diff options
author | RĂ©mi Verschelde <rverschelde@gmail.com> | 2017-09-13 19:22:29 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-09-13 19:22:29 +0200 |
commit | 27ae3c839d3bfec896eb521d3ae2878073391023 (patch) | |
tree | b99e65c343dc3fc780e44d284bf44cec08cc60ad /thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp | |
parent | d85472bef05410528819b681e0c463d78075c29d (diff) | |
parent | 92e77d5ff2a74612deb0375d31242e8c529d9b87 (diff) |
Merge pull request #7908 from SaracenOne/recast
In-editor navmesh generation.
Diffstat (limited to 'thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp')
-rw-r--r-- | thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp | 1824 |
1 files changed, 1824 insertions, 0 deletions
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp b/thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp new file mode 100644 index 0000000000..38a2bd6bfa --- /dev/null +++ b/thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp @@ -0,0 +1,1824 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include <float.h> +#define _USE_MATH_DEFINES +#include <math.h> +#include <string.h> +#include <stdlib.h> +#include <stdio.h> +#include "Recast.h" +#include "RecastAlloc.h" +#include "RecastAssert.h" +#include <new> + + +static void calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short& maxDist) +{ + const int w = chf.width; + const int h = chf.height; + + // Init distance and points. + for (int i = 0; i < chf.spanCount; ++i) + src[i] = 0xffff; + + // Mark boundary cells. + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + const unsigned char area = chf.areas[i]; + + int nc = 0; + for (int dir = 0; dir < 4; ++dir) + { + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); + if (area == chf.areas[ai]) + nc++; + } + } + if (nc != 4) + src[i] = 0; + } + } + } + + + // Pass 1 + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + + if (rcGetCon(s, 0) != RC_NOT_CONNECTED) + { + // (-1,0) + const int ax = x + rcGetDirOffsetX(0); + const int ay = y + rcGetDirOffsetY(0); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); + const rcCompactSpan& as = chf.spans[ai]; + if (src[ai]+2 < src[i]) + src[i] = src[ai]+2; + + // (-1,-1) + if (rcGetCon(as, 3) != RC_NOT_CONNECTED) + { + const int aax = ax + rcGetDirOffsetX(3); + const int aay = ay + rcGetDirOffsetY(3); + const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3); + if (src[aai]+3 < src[i]) + src[i] = src[aai]+3; + } + } + if (rcGetCon(s, 3) != RC_NOT_CONNECTED) + { + // (0,-1) + const int ax = x + rcGetDirOffsetX(3); + const int ay = y + rcGetDirOffsetY(3); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); + const rcCompactSpan& as = chf.spans[ai]; + if (src[ai]+2 < src[i]) + src[i] = src[ai]+2; + + // (1,-1) + if (rcGetCon(as, 2) != RC_NOT_CONNECTED) + { + const int aax = ax + rcGetDirOffsetX(2); + const int aay = ay + rcGetDirOffsetY(2); + const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2); + if (src[aai]+3 < src[i]) + src[i] = src[aai]+3; + } + } + } + } + } + + // Pass 2 + for (int y = h-1; y >= 0; --y) + { + for (int x = w-1; x >= 0; --x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + + if (rcGetCon(s, 2) != RC_NOT_CONNECTED) + { + // (1,0) + const int ax = x + rcGetDirOffsetX(2); + const int ay = y + rcGetDirOffsetY(2); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2); + const rcCompactSpan& as = chf.spans[ai]; + if (src[ai]+2 < src[i]) + src[i] = src[ai]+2; + + // (1,1) + if (rcGetCon(as, 1) != RC_NOT_CONNECTED) + { + const int aax = ax + rcGetDirOffsetX(1); + const int aay = ay + rcGetDirOffsetY(1); + const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1); + if (src[aai]+3 < src[i]) + src[i] = src[aai]+3; + } + } + if (rcGetCon(s, 1) != RC_NOT_CONNECTED) + { + // (0,1) + const int ax = x + rcGetDirOffsetX(1); + const int ay = y + rcGetDirOffsetY(1); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1); + const rcCompactSpan& as = chf.spans[ai]; + if (src[ai]+2 < src[i]) + src[i] = src[ai]+2; + + // (-1,1) + if (rcGetCon(as, 0) != RC_NOT_CONNECTED) + { + const int aax = ax + rcGetDirOffsetX(0); + const int aay = ay + rcGetDirOffsetY(0); + const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0); + if (src[aai]+3 < src[i]) + src[i] = src[aai]+3; + } + } + } + } + } + + maxDist = 0; + for (int i = 0; i < chf.spanCount; ++i) + maxDist = rcMax(src[i], maxDist); + +} + +static