diff options
author | RĂ©mi Verschelde <rverschelde@gmail.com> | 2020-02-10 16:25:21 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-02-10 16:25:21 +0100 |
commit | 2dd73b1ffad10824a9f66e3ac04f4e2a7d51a85e (patch) | |
tree | 683288f29c949e731bcc34c62212ed7f184ba76a /thirdparty/rvo2/src/Vector3.h | |
parent | 1dd0eb4f339a9f0ae78077aaac3dafeafdf78279 (diff) | |
parent | 383c583a0b46b36ab9b0de57d0f3f7bdecb62fc8 (diff) |
Merge pull request #34776 from AndreaCatania/nav_pr
Integrated the new `NavigationServer` and `NavigationServer2D`
Diffstat (limited to 'thirdparty/rvo2/src/Vector3.h')
-rw-r--r-- | thirdparty/rvo2/src/Vector3.h | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/thirdparty/rvo2/src/Vector3.h b/thirdparty/rvo2/src/Vector3.h new file mode 100644 index 0000000000..8c8835c865 --- /dev/null +++ b/thirdparty/rvo2/src/Vector3.h @@ -0,0 +1,335 @@ +/* + * Vector3.h + * RVO2-3D Library + * + * Copyright 2008 University of North Carolina at Chapel Hill + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * + * Please send all bug reports to <geom@cs.unc.edu>. + * + * The authors may be contacted via: + * + * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha + * Dept. of Computer Science + * 201 S. Columbia St. + * Frederick P. Brooks, Jr. Computer Science Bldg. + * Chapel Hill, N.C. 27599-3175 + * United States of America + * + * <http://gamma.cs.unc.edu/RVO2/> + */ + +/** + * \file Vector3.h + * \brief Contains the Vector3 class. + */ +#ifndef RVO_VECTOR3_H_ +#define RVO_VECTOR3_H_ + +#include "API.h" + +#include <cmath> +#include <cstddef> +#include <ostream> + +namespace RVO { + /** + * \brief Defines a three-dimensional vector. + */ + class Vector3 { + public: + /** + * \brief Constructs and initializes a three-dimensional vector instance to zero. + */ + RVO_API inline Vector3() + { + val_[0] = 0.0f; + val_[1] = 0.0f; + val_[2] = 0.0f; + } + + /** + * \brief Constructs and initializes a three-dimensional vector from the specified three-element array. + * \param val The three-element array containing the xyz-coordinates. + */ + RVO_API inline explicit Vector3(const float val[3]) + { + val_[0] = val[0]; + val_[1] = val[1]; + val_[2] = val[2]; + } + + /** + * \brief Constructs and initializes a three-dimensional vector from the specified xyz-coordinates. + * \param x The x-coordinate of the three-dimensional vector. + * \param y The y-coordinate of the three-dimensional vector. + * \param z The z-coordinate of the three-dimensional vector. + */ + RVO_API inline Vector3(float x, float y, float z) + { + val_[0] = x; + val_[1] = y; + val_[2] = z; + } + + /** + * \brief Returns the x-coordinate of this three-dimensional vector. + * \return The x-coordinate of the three-dimensional vector. + */ + RVO_API inline float x() const { return val_[0]; } + + /** + * \brief Returns the y-coordinate of this three-dimensional vector. + * \return The y-coordinate of the three-dimensional vector. + */ + RVO_API inline float y() const { return val_[1]; } + + /** + * \brief Returns the z-coordinate of this three-dimensional vector. + * \return The z-coordinate of the three-dimensional vector. + */ + RVO_API inline float z() const { return val_[2]; } + + /** + * \brief Returns the specified coordinate of this three-dimensional vector. + * \param i The coordinate that should be returned (0 <= i < 3). + * \return The specified coordinate of the three-dimensional vector. + */ + RVO_API inline float operator[](size_t i) const { return val_[i]; } + + /** + * \brief Returns a reference to the specified coordinate of this three-dimensional vector. + * \param i The coordinate to which a reference should be returned (0 <= i < 3). + * \return A reference to the specified coordinate of the three-dimensional vector. + */ + RVO_API inline float &operator[](size_t i) { return val_[i]; } + + /** + * \brief Computes the negation of this three-dimensional vector. + * \return The negation of this three-dimensional vector. + */ + RVO_API inline Vector3 operator-() const + { + return Vector3(-val_[0], -val_[1], -val_[2]); + } + + /** + * \brief Computes the dot product of this three-dimensional vector with the specified three-dimensional vector. + * \param vector The three-dimensional vector with which the dot product should be computed. + * \return The dot product of this three-dimensional vector with a specified three-dimensional vector. + */ + RVO_API inline float operator*(const Vector3 &vector) const + { + return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2]; + } + + /** + * \brief Computes the scalar multiplication of this three-dimensional vector with the specified scalar value. + * \param scalar The scalar value with which the scalar multiplication should be computed. + * \return The scalar multiplication of this three-dimensional vector with a specified scalar value. + */ + RVO_API inline Vector3 operator*(float scalar) const + { + return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar); + } + + /** + * \brief Computes the scalar division of this three-dimensional vector with the specified scalar value. + * \param scalar The scalar value with which the scalar division should be computed. + * \return The scalar division of this three-dimensional vector with a specified scalar value. + */ + RVO_API inline Vector3 operator/(float scalar) const + { + const float invScalar = 1.0f / scalar; + + return Vector3(val_[0] * invScalar, val_[1] * invScalar, val_[2] * invScalar); + } + + /** + * \brief Computes the vector sum of this three-dimensional vector with the specified three-dimensional vector. + * \param vector The three-dimensional vector with which the vector sum should be computed. + * \return The vector sum of this three-dimensional vector with a specified three-dimensional vector. + */ + RVO_API inline Vector3 operator+(const Vector3 &vector) const + { + return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]); + } + + /** + * \brief Computes the vector difference of this three-dimensional vector with the specified three-dimensional vector. + * \param vector The three-dimensional vector with which the vector difference should be computed. + * \return The vector difference of this three-dimensional vector with a specified three-dimensional vector. + */ + RVO_API inline Vector3 operator-(const Vector3 &vector) const + { + return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]); + } + + /** + * \brief Tests this three-dimensional vector for equality with the specified three-dimensional vector. + * \param vector The three-dimensional vector with which to test for equality. + * \return True if the three-dimensional vectors are equal. + */ + RVO_API inline bool operator==(const Vector3 &vector) const + { + return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2]; + } + + /** + * \brief Tests this three-dimensional vector for inequality with the specified three-dimensional vector. + * \param vector The three-dimensional vector with which to test for inequality. + * \return True if the three-dimensional vectors are not equal. + */ + RVO_API inline bool operator!=(const Vector3 &vector) const + { + return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2]; + } + + /** + * \brief Sets the value of this three-dimensional vector to the scalar multiplication of itself with the specified scalar value. + * \param scalar The scalar value with which the scalar multiplication should be computed. + * \return A reference to this three-dimensional vector. + */ + RVO_API inline Vector3 &operator*=(float scalar) + { + val_[0] *= scalar; + val_[1] *= scalar; + val_[2] *= scalar; + + return *this; + } + + /** + * \brief Sets the value of this three-dimensional vector to the scalar division of itself with the specified scalar value. + * \param scalar The scalar value with which the scalar division should be computed. + * \return A reference to this three-dimensional vector. + */ + RVO_API inline Vector3 &operator/=(float scalar) + { + const float invScalar = 1.0f / scalar; + + val_[0] *= invScalar; + val_[1] *= invScalar; + val_[2] *= invScalar; + + return *this; + } + + /** + * \brief Sets the value of this three-dimensional vector to the vector + * sum of itself with the specified three-dimensional vector. + * \param vector The three-dimensional vector with which the vector sum should be computed. + * \return A reference to this three-dimensional vector. + */ + RVO_API inline Vector3 &operator+=(const Vector3 &vector) + { + val_[0] += vector[0]; + val_[1] += vector[1]; + val_[2] += vector[2]; + + return *this; + } + + /** + * \brief Sets the value of this three-dimensional vector to the vector difference of itself with the specified three-dimensional vector. + * \param vector The three-dimensional vector with which the vector difference should be computed. + * \return A reference to this three-dimensional vector. + */ + RVO_API inline Vector3 &operator-=(const Vector3 &vector) + { + val_[0] -= vector[0]; + val_[1] -= vector[1]; + val_[2] -= vector[2]; + + return *this; + } + + private: + float val_[3]; + }; + + + /** + * \relates Vector3 + * \brief Computes the scalar multiplication of the specified three-dimensional vector with the specified scalar value. + * \param scalar The scalar value with which the scalar multiplication should be computed. + * \param vector The three-dimensional vector with which the scalar multiplication should be computed. + * \return The scalar multiplication of the three-dimensional vector with the scalar value. + */ + inline Vector3 operator*(float scalar, const Vector3 &vector) + { + return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]); + } + + /** + * \relates Vector3 + * \brief Computes the cross product of the specified three-dimensional vectors. + * \param vector1 The first vector with which the cross product should be computed. + * \param vector2 The second vector with which the cross product should be computed. + * \return The cross product of the two specified vectors. + */ + inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2) + { + return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1], vector1[2] * vector2[0] - vector1[0] * vector2[2], vector1[0] * vector2[1] - vector1[1] * vector2[0]); + } + + /** + * \relates Vector3 + * \brief Inserts the specified three-dimensional vector into the specified output stream. + * \param os The output stream into which the three-dimensional vector should be inserted. + * \param vector The three-dimensional vector which to insert into the output stream. + * \return A reference to the output stream. + */ + inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector) + { + os << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")"; + + return os; + } + + /** + * \relates Vector3 + * \brief Computes the length of a specified three-dimensional vector. + * \param vector The three-dimensional vector whose length is to be computed. + * \return The length of the three-dimensional vector. + */ + inline float abs(const Vector3 &vector) + { + return std::sqrt(vector * vector); + } + + /** + * \relates Vector3 + * \brief Computes the squared length of a specified three-dimensional vector. + * \param vector The three-dimensional vector whose squared length is to be computed. + * \return The squared length of the three-dimensional vector. + */ + inline float absSq(const Vector3 &vector) + { + return vector * vector; + } + + /** + * \relates Vector3 + * \brief Computes the normalization of the specified three-dimensional vector. + * \param vector The three-dimensional vector whose normalization is to be computed. + * \return The normalization of the three-dimensional vector. + */ + inline Vector3 normalize(const Vector3 &vector) + { + return vector / abs(vector); + } +} + +#endif |