summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmath/Sparse.cpp
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2017-12-08 11:58:37 -0300
committerGitHub <noreply@github.com>2017-12-08 11:58:37 -0300
commit372b79b0d324b1eeb5991eb510726420c7cbb12d (patch)
tree533b0acfc41971f8d46bdd7139a379a0f2ba39d5 /thirdparty/thekla_atlas/nvmath/Sparse.cpp
parent8c78ccb027635702a2d69ebb7ad6a6ddfaf5ffa1 (diff)
parentbf05309af734431c3b3cf869a63ed477439a6739 (diff)
Merge pull request #14409 from hpvb/import-thekla-atlas
Import thekla_atlas
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Sparse.cpp')
-rw-r--r--thirdparty/thekla_atlas/nvmath/Sparse.cpp889
1 files changed, 889 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Sparse.cpp b/thirdparty/thekla_atlas/nvmath/Sparse.cpp
new file mode 100644
index 0000000000..421e7ee022
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Sparse.cpp
@@ -0,0 +1,889 @@
+// This code is in the public domain -- Ignacio Castaņo <castanyo@yahoo.es>
+
+#include "Sparse.h"
+#include "KahanSum.h"
+
+#include "nvcore/Array.inl"
+
+#define USE_KAHAN_SUM 0
+
+
+using namespace nv;
+
+
+FullVector::FullVector(uint dim)
+{
+ m_array.resize(dim);
+}
+
+FullVector::FullVector(const FullVector & v) : m_array(v.m_array)
+{
+}
+
+const FullVector & FullVector::operator=(const FullVector & v)
+{
+ nvCheck(dimension() == v.dimension());
+
+ m_array = v.m_array;
+
+ return *this;
+}
+
+
+void FullVector::fill(float f)
+{
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] = f;
+ }
+}
+
+void FullVector::operator+= (const FullVector & v)
+{
+ nvDebugCheck(dimension() == v.dimension());
+
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] += v.m_array[i];
+ }
+}
+
+void FullVector::operator-= (const FullVector & v)
+{
+ nvDebugCheck(dimension() == v.dimension());
+
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] -= v.m_array[i];
+ }
+}
+
+void FullVector::operator*= (const FullVector & v)
+{
+ nvDebugCheck(dimension() == v.dimension());
+
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] *= v.m_array[i];
+ }
+}
+
+void FullVector::operator+= (float f)
+{
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] += f;
+ }
+}
+
+void FullVector::operator-= (float f)
+{
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] -= f;
+ }
+}
+
+void FullVector::operator*= (float f)
+{
+ const uint dim = dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ m_array[i] *= f;
+ }
+}
+
+
+void nv::saxpy(float a, const FullVector & x, FullVector & y)
+{
+ nvDebugCheck(x.dimension() == y.dimension());
+
+ const uint dim = x.dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ y[i] += a * x[i];
+ }
+}
+
+void nv::copy(const FullVector & x, FullVector & y)
+{
+ nvDebugCheck(x.dimension() == y.dimension());
+
+ const uint dim = x.dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ y[i] = x[i];
+ }
+}
+
+void nv::scal(float a, FullVector & x)
+{
+ const uint dim = x.dimension();
+ for (uint i = 0; i < dim; i++)
+ {
+ x[i] *= a;
+ }
+}
+
+float nv::dot(const FullVector & x, const FullVector & y)
+{
+ nvDebugCheck(x.dimension() == y.dimension());
+
+ const uint dim = x.dimension();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < dim; i++)
+ {
+ kahan.add(x[i] * y[i]);
+ }
+ return kahan.sum();
+#else
+ float sum = 0;
+ for (uint i = 0; i < dim; i++)
+ {
+ sum += x[i] * y[i];
+ }
+ return sum;
+#endif
