+ inline Vector2 sub(Vector2::Arg a, Vector2::Arg b)
+ {
+ return Vector2(a.x - b.x, a.y - b.y);
+ }
+ inline Vector2 operator-(Vector2::Arg a, Vector2::Arg b)
+ {
+ return sub(a, b);
+ }
+
+ inline Vector2 scale(Vector2::Arg v, float s)
+ {
+ return Vector2(v.x * s, v.y * s);
+ }
+
+ inline Vector2 scale(Vector2::Arg v, Vector2::Arg s)
+ {
+ return Vector2(v.x * s.x, v.y * s.y);
+ }
+
+ inline Vector2 operator*(Vector2::Arg v, float s)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector2 operator*(Vector2::Arg v1, Vector2::Arg v2)
+ {
+ return Vector2(v1.x*v2.x, v1.y*v2.y);
+ }
+
+ inline Vector2 operator*(float s, Vector2::Arg v)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector2 operator/(Vector2::Arg v, float s)
+ {
+ return scale(v, 1.0f/s);
+ }
+
+ inline Vector2 lerp(Vector2::Arg v1, Vector2::Arg v2, float t)
+ {
+ const float s = 1.0f - t;
+ return Vector2(v1.x * s + t * v2.x, v1.y * s + t * v2.y);
+ }
+
+ inline float dot(Vector2::Arg a, Vector2::Arg b)
+ {
+ return a.x * b.x + a.y * b.y;
+ }
+
+ inline float lengthSquared(Vector2::Arg v)
+ {
+ return v.x * v.x + v.y * v.y;
+ }
+
+ inline float length(Vector2::Arg v)
+ {
+ return sqrtf(lengthSquared(v));
+ }
+
+ inline float distance(Vector2::Arg a, Vector2::Arg b)
+ {
+ return length(a - b);
+ }
+
+ inline float inverseLength(Vector2::Arg v)
+ {
+ return 1.0f / sqrtf(lengthSquared(v));
+ }
+
+ inline bool isNormalized(Vector2::Arg v, float epsilon = NV_NORMAL_EPSILON)
+ {
+ return equal(length(v), 1, epsilon);
+ }
+
+ inline Vector2 normalize(Vector2::Arg v, float epsilon = NV_EPSILON)
+ {
+ float l = length(v);
+ nvDebugCheck(!isZero(l, epsilon));
+ Vector2 n = scale(v, 1.0f / l);
+ nvDebugCheck(isNormalized(n));
+ return n;
+ }
+
+ inline Vector2 normalizeSafe(Vector2::Arg v, Vector2::Arg fallback, float epsilon = NV_EPSILON)
+ {
+ float l = length(v);
+ if (isZero(l, epsilon)) {
+ return fallback;
+ }
+ return scale(v, 1.0f / l);
+ }
+
+ // Safe, branchless normalization from Andy Firth. All error checking ommitted.
+ // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
+ inline Vector2 normalizeFast(Vector2::Arg v)
+ {
+ const float very_small_float = 1.0e-037f;
+ float l = very_small_float + length(v);
+ return scale(v, 1.0f / l);
+ }
+
+ inline bool equal(Vector2::Arg v1, Vector2::Arg v2, float epsilon = NV_EPSILON)
+ {
+ return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon);
+ }
+
+ inline Vector2 min(Vector2::Arg a, Vector2::Arg b)
+ {
+ return Vector2(min(a.x, b.x), min(a.y, b.y));
+ }
+
+ inline Vector2 max(Vector2::Arg a, Vector2::Arg b)
+ {
+ return Vector2(max(a.x, b.x), max(a.y, b.y));
+ }
+
+ inline Vector2 clamp(Vector2::Arg v, float min, float max)
+ {
+ return Vector2(clamp(v.x, min, max), clamp(v.y, min, max));
+ }
+
+ inline Vector2 saturate(Vector2::Arg v)
+ {
+ return Vector2(saturate(v.x), saturate(v.y));
+ }
+
+ inline bool isFinite(Vector2::Arg v)
+ {
+ return isFinite(v.x) && isFinite(v.y);
+ }
+
+ inline Vector2 validate(Vector2::Arg v, Vector2::Arg fallback = Vector2(0.0f))
+ {
+ if (!isFinite(v)) return fallback;
+ Vector2 vf = v;
+ nv::floatCleanup(vf.component, 2);
+ return vf;
+ }
+
+ // Note, this is the area scaled by 2!
+ inline float triangleArea(Vector2::Arg v0, Vector2::Arg v1)
+ {
+ return (v0.x * v1.y - v0.y * v1.x); // * 0.5f;
+ }
+ inline float triangleArea(Vector2::Arg a, Vector2::Arg b, Vector2::Arg c)
+ {
+ // IC: While it may be appealing to use the following expression:
+ //return (c.x * a.y + a.x * b.y + b.x * c.y - b.x * a.y - c.x * b.y - a.x * c.y); // * 0.5f;
+
+ // That's actually a terrible idea. Small triangles far from the origin can end up producing fairly large floating point
+ // numbers and the results becomes very unstable and dependent on the order of the factors.
