diff options
author | Hein-Pieter van Braam <hp@tmm.cx> | 2017-12-08 15:05:47 +0100 |
---|---|---|
committer | Hein-Pieter van Braam <hp@tmm.cx> | 2017-12-08 15:47:15 +0100 |
commit | bf05309af734431c3b3cf869a63ed477439a6739 (patch) | |
tree | 72c1c939f9035c711f50ec94b0270ea60e0bb4e4 /thirdparty/thekla_atlas/nvmath/Sphere.cpp | |
parent | b3b4727dff009dda0a65b8a013ec04d52a54b367 (diff) |
Import thekla_atlas
As requested by reduz, an import of thekla_atlas into thirdparty/
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Sphere.cpp')
-rw-r--r-- | thirdparty/thekla_atlas/nvmath/Sphere.cpp | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Sphere.cpp b/thirdparty/thekla_atlas/nvmath/Sphere.cpp new file mode 100644 index 0000000000..e0c1ad652c --- /dev/null +++ b/thirdparty/thekla_atlas/nvmath/Sphere.cpp @@ -0,0 +1,431 @@ +// This code is in the public domain -- Ignacio Castaņo <castano@gmail.com> + +#include "Sphere.h" +#include "Vector.inl" +#include "Box.inl" + +#include <float.h> // FLT_MAX + +using namespace nv; + +const float radiusEpsilon = 1e-4f; + +Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1) +{ + if (p0 == p1) *this = Sphere(p0); + else { + center = (p0 + p1) * 0.5f; + radius = length(p0 - center) + radiusEpsilon; + + float d0 = length(p0 - center); + float d1 = length(p1 - center); + nvDebugCheck(equal(d0, radius - radiusEpsilon)); + nvDebugCheck(equal(d1, radius - radiusEpsilon)); + } +} + +Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2) +{ + if (p0 == p1 || p0 == p2) *this = Sphere(p1, p2); + else if (p1 == p2) *this = Sphere(p0, p2); + else { + Vector3 a = p1 - p0; + Vector3 b = p2 - p0; + Vector3 c = cross(a, b); + + float denominator = 2.0f * lengthSquared(c); + + if (!isZero(denominator)) { + Vector3 d = (lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator; + + center = p0 + d; + radius = length(d) + radiusEpsilon; + + float d0 = length(p0 - center); + float d1 = length(p1 - center); + float d2 = length(p2 - center); + nvDebugCheck(equal(d0, radius - radiusEpsilon)); + nvDebugCheck(equal(d1, radius - radiusEpsilon)); + nvDebugCheck(equal(d2, radius - radiusEpsilon)); + } + else { + // @@ This is a specialization of the code below, but really, the only thing we need to do here is to find the two most distant points. + // Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest. + Sphere s0(p1, p2); + float d0 = distanceSquared(s0, p0); + if (d0 > 0) s0.radius = NV_FLOAT_MAX; + + Sphere s1(p0, p2); + float d1 = distanceSquared(s1, p1); + if (d1 > 0) s1.radius = NV_FLOAT_MAX; + + Sphere s2(p0, p1); + float d2 = distanceSquared(s2, p2); + if (d2 > 0) s1.radius = NV_FLOAT_MAX; + + if (s0.radius < s1.radius && s0.radius < s2.radius) { + center = s0.center; + radius = s0.radius; + } + else if (s1.radius < s2.radius) { + center = s1.center; + radius = s1.radius; + } + else { + center = s2.center; + radius = s2.radius; + } + } + } +} + +Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3) +{ + if (p0 == p1 || p0 == p2 || p0 == p3) *this = Sphere(p1, p2, p3); + else if (p1 == p2 || p1 == p3) *this = Sphere(p0, p2, p3); + else if (p2 == p3) *this = Sphere(p0, p1, p2); + else { + // @@ This only works if the points are not coplanar! + Vector3 a = p1 - p0; + Vector3 b = p2 - p0; + Vector3 c = p3 - p0; + + float denominator = 2.0f * dot(c, cross(a, b)); // triple product. + + if (!isZero(denominator)) { + Vector3 d = (lengthSquared(c) * cross(a, b) + lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator; + + center = p0 + d; + radius = length(d) + radiusEpsilon; + + float d0 = length(p0 - center); + float d1 = length(p1 - center); + float d2 = length(p2 - center); + float d3 = length(p3 - center); + nvDebugCheck(equal(d0, radius - radiusEpsilon)); + nvDebugCheck(equal(d1, radius - radiusEpsilon)); + nvDebugCheck(equal(d2, radius - radiusEpsilon)); + nvDebugCheck(equal(d3, radius - radiusEpsilon)); + } + else { + // Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest. + Sphere s0(p1, p2, p3); + float d0 = distanceSquared(s0, p0); + if (d0 > 0) s0.radius = NV_FLOAT_MAX; + + Sphere s1(p0, p2, p3); + float d1 = distanceSquared(s1, p1); + if (d1 > 0) s1.radius = NV_FLOAT_MAX; + + Sphere s2(p0, p1, p3); + float d2 = distanceSquared(s2, p2); + if (d2 > 0) s2.radius = NV_FLOAT_MAX; + + Sphere s3(p0, p1, p2); + float d3 = distanceSquared(s3, p3); + if (d3 > 0) s2.radius = NV_FLOAT_MAX; + + if (s0.radius < s1.radius && s0.radius < s2.radius && s0.radius < s3.radius) { + center = s0.center; + radius = s0.radius; + } + else if (s1.radius < s2.radius && s1.radius < s3.radius) { + center = s1.center; + radius = s1.radius; + } + else if (s1.radius < s3.radius) { + center = s2.center; + radius = s2.radius; + } + else { + center = s3.center; + radius = s3.radius; + } + } + } +} + + +float nv::distanceSquared(const Sphere & sphere, const Vector3 & point) +{ + return lengthSquared(sphere.center - point) - square(sphere.radius); +} + + + +// Implementation of "MiniBall" based on: +// http://www.flipcode.com/archives/Smallest_Enclosing_Spheres.shtml + +static Sphere recurseMini(const Vector3 *P[], uint p, uint b = 0) +{ + Sphere MB; + + switch(b) + { + case 0: + MB = Sphere(*P[0]); + break; + case 1: + MB = Sphere(*P[-1]); + break; + case 2: + MB = Sphere(*P[-1], *P[-2]); + break; + case 3: + MB = Sphere(*P[-1], *P[-2], *P[-3]); + break; + case 4: + MB = Sphere(*P[-1], *P[-2], *P[-3], *P[-4]); + return MB; + } + + for (uint i = 0; i < p; i++) + { + if (distanceSquared(MB, *P[i]) > 0) // Signed square distance to sphere + { + for (uint j = i; j > 0; j--) + { + swap(P[j], P[j-1]); + } + + MB = recurseMini(P + 1, i, b + 1); + } + } + + return MB; +} + +static bool allInside(const Sphere & sphere, const Vector3 * pointArray, const uint pointCount) { + for (uint i = 0; i < pointCount; i++) { + if (distanceSquared(sphere, pointArray[i]) >= NV_EPSILON) { + return false; + } + } + return true; +} + + +Sphere nv::miniBall(const Vector3 * pointArray, const uint pointCount) +{ + nvDebugCheck(pointArray != NULL); + nvDebugCheck(pointCount > 0); + + const Vector3 **L = new const Vector3*[pointCount]; + + for (uint i = 0; i < pointCount; i++) { + L[i] = &pointArray[i]; + } + + Sphere sphere = recurseMini(L, pointCount); + + delete [] L; + + nvDebugCheck(allInside(sphere, pointArray, pointCount)); + + return sphere; +} + + +// Approximate bounding sphere, based on "An Efficient Bounding Sphere" by Jack Ritter, from "Graphics Gems" +Sphere nv::approximateSphere_Ritter(const Vector3 * pointArray, const uint pointCount) +{ + nvDebugCheck(pointArray != NULL); + nvDebugCheck(pointCount > 0); + + Vector3 xmin, xmax, ymin, ymax, zmin, zmax; + + xmin = xmax = ymin = ymax = zmin = zmax = pointArray[0]; + + // FIRST PASS: find 6 minima/maxima points + xmin.x = ymin.y = zmin.z = FLT_MAX; + xmax.x = ymax.y = zmax.z = -FLT_MAX; + + for (uint i = 0; i < pointCount; i++) + { + const Vector3 & p = pointArray[i]; + if (p.x < xmin.x) xmin = p; + if (p.x > xmax.x) xmax = p; + if (p.y < ymin.y) ymin = p; + if (p.y > ymax.y) ymax = p; + if (p.z < zmin.z) zmin = p; + if (p.z > zmax.z) zmax = p; + } + + float xspan = lengthSquared(xmax - xmin); + float yspan = lengthSquared(ymax - ymin); + float zspan = lengthSquared(zmax - zmin); + + // Set points dia1 & dia2 to the maximally separated pair. + Vector3 dia1 = xmin; + Vector3 dia2 = xmax; + float maxspan = xspan; + if (yspan > maxspan) { + maxspan = yspan; + dia1 = ymin; + dia2 = ymax; + } + if (zspan > maxspan) { + dia1 = zmin; + dia2 = zmax; + } + + // |dia1-dia2| is a diameter of initial sphere + + // calc initial center + Sphere sphere; + sphere.center = (dia1 + dia2) / 2.0f; + + // calculate initial radius**2 and radius + float rad_sq = lengthSquared(dia2 - sphere.center); + sphere.radius = sqrtf(rad_sq); + + + // SECOND