+}
+
+
+FullMatrix::FullMatrix(uint d) : m_width(d), m_height(d)
+{
+ m_array.resize(d*d, 0.0f);
+}
+
+FullMatrix::FullMatrix(uint w, uint h) : m_width(w), m_height(h)
+{
+ m_array.resize(w*h, 0.0f);
+}
+
+FullMatrix::FullMatrix(const FullMatrix & m) : m_width(m.m_width), m_height(m.m_height)
+{
+ m_array = m.m_array;
+}
+
+const FullMatrix & FullMatrix::operator=(const FullMatrix & m)
+{
+ nvCheck(width() == m.width());
+ nvCheck(height() == m.height());
+
+ m_array = m.m_array;
+
+ return *this;
+}
+
+
+float FullMatrix::getCoefficient(uint x, uint y) const
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ return m_array[y * width() + x];
+}
+
+void FullMatrix::setCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ m_array[y * width() + x] = f;
+}
+
+void FullMatrix::addCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ m_array[y * width() + x] += f;
+}
+
+void FullMatrix::mulCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ m_array[y * width() + x] *= f;
+}
+
+float FullMatrix::dotRow(uint y, const FullVector & v) const
+{
+ nvDebugCheck( v.dimension() == width() );
+ nvDebugCheck( y < height() );
+
+ float sum = 0;
+
+ const uint count = v.dimension();
+ for (uint i = 0; i < count; i++)
+ {
+ sum += m_array[y * count + i] * v[i];
+ }
+
+ return sum;
+}
+
+void FullMatrix::madRow(uint y, float alpha, FullVector & v) const
+{
+ nvDebugCheck( v.dimension() == width() );
+ nvDebugCheck( y < height() );
+
+ const uint count = v.dimension();
+ for (uint i = 0; i < count; i++)
+ {
+ v[i] += m_array[y * count + i];
+ }
+}
+
+
+// y = M * x
+void nv::mult(const FullMatrix & M, const FullVector & x, FullVector & y)
+{
+ mult(NoTransposed, M, x, y);
+}
+
+void nv::mult(Transpose TM, const FullMatrix & M, const FullVector & x, FullVector & y)
+{
+ const uint w = M.width();
+ const uint h = M.height();
+
+ if (TM == Transposed)
+ {
+ nvDebugCheck( h == x.dimension() );
+ nvDebugCheck( w == y.dimension() );
+
+ y.fill(0.0f);
+
+ for (uint i = 0; i < h; i++)
+ {
+ M.madRow(i, x[i], y);
+ }
+ }
+ else
+ {
+ nvDebugCheck( w == x.dimension() );
+ nvDebugCheck( h == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ y[i] = M.dotRow(i, x);
+ }
+ }
+}
+
+// y = alpha*A*x + beta*y
+void nv::sgemv(float alpha, const FullMatrix & A, const FullVector & x, float beta, FullVector & y)
+{
+ sgemv(alpha, NoTransposed, A, x, beta, y);
+}
+
+void nv::sgemv(float alpha, Transpose TA, const FullMatrix & A, const FullVector & x, float beta, FullVector & y)
+{
+ const uint w = A.width();
+ const uint h = A.height();
+
+ if (TA == Transposed)
+ {
+ nvDebugCheck( h == x.dimension() );
+ nvDebugCheck( w == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ A.madRow(i, alpha * x[i], y);
+ }
+ }
+ else
+ {
+ nvDebugCheck( w == x.dimension() );
+ nvDebugCheck( h == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ y[i] = alpha * A.dotRow(i, x) + beta * y[i];
+ }
+ }
+}
+
+
+// Multiply a row of A by a column of B.
+static float dot(uint j, Transpose TA, const FullMatrix & A, uint i, Transpose TB, const FullMatrix & B)
+{
+ const uint w = (TA == NoTransposed) ? A.width() : A.height();
+ nvDebugCheck(w == ((TB == NoTransposed) ? B.height() : A.width()));
+
+ float sum = 0.0f;
+
+ for (uint k = 0; k < w; k++)
+ {
+ const float a = (TA == NoTransposed) ? A.getCoefficient(k, j) : A.getCoefficient(j, k); // @@ Move branches out of the loop?