+
+ // Instead, it's preferable to subtract the vertices first, and multiply the resulting small values together. The result
+ // in this case is always much more accurate (as long as the triangle is small) and less dependent of the location of
+ // the triangle.
+
+ //return ((a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)); // * 0.5f;
+ return triangleArea(a-c, b-c);
+ }
+
+
+ template <>
+ inline uint hash(const Vector2 & v, uint h)
+ {
+ return sdbmFloatHash(v.component, 2, h);
+ }
+
+
+
+ // Vector3
+
+ inline Vector3 add(Vector3::Arg a, Vector3::Arg b)
+ {
+ return Vector3(a.x + b.x, a.y + b.y, a.z + b.z);
+ }
+ inline Vector3 add(Vector3::Arg a, float b)
+ {
+ return Vector3(a.x + b, a.y + b, a.z + b);
+ }
+ inline Vector3 operator+(Vector3::Arg a, Vector3::Arg b)
+ {
+ return add(a, b);
+ }
+ inline Vector3 operator+(Vector3::Arg a, float b)
+ {
+ return add(a, b);
+ }
+
+ inline Vector3 sub(Vector3::Arg a, Vector3::Arg b)
+ {
+ return Vector3(a.x - b.x, a.y - b.y, a.z - b.z);
+ }
+ inline Vector3 sub(Vector3::Arg a, float b)
+ {
+ return Vector3(a.x - b, a.y - b, a.z - b);
+ }
+ inline Vector3 operator-(Vector3::Arg a, Vector3::Arg b)
+ {
+ return sub(a, b);
+ }
+ inline Vector3 operator-(Vector3::Arg a, float b)
+ {
+ return sub(a, b);
+ }
+
+ inline Vector3 cross(Vector3::Arg a, Vector3::Arg b)
+ {
+ return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
+ }
+
+ inline Vector3 scale(Vector3::Arg v, float s)
+ {
+ return Vector3(v.x * s, v.y * s, v.z * s);
+ }
+
+ inline Vector3 scale(Vector3::Arg v, Vector3::Arg s)
+ {
+ return Vector3(v.x * s.x, v.y * s.y, v.z * s.z);
+ }
+
+ inline Vector3 operator*(Vector3::Arg v, float s)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector3 operator*(float s, Vector3::Arg v)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector3 operator*(Vector3::Arg v, Vector3::Arg s)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector3 operator/(Vector3::Arg v, float s)
+ {
+ return scale(v, 1.0f/s);
+ }
+
+ /*inline Vector3 add_scaled(Vector3::Arg a, Vector3::Arg b, float s)
+ {
+ return Vector3(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s);
+ }*/
+
+ inline Vector3 lerp(Vector3::Arg v1, Vector3::Arg v2, float t)
+ {
+ const float s = 1.0f - t;
+ return Vector3(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z);
+ }
+
+ inline float dot(Vector3::Arg a, Vector3::Arg b)
+ {
+ return a.x * b.x + a.y * b.y + a.z * b.z;
+ }
+
+ inline float lengthSquared(Vector3::Arg v)
+ {
+ return v.x * v.x + v.y * v.y + v.z * v.z;
+ }
+
+ inline float length(Vector3::Arg v)
+ {
+ return sqrtf(lengthSquared(v));
+ }
+
+ inline float distance(Vector3::Arg a, Vector3::Arg b)
+ {
+ return length(a - b);
+ }
+
+ inline float distanceSquared(Vector3::Arg a, Vector3::Arg b)
+ {
+ return lengthSquared(a - b);
+ }
+
+ inline float inverseLength(Vector3::Arg v)
+ {
+ return 1.0f / sqrtf(lengthSquared(v));
+ }
+
+ inline bool isNormalized(Vector3::Arg v, float epsilon = NV_NORMAL_EPSILON)
+ {
+ return equal(length(v), 1, epsilon);
+ }
+
+ inline Vector3 normalize(Vector3::Arg v, float epsilon = NV_EPSILON)
+ {
+ float l = length(v);
+ nvDebugCheck(!isZero(l, epsilon));
+ Vector3 n = scale(v, 1.0f / l);
+ nvDebugCheck(isNormalized(n));
+ return n;
+ }
+
+ inline Vector3 normalizeSafe(Vector3::Arg v, Vector3::Arg fallback, float epsilon = NV_EPSILON)
+ {
+ float l = length(v);
+ if (isZero(l, epsilon)) {
+ return fallback;
+ }
+ return scale(v, 1.0f / l);
+ }
+
+ // Safe, branchless normalization from Andy Firth. All error checking ommitted.
+ // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
+ inline Vector3 normalizeFast(Vector3::Arg v)
+ {
+ const float very_small_float = 1.0e-037f;
+ float l = very_small_float + length(v);
+ return scale(v, 1.0f / l);
+ }
+
+ inline bool equal(Vector3::Arg v1, Vector3::Arg v2, float epsilon = NV_EPSILON)
+ {
+ return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon);
+ }
+
+ inline Vector3 min(Vector3::Arg a, Vector3::Arg b)
+ {
+ return Vector3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
+ }
+
+ inline Vector3 max(Vector3::Arg a, Vector3::Arg b)
+ {
+ return Vector3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
+ }
+
+ inline Vector3 clamp(Vector3::Arg v, float min, float max)
+ {
+ return Vector3(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max));
+ }
+
+ inline Vector3 saturate(Vector3::Arg v)
+ {
+ return Vector3(saturate(v.x), saturate(v.y), saturate(v.z));
+ }
+
+ inline Vector3 floor(Vector3::Arg v)
+ {
+ return Vector3(floorf(v.x), floorf(v.y), floorf(v.z));
+ }
+
+ inline Vector3 ceil(Vector3::Arg v)
+ {
+ return Vector3(ceilf(v.x), ceilf(v.y), ceilf(v.z));
+ }
+
+ inline bool isFinite(Vector3::Arg v)
+ {
+ return isFinite(v.x) && isFinite(v.y) && isFinite(v.z);
+ }
+
+ inline Vector3 validate(Vector3::Arg v, Vector3::Arg fallback = Vector3(0.0f))
+ {
+ if (!isFinite(v)) return fallback;
+ Vector3 vf = v;
+ nv::floatCleanup(vf.component, 3);
+ return vf;
+ }
+
+ inline Vector3 reflect(Vector3::Arg v, Vector3::Arg n)
+ {
+ return v - (2 * dot(v, n)) * n;
+ }
+
+ template <>
+ inline uint hash(const Vector3 & v, uint h)
+ {
+ return sdbmFloatHash(v.component, 3, h);
+ }
+
+
+ // Vector4
+
+ inline Vector4 add(Vector4::Arg a, Vector4::Arg b)
+ {
+ return Vector4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
+ }
+ inline Vector4 operator+(Vector4::Arg a, Vector4::Arg b)
+ {
+ return add(a, b);
+ }
+
+ inline Vector4 sub(Vector4::Arg a, Vector4::Arg b)
+ {
+ return Vector4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
+ }
+ inline Vector4 operator-(Vector4::Arg a, Vector4::Arg b)
+ {
+ return sub(a, b);
+ }
+
+ inline Vector4 scale(Vector4::Arg v, float s)
+ {
+ return Vector4(v.x * s, v.y * s, v.z * s, v.w * s);
+ }
+
+ inline Vector4 scale(Vector4::Arg v, Vector4::Arg s)
+ {
+ return Vector4(v.x * s.x, v.y * s.y, v.z * s.z, v.w * s.w);
+ }
+
+ inline Vector4 operator*(Vector4::Arg v, float s)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector4 operator*(float s, Vector4::Arg v)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector4 operator*(Vector4::Arg v, Vector4::Arg s)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector4 operator/(Vector4::Arg v, float s)
+ {
+ return scale(v, 1.0f/s);
+ }
+
+ /*inline Vector4 add_scaled(Vector4::Arg a, Vector4::Arg b, float s)
+ {
+ return Vector4(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s, a.w + b.w * s);
+ }*/
+
+ inline Vector4 lerp(Vector4::Arg v1, Vector4::Arg v2, float t)
+ {
+ const float s = 1.0f - t;
+ return Vector4(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z, v1.w * s + t * v2.w);
+ }
+
+ inline float dot(Vector4::Arg a, Vector4::Arg b)
+ {
+ return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
+ }
+
+ inline float lengthSquared(Vector4::Arg v)
+ {
+ return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
+ }
+
+ inline float length(Vector4::Arg v)
+ {
+ return sqrtf(lengthSquared(v));
+ }
+
+ inline float inverseLength(Vector4::Arg v)
+ {
+ return 1.0f / sqrtf(lengthSquared(v));
+ }
+
+ inline bool isNormalized(Vector4::Arg v, float epsilon = NV_NORMAL_EPSILON)
+ {
+ return equal(length(v), 1, epsilon);
+ }
+
+ inline Vector4 normalize(Vector4::Arg v, float epsilon = NV_EPSILON)
+ {
+ float l = length(v);
+ nvDebugCheck(!isZero(l, epsilon));
+ Vector4 n = scale(v, 1.0f / l);
+ nvDebugCheck(isNormalized(n));
+ return n;
+ }
+
+ inline Vector4 normalizeSafe(Vector4::Arg v, Vector4::Arg fallback, float epsilon = NV_EPSILON)
+ {
+ float l = length(v);
+ if (isZero(l, epsilon)) {
+ return fallback;
+ }
+ return scale(v, 1.0f / l);
+ }
+
+ // Safe, branchless normalization from Andy Firth. All error checking ommitted.
+ // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
+ inline Vector4 normalizeFast(Vector4::Arg v)
+ {
+ const float very_small_float = 1.0e-037f;
+ float l = very_small_float + length(v);
+ return scale(v, 1.0f / l);
+ }
+
+ inline bool equal(Vector4::Arg v1, Vector4::Arg v2, float epsilon = NV_EPSILON)
+ {
+ return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon) && equal(v1.w, v2.w, epsilon);
+ }
+
+ inline Vector4 min(Vector4::Arg a, Vector4::Arg b)
+ {
+ return Vector4(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w));
+ }
+
+ inline Vector4 max(Vector4::Arg a, Vector4::Arg b)
+ {
+ return Vector4(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w));
+ }
+
+ inline Vector4 clamp(Vector4::Arg v, float min, float max)
+ {
+ return Vector4(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max), clamp(v.w, min, max));
+ }
+
+ inline Vector4 saturate(Vector4::Arg v)
+ {
+ return Vector4(saturate(v.x), saturate(v.y), saturate(v.z), saturate(v.w));
+ }
+
+ inline bool isFinite(Vector4::Arg v)
+ {
+ return isFinite(v.x) && isFinite(v.y) && isFinite(v.z) && isFinite(v.w);
+ }
+
+ inline Vector4 validate(Vector4::Arg v, Vector4::Arg fallback = Vector4(0.0f))
+ {
+ if (!isFinite(v)) return fallback;
+ Vector4 vf = v;
+ nv::floatCleanup(vf.component, 4);
+ return vf;
+ }
+
+ template <>
+ inline uint hash(const Vector4 & v, uint h)
+ {
+ return sdbmFloatHash(v.component, 4, h);
+ }
+
+
+#if NV_OS_IOS // LLVM is not happy with implicit conversion of immediate constants to float
+
+ //int:
+
+ inline Vector2 scale(Vector2::Arg v, int s)
+ {
+ return Vector2(v.x * s, v.y * s);
+ }
+
+ inline Vector2 operator*(Vector2::Arg v, int s)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector2 operator*(int s, Vector2::Arg v)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector2 operator/(Vector2::Arg v, int s)
+ {
+ return scale(v, 1.0f/s);
+ }
+
+ inline Vector3 scale(Vector3::Arg v, int s)
+ {
+ return Vector3(v.x * s, v.y * s, v.z * s);
+ }
+
+ inline Vector3 operator*(Vector3::Arg v, int s)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector3 operator*(int s, Vector3::Arg v)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector3 operator/(Vector3::Arg v, int s)
+ {
+ return scale(v, 1.0f/s);
+ }
+
+ inline Vector4 scale(Vector4::Arg v, int s)
+ {
+ return Vector4(v.x * s, v.y * s, v.z * s, v.w * s);
+ }
+
+ inline Vector4 operator*(Vector4::Arg v, int s)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector4 operator*(int s, Vector4::Arg v)
+ {
+ return scale(v, s);
+ }
+
+ inline Vector4 operator/(Vector4::Arg v, int s)
+ {
+ return scale(v, 1.0f/s);
+ }
+
+ //double:
+
+ inline Vector3 operator*(Vector3::Arg v, double s)
+ {
+ return scale(v, (float)s);
+ }
+
+ inline Vector3 operator*(double s, Vector3::Arg v)
+ {
+ return scale(v, (float)s);
+ }
+
+ inline Vector3 operator/(Vector3::Arg v, double s)
+ {
+ return scale(v, 1.f/((float)s));
+ }
+
+#endif //NV_OS_IOS
+
+} // nv namespace
+
+#endif // NV_MATH_VECTOR_INL
diff --git a/thirdparty/thekla_atlas/nvmath/ftoi.h b/thirdparty/thekla_atlas/nvmath/ftoi.h
new file mode 100644
index 0000000000..bee15c0908
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/ftoi.h
@@ -0,0 +1,258 @@
+// This code is in the public domain -- castano@gmail.com
+
+#pragma once
+#ifndef NV_MATH_FTOI_H
+#define NV_MATH_FTOI_H
+
+#include "nvmath/nvmath.h"
+
+#include <math.h>
+
+namespace nv
+{
+ // Optimized float to int conversions. See:
+ // http://cbloomrants.blogspot.com/2009/01/01-17-09-float-to-int.html
+ // http://www.stereopsis.com/sree/fpu2006.html
+ // http://assemblyrequired.crashworks.org/2009/01/12/why-you-should-never-cast-floats-to-ints/
+ // http://chrishecker.com/Miscellaneous_Technical_Articles#Floating_Point
+
+
+ union DoubleAnd64 {
+ uint64 i;
+ double d;
+ };
+
+ static const double floatutil_xs_doublemagic = (6755399441055744.0); // 2^52 * 1.5
+ static const double floatutil_xs_doublemagicdelta = (1.5e-8); // almost .5f = .5f + 1e^(number of exp bit)
+ static const double floatutil_xs_doublemagicroundeps = (0.5f - floatutil_xs_doublemagicdelta); // almost .5f = .5f - 1e^(number of exp bit)
+
+ NV_FORCEINLINE int ftoi_round_xs(double val, double magic) {
+#if 1
+ DoubleAnd64 dunion;
+ dunion.d = val + magic;
+ return (int32) dunion.i; // just cast to grab the bottom bits
+#else
+ val += magic;
+ return ((int*)&val)[0]; // @@ Assumes little endian.