PASS: increment current sphere + for (uint i = 0; i < pointCount; i++) + { + const Vector3 & p = pointArray[i]; + + float old_to_p_sq = lengthSquared(p - sphere.center); + + if (old_to_p_sq > rad_sq) // do r**2 test first + { + // this point is outside of current sphere + float old_to_p = sqrtf(old_to_p_sq); + + // calc radius of new sphere + sphere.radius = (sphere.radius + old_to_p) / 2.0f; + rad_sq = sphere.radius * sphere.radius; // for next r**2 compare + + float old_to_new = old_to_p - sphere.radius; + + // calc center of new sphere + sphere.center = (sphere.radius * sphere.center + old_to_new * p) / old_to_p; + } + } + + nvDebugCheck(allInside(sphere, pointArray, pointCount)); + + return sphere; +} + + +static float computeSphereRadius(const Vector3 & center, const Vector3 * pointArray, const uint pointCount) { + + float maxRadius2 = 0; + + for (uint i = 0; i < pointCount; i++) + { + const Vector3 & p = pointArray[i]; + + float r2 = lengthSquared(center - p); + + if (r2 > maxRadius2) { + maxRadius2 = r2; + } + } + + return sqrtf(maxRadius2) + radiusEpsilon; +} + + +Sphere nv::approximateSphere_AABB(const Vector3 * pointArray, const uint pointCount) +{ + nvDebugCheck(pointArray != NULL); + nvDebugCheck(pointCount > 0); + + Box box; + box.clearBounds(); + + for (uint i = 0; i < pointCount; i++) { + box.addPointToBounds(pointArray[i]); + } + + Sphere sphere; + sphere.center = box.center(); + sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); + + nvDebugCheck(allInside(sphere, pointArray, pointCount)); + + return sphere; +} + + +static void computeExtremalPoints(const Vector3 & dir, const Vector3 * pointArray, uint pointCount, Vector3 * minPoint, Vector3 * maxPoint) { + nvDebugCheck(pointCount > 0); + + uint mini = 0; + uint maxi = 0; + float minDist = FLT_MAX; + float maxDist = -FLT_MAX; + + for (uint i = 0; i < pointCount; i++) { + float d = dot(dir, pointArray[i]); + + if (d < minDist) { + minDist = d; + mini = i; + } + if (d > maxDist) { + maxDist = d; + maxi = i; + } + } + nvDebugCheck(minDist != FLT_MAX); + nvDebugCheck(maxDist != -FLT_MAX); + + *minPoint = pointArray[mini]; + *maxPoint = pointArray[maxi]; +} + +// EPOS algorithm based on: +// http://www.ep.liu.se/ecp/034/009/ecp083409.pdf +Sphere nv::approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount) +{ + nvDebugCheck(pointArray != NULL); + nvDebugCheck(pointCount > 0); + + Vector3 extremalPoints[6]; + + // Compute 6 extremal points. + computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1); + computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3); + computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5); + + Sphere sphere = miniBall(extremalPoints, 6); + sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); + + nvDebugCheck(allInside(sphere, pointArray, pointCount)); + + return sphere; +} + +Sphere nv::approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount) +{ + nvDebugCheck(pointArray != NULL); + nvDebugCheck(pointCount > 0); + + Vector3 extremalPoints[14]; + + // Compute 14 extremal points. + computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1); + computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3); + computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5); + + float d = sqrtf(1.0f/3.0f); + + computeExtremalPoints(Vector3(d, d, d), pointArray, pointCount, extremalPoints+6, extremalPoints+7); + computeExtremalPoints(Vector3(-d, d, d), pointArray, pointCount, extremalPoints+8, extremalPoints+9); + computeExtremalPoints(Vector3(-d, -d, d), pointArray, pointCount, extremalPoints+10, extremalPoints+11); + computeExtremalPoints(Vector3(d, -d, d), pointArray, pointCount, extremalPoints+12, extremalPoints+13); + + + Sphere sphere = miniBall(extremalPoints, 14); + sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); + + nvDebugCheck(allInside(sphere, pointArray, pointCount)); + + return sphere; +} + + + |