+ const float b = (TB == NoTransposed) ? B.getCoefficient(i, k) : A.getCoefficient(k, i);
+ sum += a * b;
+ }
+
+ return sum;
+}
+
+
+// C = A * B
+void nv::mult(const FullMatrix & A, const FullMatrix & B, FullMatrix & C)
+{
+ mult(NoTransposed, A, NoTransposed, B, C);
+}
+
+void nv::mult(Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, FullMatrix & C)
+{
+ sgemm(1.0f, TA, A, TB, B, 0.0f, C);
+}
+
+// C = alpha*A*B + beta*C
+void nv::sgemm(float alpha, const FullMatrix & A, const FullMatrix & B, float beta, FullMatrix & C)
+{
+ sgemm(alpha, NoTransposed, A, NoTransposed, B, beta, C);
+}
+
+void nv::sgemm(float alpha, Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, float beta, FullMatrix & C)
+{
+ const uint w = C.width();
+ const uint h = C.height();
+
+ uint aw = (TA == NoTransposed) ? A.width() : A.height();
+ uint ah = (TA == NoTransposed) ? A.height() : A.width();
+ uint bw = (TB == NoTransposed) ? B.width() : B.height();
+ uint bh = (TB == NoTransposed) ? B.height() : B.width();
+
+ nvDebugCheck(aw == bh);
+ nvDebugCheck(bw == ah);
+ nvDebugCheck(w == bw);
+ nvDebugCheck(h == ah);
+
+ for (uint y = 0; y < h; y++)
+ {
+ for (uint x = 0; x < w; x++)
+ {
+ float c = alpha * ::dot(x, TA, A, y, TB, B) + beta * C.getCoefficient(x, y);
+ C.setCoefficient(x, y, c);
+ }
+ }
+}
+
+
+
+
+
+/// Ctor. Init the size of the sparse matrix.
+SparseMatrix::SparseMatrix(uint d) : m_width(d)
+{
+ m_array.resize(d);
+}
+
+/// Ctor. Init the size of the sparse matrix.
+SparseMatrix::SparseMatrix(uint w, uint h) : m_width(w)
+{
+ m_array.resize(h);
+}
+
+SparseMatrix::SparseMatrix(const SparseMatrix & m) : m_width(m.m_width)
+{
+ m_array = m.m_array;
+}
+
+const SparseMatrix & SparseMatrix::operator=(const SparseMatrix & m)
+{
+ nvCheck(width() == m.width());
+ nvCheck(height() == m.height());
+
+ m_array = m.m_array;
+
+ return *this;
+}
+
+
+// x is column, y is row
+float SparseMatrix::getCoefficient(uint x, uint y) const
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ if (m_array[y][i].x == x) return m_array[y][i].v;
+ }
+
+ return 0.0f;
+}
+
+void SparseMatrix::setCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ if (m_array[y][i].x == x)
+ {
+ m_array[y][i].v = f;
+ return;
+ }
+ }
+
+ if (f != 0.0f)
+ {
+ Coefficient c = { x, f };
+ m_array[y].append( c );
+ }
+}
+
+void SparseMatrix::addCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ if (f != 0.0f)
+ {
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ if (m_array[y][i].x == x)
+ {
+ m_array[y][i].v += f;
+ return;
+ }
+ }
+
+ Coefficient c = { x, f };
+ m_array[y].append( c );
+ }
+}
+
+void SparseMatrix::mulCoefficient(uint x, uint y, float f)
+{
+ nvDebugCheck( x < width() );
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ if (m_array[y][i].x == x)
+ {
+ m_array[y][i].v *= f;
+ return;
+ }
+ }
+
+ if (f != 0.0f)
+ {
+ Coefficient c = { x, f };
+ m_array[y].append( c );
+ }
+}
+
+
+float SparseMatrix::sumRow(uint y) const
+{
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < count; i++)
+ {
+ kahan.add(m_array[y][i].v);
+ }
+ return kahan.sum();
+#else
+ float sum = 0;
+ for (uint i = 0; i < count; i++)
+ {
+ sum += m_array[y][i].v;
+ }
+ return sum;
+#endif
+}
+
+float SparseMatrix::dotRow(uint y, const FullVector & v) const
+{
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < count; i++)
+ {
+ kahan.add(m_array[y][i].v * v[m_array[y][i].x]);
+ }
+ return kahan.sum();
+#else
+ float sum = 0;
+ for (uint i = 0; i < count; i++)
+ {
+ sum += m_array[y][i].v * v[m_array[y][i].x];