+#endif
+ }
+
+ NV_FORCEINLINE int ftoi_round_xs(float val) {
+ return ftoi_round_xs(val, floatutil_xs_doublemagic);
+ }
+
+ NV_FORCEINLINE int ftoi_floor_xs(float val) {
+ return ftoi_round_xs(val - floatutil_xs_doublemagicroundeps, floatutil_xs_doublemagic);
+ }
+
+ NV_FORCEINLINE int ftoi_ceil_xs(float val) {
+ return ftoi_round_xs(val + floatutil_xs_doublemagicroundeps, floatutil_xs_doublemagic);
+ }
+
+ NV_FORCEINLINE int ftoi_trunc_xs(float val) {
+ return (val<0) ? ftoi_ceil_xs(val) : ftoi_floor_xs(val);
+ }
+
+#if NV_CPU_X86 || NV_CPU_X86_64
+
+ NV_FORCEINLINE int ftoi_round_sse(float f) {
+ return _mm_cvt_ss2si(_mm_set_ss(f));
+ }
+
+ NV_FORCEINLINE int ftoi_trunc_sse(float f) {
+ return _mm_cvtt_ss2si(_mm_set_ss(f));
+ }
+
+#endif
+
+
+
+#if NV_USE_SSE
+
+ NV_FORCEINLINE int ftoi_round(float val) {
+ return ftoi_round_sse(val);
+ }
+
+ NV_FORCEINLINE int ftoi_trunc(float f) {
+ return ftoi_trunc_sse(f);
+ }
+
+ // We can probably do better than this. See for example:
+ // http://dss.stephanierct.com/DevBlog/?p=8
+ NV_FORCEINLINE int ftoi_floor(float val) {
+ return ftoi_round(floorf(val));
+ }
+
+ NV_FORCEINLINE int ftoi_ceil(float val) {
+ return ftoi_round(ceilf(val));
+ }
+
+#else
+
+ // In theory this should work with any double floating point math implementation, but it appears that MSVC produces incorrect code
+ // when SSE2 is targeted and fast math is enabled (/arch:SSE2 & /fp:fast). These problems go away with /fp:precise, which is the default mode.
+
+ NV_FORCEINLINE int ftoi_round(float val) {
+ return ftoi_round_xs(val);
+ }
+
+ NV_FORCEINLINE int ftoi_floor(float val) {
+ return ftoi_floor_xs(val);
+ }
+
+ NV_FORCEINLINE int ftoi_ceil(float val) {
+ return ftoi_ceil_xs(val);
+ }
+
+ NV_FORCEINLINE int ftoi_trunc(float f) {
+ return ftoi_trunc_xs(f);
+ }
+
+#endif
+
+
+ inline void test_ftoi() {
+
+ // Round to nearest integer.
+ nvCheck(ftoi_round(0.1f) == 0);
+ nvCheck(ftoi_round(0.6f) == 1);
+ nvCheck(ftoi_round(-0.2f) == 0);
+ nvCheck(ftoi_round(-0.7f) == -1);
+ nvCheck(ftoi_round(10.1f) == 10);
+ nvCheck(ftoi_round(10.6f) == 11);
+ nvCheck(ftoi_round(-90.1f) == -90);
+ nvCheck(ftoi_round(-90.6f) == -91);
+
+ nvCheck(ftoi_round(0) == 0);
+ nvCheck(ftoi_round(1) == 1);
+ nvCheck(ftoi_round(-1) == -1);
+
+ nvCheck(ftoi_round(0.5f) == 0); // How are midpoints rounded? Bankers rounding.
+ nvCheck(ftoi_round(1.5f) == 2);
+ nvCheck(ftoi_round(2.5f) == 2);
+ nvCheck(ftoi_round(3.5f) == 4);
+ nvCheck(ftoi_round(4.5f) == 4);
+ nvCheck(ftoi_round(-0.5f) == 0);
+ nvCheck(ftoi_round(-1.5f) == -2);
+
+
+ // Truncation (round down if > 0, round up if < 0).
+ nvCheck(ftoi_trunc(0.1f) == 0);
+ nvCheck(ftoi_trunc(0.6f) == 0);
+ nvCheck(ftoi_trunc(-0.2f) == 0);
+ nvCheck(ftoi_trunc(-0.7f) == 0); // @@ When using /arch:SSE2 in Win32, msvc produce wrong code for this one. It is skipping the addition.