+ }
+ return sum;
+#endif
+}
+
+void SparseMatrix::madRow(uint y, float alpha, FullVector & v) const
+{
+ nvDebugCheck(y < height());
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ v[m_array[y][i].x] += alpha * m_array[y][i].v;
+ }
+}
+
+
+void SparseMatrix::clearRow(uint y)
+{
+ nvDebugCheck( y < height() );
+
+ m_array[y].clear();
+}
+
+void SparseMatrix::scaleRow(uint y, float f)
+{
+ nvDebugCheck( y < height() );
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ m_array[y][i].v *= f;
+ }
+}
+
+void SparseMatrix::normalizeRow(uint y)
+{
+ nvDebugCheck( y < height() );
+
+ float norm = 0.0f;
+
+ const uint count = m_array[y].count();
+ for (uint i = 0; i < count; i++)
+ {
+ float f = m_array[y][i].v;
+ norm += f * f;
+ }
+
+ scaleRow(y, 1.0f / sqrtf(norm));
+}
+
+
+void SparseMatrix::clearColumn(uint x)
+{
+ nvDebugCheck(x < width());
+
+ for (uint y = 0; y < height(); y++)
+ {
+ const uint count = m_array[y].count();
+ for (uint e = 0; e < count; e++)
+ {
+ if (m_array[y][e].x == x)
+ {
+ m_array[y][e].v = 0.0f;
+ break;
+ }
+ }
+ }
+}
+
+void SparseMatrix::scaleColumn(uint x, float f)
+{
+ nvDebugCheck(x < width());
+
+ for (uint y = 0; y < height(); y++)
+ {
+ const uint count = m_array[y].count();
+ for (uint e = 0; e < count; e++)
+ {
+ if (m_array[y][e].x == x)
+ {
+ m_array[y][e].v *= f;
+ break;
+ }
+ }
+ }
+}
+
+const Array<SparseMatrix::Coefficient> & SparseMatrix::getRow(uint y) const
+{
+ return m_array[y];
+}
+
+
+bool SparseMatrix::isSymmetric() const
+{
+ for (uint y = 0; y < height(); y++)
+ {
+ const uint count = m_array[y].count();
+ for (uint e = 0; e < count; e++)
+ {
+ const uint x = m_array[y][e].x;
+ if (x > y) {
+ float v = m_array[y][e].v;
+
+ if (!equal(getCoefficient(y, x), v)) { // @@ epsilon
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+
+// y = M * x
+void nv::mult(const SparseMatrix & M, const FullVector & x, FullVector & y)
+{
+ mult(NoTransposed, M, x, y);
+}
+
+void nv::mult(Transpose TM, const SparseMatrix & M, const FullVector & x, FullVector & y)
+{
+ const uint w = M.width();
+ const uint h = M.height();
+
+ if (TM == Transposed)
+ {
+ nvDebugCheck( h == x.dimension() );
+ nvDebugCheck( w == y.dimension() );
+
+ y.fill(0.0f);
+
+ for (uint i = 0; i < h; i++)
+ {
+ M.madRow(i, x[i], y);
+ }
+ }
+ else
+ {
+ nvDebugCheck( w == x.dimension() );
+ nvDebugCheck( h == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ y[i] = M.dotRow(i, x);
+ }
+ }
+}
+
+// y = alpha*A*x + beta*y
+void nv::sgemv(float alpha, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y)
+{
+ sgemv(alpha, NoTransposed, A, x, beta, y);
+}
+
+void nv::sgemv(float alpha, Transpose TA, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y)
+{
+ const uint w = A.width();
+ const uint h = A.height();
+
+ if (TA == Transposed)
+ {
+ nvDebugCheck( h == x.dimension() );
+ nvDebugCheck( w == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ A.madRow(i, alpha * x[i], y);
+ }
+ }
+ else
+ {
+ nvDebugCheck( w == x.dimension() );
+ nvDebugCheck( h == y.dimension() );
+
+ for (uint i = 0; i < h; i++)
+ {
+ y[i] = alpha * A.dotRow(i, x) + beta * y[i];
+ }
+ }
+}
+
+
+// dot y-row of A by x-column of B
+static float dotRowColumn(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
+{
+ const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
+
+ const uint count = row.count();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ kahan.add(c.v * B.getCoefficient(x, c.x));
+ }
+ return kahan.sum();
+#else
+ float sum = 0.0f;
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ sum += c.v * B.getCoefficient(x, c.x);
+ }
+ return sum;
+#endif
+}
+
+// dot y-row of A by x-row of B
+static float dotRowRow(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
+{
+ const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
+
+ const uint count = row.count();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ kahan.add(c.v * B.getCoefficient(c.x, x));
+ }
+ return kahan.sum();
+#else
+ float sum = 0.0f;
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ sum += c.v * B.getCoefficient(c.x, x);
+ }
+ return sum;
+#endif
+}
+
+// dot y-column of A by x-column of B
+static float dotColumnColumn(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
+{
+ nvDebugCheck(A.height() == B.height());
+
+ const uint h = A.height();
+
+#if USE_KAHAN_SUM
+ KahanSum kahan;
+ for (uint i = 0; i < h; i++)
+ {
+ kahan.add(A.getCoefficient(y, i) * B.getCoefficient(x, i));
+ }
+ return kahan.sum();
+#else
+ float sum = 0.0f;
+ for (uint i = 0; i < h; i++)
+ {
+ sum += A.getCoefficient(y, i) * B.getCoefficient(x, i);
+ }
+ return sum;
+#endif
+}
+
+
+void nv::transpose(const SparseMatrix & A, SparseMatrix & B)
+{
+ nvDebugCheck(A.width() == B.height());
+ nvDebugCheck(B.width() == A.height());
+
+ const uint w = A.width();
+ for (uint x = 0; x < w; x++)
+ {
+ B.clearRow(x);
+ }
+
+ const uint h = A.height();
+ for (uint y = 0; y < h; y++)
+ {
+ const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
+
+ const uint count = row.count();
+ for (uint i = 0; i < count; i++)
+ {
+ const SparseMatrix::Coefficient & c = row[i];
+ nvDebugCheck(c.x < w);
+
+ B.setCoefficient(y, c.x, c.v);
+ }
+ }
+}
+
+// C = A * B
+void nv::mult(const SparseMatrix & A, const SparseMatrix & B, SparseMatrix & C)
+{
+ mult(NoTransposed, A, NoTransposed, B, C);
+}
+
+void nv::mult(Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, SparseMatrix & C)
+{
+ sgemm(1.0f, TA, A, TB, B, 0.0f, C);
+}
+
+// C = alpha*A*B + beta*C
+void nv::sgemm(float alpha, const SparseMatrix & A, const SparseMatrix & B, float beta, SparseMatrix & C)
+{
+ sgemm(alpha, NoTransposed, A, NoTransposed, B, beta, C);
+}
+
+void nv::sgemm(float alpha, Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, float beta, SparseMatrix & C)
+{
+ const uint w = C.width();
+ const uint h = C.height();
+
+ uint aw = (TA == NoTransposed) ? A.width() : A.height();
+ uint ah = (TA == NoTransposed) ? A.height() : A.width();
+ uint bw = (TB == NoTransposed) ? B.width() : B.height();
+ uint bh = (TB == NoTransposed) ? B.height() : B.width();
+
+ nvDebugCheck(aw == bh);
+ nvDebugCheck(bw == ah);
+ nvDebugCheck(w == bw);
+ nvDebugCheck(h == ah);
+
+
+ for (uint y = 0; y < h; y++)
+ {
+ for (uint x = 0; x < w; x++)
+ {
+ float c = beta * C.getCoefficient(x, y);
+
+ if (TA == NoTransposed && TB == NoTransposed)
+ {
+ // dot y-row of A by x-column of B.
+ c += alpha * dotRowColumn(y, A, x, B);
+ }
+ else if (TA == Transposed && TB == Transposed)
+ {
+ // dot y-column of A by x-row of B.
+ c += alpha * dotRowColumn(x, B, y, A);
+ }
+ else if (TA == Transposed && TB == NoTransposed)
+ {
+ // dot y-column of A by x-column of B.
+ c += alpha * dotColumnColumn(y, A, x, B);
+ }
+ else if (TA == NoTransposed && TB == Transposed)
+ {
+ // dot y-row of A by x-row of B.
+ c += alpha * dotRowRow(y, A, x, B);
+ }
+
+ C.setCoefficient(x, y, c);
+ }
+ }
+}
+
+// C = At * A
+void nv::sqm(const SparseMatrix & A, SparseMatrix & C)
+{
+ // This is quite expensive...
+ mult(Transposed, A, NoTransposed, A, C);
+}