+ nvCheck(ftoi_trunc(1.99f) == 1);
+ nvCheck(ftoi_trunc(-1.2f) == -1);
+
+ // Floor (round down).
+ nvCheck(ftoi_floor(0.1f) == 0);
+ nvCheck(ftoi_floor(0.6f) == 0);
+ nvCheck(ftoi_floor(-0.2f) == -1);
+ nvCheck(ftoi_floor(-0.7f) == -1);
+ nvCheck(ftoi_floor(1.99f) == 1);
+ nvCheck(ftoi_floor(-1.2f) == -2);
+
+ nvCheck(ftoi_floor(0) == 0);
+ nvCheck(ftoi_floor(1) == 1);
+ nvCheck(ftoi_floor(-1) == -1);
+ nvCheck(ftoi_floor(2) == 2);
+ nvCheck(ftoi_floor(-2) == -2);
+
+ // Ceil (round up).
+ nvCheck(ftoi_ceil(0.1f) == 1);
+ nvCheck(ftoi_ceil(0.6f) == 1);
+ nvCheck(ftoi_ceil(-0.2f) == 0);
+ nvCheck(ftoi_ceil(-0.7f) == 0);
+ nvCheck(ftoi_ceil(1.99f) == 2);
+ nvCheck(ftoi_ceil(-1.2f) == -1);
+
+ nvCheck(ftoi_ceil(0) == 0);
+ nvCheck(ftoi_ceil(1) == 1);
+ nvCheck(ftoi_ceil(-1) == -1);
+ nvCheck(ftoi_ceil(2) == 2);
+ nvCheck(ftoi_ceil(-2) == -2);
+ }
+
+
+
+
+
+ // Safe versions using standard casts.
+
+ inline int iround(float f)
+ {
+ return ftoi_round(f);
+ //return int(floorf(f + 0.5f));
+ }
+
+ inline int iround(double f)
+ {
+ return int(::floor(f + 0.5));
+ }
+
+ inline int ifloor(float f)
+ {
+ return ftoi_floor(f);
+ //return int(floorf(f));
+ }
+
+ inline int iceil(float f)
+ {
+ return int(ceilf(f));
+ }
+
+
+
+ // I'm always confused about which quantizer to use. I think we should choose a quantizer based on how the values are expanded later and this is generally using the 'exact endpoints' rule.
+ // Some notes from cbloom: http://cbloomrants.blogspot.com/2011/07/07-26-11-pixel-int-to-float-options.html
+
+ // Quantize a float in the [0,1] range, using exact end points or uniform bins.
+ inline float quantizeFloat(float x, uint bits, bool exactEndPoints = true) {
+ nvDebugCheck(bits <= 16);
+
+ float range = float(1 << bits);
+ if (exactEndPoints) {
+ return floorf(x * (range-1) + 0.5f) / (range-1);
+ }
+ else {
+ return (floorf(x * range) + 0.5f) / range;
+ }
+ }
+
+
+ // This is the most common rounding mode:
+ //
+ // 0 1 2 3
+ // |___|_______|_______|___|
+ // 0 1
+ //
+ // You get that if you take the unit floating point number multiply by 'N-1' and round to nearest. That is, `i = round(f * (N-1))`.
+ // You reconstruct the original float dividing by 'N-1': `f = i / (N-1)`
+
+
+ // 0 1 2 3
+ // |_____|_____|_____|_____|
+ // 0 1
+
+ /*enum BinningMode {
+ RoundMode_ExactEndPoints,
+ RoundMode_UniformBins,
+ };*/
+
+ template <int N>
+ inline uint unitFloatToFixed(float f) {
+ return ftoi_round(f * ((1<<N)-1));
+ }
+
+ inline uint8 unitFloatToFixed8(float f) {
+ return (uint8)unitFloatToFixed<8>(f);
+ }
+
+ inline uint16 unitFloatToFixed16(float f) {
+ return (uint16)unitFloatToFixed<16>(f);
+ }
+
+
+} // nv
+
+#endif // NV_MATH_FTOI_H
diff --git a/thirdparty/thekla_atlas/nvmath/nvmath.h b/thirdparty/thekla_atlas/nvmath/nvmath.h
new file mode 100644
index 0000000000..695f452c1d
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/nvmath.h
@@ -0,0 +1,337 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_H
+#define NV_MATH_H
+
+#include "nvcore/nvcore.h"
+#include "nvcore/Debug.h" // nvDebugCheck
+#include "nvcore/Utils.h" // max, clamp
+
+#include <math.h>
+
+#if NV_OS_WIN32 || NV_OS_XBOX || NV_OS_DURANGO
+#include <float.h> // finite, isnan
+#endif
+
+#if NV_CPU_X86 || NV_CPU_X86_64
+ //#include <intrin.h>
+ #include <xmmintrin.h>
+#endif
+
+
+
+// Function linkage
+#if NVMATH_SHARED
+#ifdef NVMATH_EXPORTS
+#define NVMATH_API DLL_EXPORT
+#define NVMATH_CLASS DLL_EXPORT_CLASS
+#else
+#define NVMATH_API DLL_IMPORT
+#define NVMATH_CLASS DLL_IMPORT
+#endif
+#else // NVMATH_SHARED
+#define NVMATH_API
+#define NVMATH_CLASS
+#endif // NVMATH_SHARED
+
+// Set some reasonable defaults.
+#ifndef NV_USE_ALTIVEC
+# define NV_USE_ALTIVEC NV_CPU_PPC
+//# define NV_USE_ALTIVEC defined(__VEC__)
+#endif
+
+#ifndef NV_USE_SSE
+# if NV_CPU_X86_64
+ // x64 always supports at least SSE2
+# define NV_USE_SSE 2
+# elif NV_CC_MSVC && defined(_M_IX86_FP)
+ // Also on x86 with the /arch:SSE flag in MSVC.
+# define NV_USE_SSE _M_IX86_FP // 1=SSE, 2=SS2
+# elif defined(__SSE__)
+# define NV_USE_SSE 1
+# elif defined(__SSE2__)
+# define NV_USE_SSE 2
+# else
+ // Otherwise we assume no SSE.
+# define NV_USE_SSE 0
+# endif
+#endif
+
+
+// Internally set NV_USE_SIMD when either altivec or sse is available.
+#if NV_USE_ALTIVEC && NV_USE_SSE
+# error "Cannot enable both altivec and sse!"
+#endif
+
+
+
+#ifndef PI
+#define PI float(3.1415926535897932384626433833)
+#endif
+
+#define NV_EPSILON (0.0001f)
+#define NV_NORMAL_EPSILON (0.001f)
+
+/*
+#define SQ(r) ((r)*(r))
+
+#define SIGN_BITMASK 0x80000000
+
+/// Integer representation of a floating-point value.
+#define IR(x) ((uint32 &)(x))
+
+/// Absolute integer representation of a floating-point value
+#define AIR(x) (IR(x) & 0x7fffffff)
+
+/// Floating-point representation of an integer value.
+#define FR(x) ((float&)(x))
+
+/// Integer-based comparison of a floating point value.
+/// Don't use it blindly, it can be faster or slower than the FPU comparison, depends on the context.
+#define IS_NEGATIVE_FLOAT(x) (IR(x)&SIGN_BITMASK)
+*/
+
+extern "C" inline double sqrt_assert(const double f)
+{
+ nvDebugCheck(f >= 0.0f);
+ return sqrt(f);
+}
+
+inline float sqrtf_assert(const float f)
+{
+ nvDebugCheck(f >= 0.0f);
+ return sqrtf(f);
+}
+
+extern "C" inline double acos_assert(const double f)
+{
+ nvDebugCheck(f >= -1.0f && f <= 1.0f);
+ return acos(f);
+}
+
+inline float acosf_assert(const float f)
+{
+ nvDebugCheck(f >= -1.0f && f <= 1.0f);
+ return acosf(f);
+}
+
+extern "C" inline double asin_assert(const double f)
+{
+ nvDebugCheck(f >= -1.0f && f <= 1.0f);
+ return asin(f);
+}
+
+inline float asinf_assert(const float f)
+{
+ nvDebugCheck(f >= -1.0f && f <= 1.0f);
+ return asinf(f);
+}
+
+// Replace default functions with asserting ones.
+#if !NV_CC_MSVC || (NV_CC_MSVC && (_MSC_VER < 1700)) // IC: Apparently this was causing problems in Visual Studio 2012. See Issue 194: https://code.google.com/p/nvidia-texture-tools/issues/detail?id=194
+#define sqrt sqrt_assert
+#define sqrtf sqrtf_assert
+#define acos acos_assert
+#define acosf acosf_assert
+#define asin asin_assert
+#define asinf asinf_assert
+#endif
+
+#if NV_CC_MSVC
+NV_FORCEINLINE float log2f(float x)
+{
+ nvCheck(x >= 0);
+ return logf(x) / logf(2.0f);
+}
+NV_FORCEINLINE float exp2f(float x)
+{
+ return powf(2.0f, x);
+}
+#endif
+
+namespace nv
+{
+ inline float toRadian(float degree) { return degree * (PI / 180.0f); }
+ inline float toDegree(float radian) { return radian * (180.0f / PI); }
+
+ // Robust floating point comparisons:
+ // http://realtimecollisiondetection.net/blog/?p=89
+ inline bool equal(const float f0, const float f1, const float epsilon = NV_EPSILON)
+ {
+ //return fabs(f0-f1) <= epsilon;
+ return fabs(f0-f1) <= epsilon * max3(1.0f, fabsf(f0), fabsf(f1));
+ }
+
+ inline bool isZero(const float f, const float epsilon = NV_EPSILON)
+ {
+ return fabs(f) <= epsilon;
+ }
+
+ inline bool isFinite(const float f)
+ {
+#if NV_OS_WIN32 || NV_OS_XBOX || NV_OS_DURANGO
+ return _finite(f) != 0;
+#elif NV_OS_DARWIN || NV_OS_FREEBSD || NV_OS_OPENBSD || NV_OS_ORBIS
+ return isfinite(f);
+#elif NV_OS_LINUX
+ return finitef(f);
+#else
+# error "isFinite not supported"
+#endif
+ //return std::isfinite (f);
+ //return finite (f);
+ }
+
+ inline bool isNan(const float f)
+ {
+#if NV_OS_WIN32 || NV_OS_XBOX || NV_OS_DURANGO
+ return _isnan(f) != 0;
+#elif NV_OS_DARWIN || NV_OS_FREEBSD || NV_OS_OPENBSD || NV_OS_ORBIS
+ return isnan(f);
+#elif NV_OS_LINUX
+ return isnanf(f);
+#else
+# error "isNan not supported"
+#endif
+ }
+
+ inline uint log2(uint32 i)
+ {
+ uint32 value = 0;
+ while( i >>= 1 ) value++;
+ return value;
+ }
+
+ inline uint log2(uint64 i)
+ {
+ uint64 value = 0;
+ while (i >>= 1) value++;
+ return U32(value);
+ }
+
+ inline float lerp(float f0, float f1, float t)
+ {
+ const float s = 1.0f - t;
+ return f0 * s + f1 * t;
+ }
+
+ inline float square(float f) { return f * f; }
+ inline int square(int i) { return i * i; }
+
+ inline float cube(float f) { return f * f * f; }
+ inline int cube(int i) { return i * i * i; }
+
+ inline float frac(float f)
+ {
+ return f - floor(f);
+ }
+
+ inline float floatRound(float f)
+ {
+ return floorf(f + 0.5f);
+ }
+
+ // Eliminates negative zeros from a float array.
+ inline void floatCleanup(float * fp, int n)
+ {
+ for (int i = 0; i < n; i++) {
+ //nvDebugCheck(isFinite(fp[i]));
+ union { float f; uint32 i; } x = { fp[i] };
+ if (x.i == 0x80000000) fp[i] = 0.0f;
+ }
+ }
+
+ inline float saturate(float f) {
+ return clamp(f, 0.0f, 1.0f);
+ }
+
+ inline float linearstep(float edge0, float edge1, float x) {
+ // Scale, bias and saturate x to 0..1 range
+ return saturate((x - edge0) / (edge1 - edge0));
+ }
+
+ inline float smoothstep(float edge0, float edge1, float x) {
+ x = linearstep(edge0, edge1, x);
+
+ // Evaluate polynomial
+ return x*x*(3 - 2*x);
+ }
+
+ inline int sign(float a)
+ {
+ return (a > 0) - (a < 0);
+ //if (a > 0.0f) return 1;
+ //if (a < 0.0f) return -1;
+ //return 0;
+ }
+
+ union Float754 {
+ unsigned int raw;
+ float value;
+ struct {
+ #if NV_BIG_ENDIAN
+ unsigned int negative:1;
+ unsigned int biasedexponent:8;
+ unsigned int mantissa:23;
+ #else
+ unsigned int mantissa:23;
+ unsigned int biasedexponent:8;
+ unsigned int negative:1;
+ #endif
+ } field;
+ };
+
+ // Return the exponent of x ~ Floor(Log2(x))
+ inline int floatExponent(float x)
+ {
+ Float754 f;
+ f.value = x;
+ return (f.field.biasedexponent - 127);
+ }
+
+
+ // FloatRGB9E5
+ union Float3SE {
+ uint32 v;
+ struct {
+ #if NV_BIG_ENDIAN
+ uint32 e : 5;
+ uint32 zm : 9;
+ uint32 ym : 9;
+ uint32 xm : 9;
+ #else
+ uint32 xm : 9;
+ uint32 ym : 9;
+ uint32 zm : 9;
+ uint32 e : 5;
+ #endif
+ };
+ };
+
+ // FloatR11G11B10
+ union Float3PK {
+ uint32 v;
+ struct {
+ #if NV_BIG_ENDIAN
+ uint32 ze : 5;
+ uint32 zm : 5;
+ uint32 ye : 5;
+ uint32 ym : 6;
+ uint32 xe : 5;
+ uint32 xm : 6;
+ #else
+ uint32 xm : 6;
+ uint32 xe : 5;
+ uint32 ym : 6;
+ uint32 ye : 5;
+ uint32 zm : 5;
+ uint32 ze : 5;
+ #endif
+ };
+ };
+
+
+} // nv
+
+#endif // NV_MATH_H