unsigned short* boxBlur(rcCompactHeightfield& chf, int thr, + unsigned short* src, unsigned short* dst) +{ + const int w = chf.width; + const int h = chf.height; + + thr *= 2; + + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + const unsigned short cd = src[i]; + if (cd <= thr) + { + dst[i] = cd; + continue; + } + + int d = (int)cd; + for (int dir = 0; dir < 4; ++dir) + { + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); + d += (int)src[ai]; + + const rcCompactSpan& as = chf.spans[ai]; + const int dir2 = (dir+1) & 0x3; + if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) + { + const int ax2 = ax + rcGetDirOffsetX(dir2); + const int ay2 = ay + rcGetDirOffsetY(dir2); + const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); + d += (int)src[ai2]; + } + else + { + d += cd; + } + } + else + { + d += cd*2; + } + } + dst[i] = (unsigned short)((d+5)/9); + } + } + } + return dst; +} + + +static bool floodRegion(int x, int y, int i, + unsigned short level, unsigned short r, + rcCompactHeightfield& chf, + unsigned short* srcReg, unsigned short* srcDist, + rcIntArray& stack) +{ + const int w = chf.width; + + const unsigned char area = chf.areas[i]; + + // Flood fill mark region. + stack.resize(0); + stack.push((int)x); + stack.push((int)y); + stack.push((int)i); + srcReg[i] = r; + srcDist[i] = 0; + + unsigned short lev = level >= 2 ? level-2 : 0; + int count = 0; + + while (stack.size() > 0) + { + int ci = stack.pop(); + int cy = stack.pop(); + int cx = stack.pop(); + + const rcCompactSpan& cs = chf.spans[ci]; + + // Check if any of the neighbours already have a valid region set. + unsigned short ar = 0; + for (int dir = 0; dir < 4; ++dir) + { + // 8 connected + if (rcGetCon(cs, dir) != RC_NOT_CONNECTED) + { + const int ax = cx + rcGetDirOffsetX(dir); + const int ay = cy + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir); + if (chf.areas[ai] != area) + continue; + unsigned short nr = srcReg[ai]; + if (nr & RC_BORDER_REG) // Do not take borders into account. + continue; + if (nr != 0 && nr != r) + { + ar = nr; + break; + } + + const rcCompactSpan& as = chf.spans[ai]; + + const int dir2 = (dir+1) & 0x3; + if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) + { + const int ax2 = ax + rcGetDirOffsetX(dir2); + const int ay2 = ay + rcGetDirOffsetY(dir2); + const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); + if (chf.areas[ai2] != area) + continue; + unsigned short nr2 = srcReg[ai2]; + if (nr2 != 0 && nr2 != r) + { + ar = nr2; + break; + } + } + } + } + if (ar != 0) + { + srcReg[ci] = 0; + continue; + } + + count++; + + // Expand neighbours. + for (int dir = 0; dir < 4; ++dir) + { + if (rcGetCon(cs, dir) != RC_NOT_CONNECTED) + { + const int ax = cx + rcGetDirOffsetX(dir); + const int ay = cy + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir); + if (chf.areas[ai] != area) + continue; + if (chf.dist[ai] >= lev && srcReg[ai] == 0) + { + srcReg[ai] = r; + srcDist[ai] = 0; + stack.push(ax); + stack.push(ay); + stack.push(ai); + } + } + } + } + + return count > 0; +} + +static unsigned short* expandRegions(int maxIter, unsigned short level, + rcCompactHeightfield& chf, + unsigned short* srcReg, unsigned short* srcDist, + unsigned short* dstReg, unsigned short* dstDist, + rcIntArray& stack, + bool fillStack) +{ + const int w = chf.width; + const int h = chf.height; + + if (fillStack) + { + // Find cells revealed by the raised level. + stack.resize(0); + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA) + { + stack.push(x); + stack.push(y); + stack.push(i); + } + } + } + } + } + else // use cells in the input stack + { + // mark all cells which already have a region + for (int j=0; j<stack.size(); j+=3) + { + int i = stack[j+2]; + if (srcReg[i] != 0) + stack[j+2] = -1; + } + } + + int iter = 0; + while (stack.size() > 0) + { + int failed = 0; + + memcpy(dstReg, srcReg, sizeof(unsigned short)*chf.spanCount); + memcpy(dstDist, srcDist, sizeof(unsigned short)*chf.spanCount); + + for (int j = 0; j < stack.size(); j += 3) + { + int x = stack[j+0]; + int y = stack[j+1]; + int i = stack[j+2]; + if (i < 0) + { + failed++; + continue; + } + + unsigned short r = srcReg[i]; + unsigned short d2 = 0xffff; + const unsigned char area = chf.areas[i]; + const rcCompactSpan& s = chf.spans[i]; + for (int dir = 0; dir < 4; ++dir) + { + if (rcGetCon(s, dir) == RC_NOT_CONNECTED) continue; + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); + if (chf.areas[ai] != area) continue; + if (srcReg[ai] > 0 && (srcReg[ai] & RC_BORDER_REG) == 0) + { + if ((int)srcDist[ai]+2 < (int)d2) + { + r = srcReg[ai]; + d2 = srcDist[ai]+2; + } + } + } + if (r) + { + stack[j+2] = -1; // mark as used + dstReg[i] = r; + dstDist[i] = d2; + } + else + { + failed++; + } + } + + // rcSwap source and dest. + rcSwap(srcReg, dstReg); + rcSwap(srcDist, dstDist); + + if (failed*3 == stack.size()) + break; + + if (level > 0) + { + ++iter; + if (iter >= maxIter) + break; + } + } + + return srcReg; +} + + + +static void sortCellsByLevel(unsigned short startLevel, + rcCompactHeightfield& chf, + unsigned short* srcReg, + unsigned int nbStacks, rcIntArray* stacks, + unsigned short loglevelsPerStack) // the levels per stack (2 in our case) as a bit shift +{ + const int w = chf.width; + const int h = chf.height; + startLevel = startLevel >> loglevelsPerStack; + + for (unsigned int j=0; j<nbStacks; ++j) + stacks[j].resize(0); + + // put all cells in the level range into the appropriate stacks + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + if (chf.areas[i] == RC_NULL_AREA || srcReg[i] != 0) + continue; + + int level = chf.dist[i] >> loglevelsPerStack; + int sId = startLevel - level; + if (sId >= (int)nbStacks) + continue; + if (sId < 0) + sId = 0; + + stacks[sId].push(x); + stacks[sId].push(y); + stacks[sId].push(i); + } + } + } +} + + +static void appendStacks(rcIntArray& srcStack, rcIntArray& dstStack, + unsigned short* srcReg) +{ + for (int j=0; j<srcStack.size(); j+=3) + { + int i = srcStack[j+2]; + if ((i < 0) || (srcReg[i] != 0)) + continue; + dstStack.push(srcStack[j]); + dstStack.push(srcStack[j+1]); + dstStack.push(srcStack[j+2]); + } +} + +struct rcRegion +{ + inline rcRegion(unsigned short i) : + spanCount(0), + id(i), + areaType(0), + remap(false), + visited(false), + overlap(false), + connectsToBorder(false), + ymin(0xffff), + ymax(0) + {} + + int spanCount; // Number of spans belonging to this region + unsigned short id; // ID of the region + unsigned char areaType; // Are type. + bool remap; + bool visited; + bool overlap; + bool connectsToBorder; + unsigned short ymin, ymax; + rcIntArray connections; + rcIntArray floors; +}; + +static void removeAdjacentNeighbours(rcRegion& reg) +{ + // Remove adjacent duplicates. + for (int i = 0; i < reg.connections.size() && reg.connections.size() > 1; ) + { + int ni = (i+1) % reg.connections.size(); + if (reg.connections[i] == reg.connections[ni]) + { + // Remove duplicate + for (int j = i; j < reg.connections.size()-1; ++j) + reg.connections[j] = reg.connections[j+1]; + reg.connections.pop(); + } + else + ++i; + } +} + +static void replaceNeighbour(rcRegion& reg, unsigned short oldId, unsigned short newId) +{ + bool neiChanged = false; + for (int i = 0; i < reg.connections.size(); ++i) + { + if (reg.connections[i] == oldId) + { + reg.connections[i] = newId; + neiChanged = true; + } + } + for (int i = 0; i < reg.floors.size(); ++i) + { + if (reg.floors[i] == oldId) + reg.floors[i] = newId; + } + if (neiChanged) + removeAdjacentNeighbours(reg); +} + +static bool canMergeWithRegion(const rcRegion& rega, const rcRegion& regb) +{ + if (rega.areaType != regb.areaType) + return false; + int n = 0; + for (int i = 0; i < rega.connections.size(); ++i) + { + if (rega.connections[i] == regb.id) + n++; + } + if (n > 1) + return false; + for (int i = 0; i < rega.floors.size(); ++i) + { + if (rega.floors[i] == regb.id) + return false; + } + return true; +} + +static void addUniqueFloorRegion(rcRegion& reg, int n) +{ + for (int i = 0; i < reg.floors.size(); ++i) + if (reg.floors[i] == n) + return; + reg.floors.push(n); +} + +static bool mergeRegions(rcRegion& rega, rcRegion& regb) +{ + unsigned short aid = rega.id; + unsigned short bid = regb.id; + + // Duplicate current neighbourhood. + rcIntArray acon; + acon.resize(rega.connections.size()); + for (int i = 0; i < rega.connections.size(); ++i) + acon[i] = rega.connections[i]; + rcIntArray& bcon = regb.connections; + + // Find insertion point on A. + int insa = -1; + for (int i = 0; i < acon.size(); ++i) + { + if (acon[i] == bid) + { + insa = i; + break; + } + } + if (insa == -1) + return false; + + // Find insertion point on B. + int insb = -1; + for (int i = 0; i < bcon.size(); ++i) + { + if (bcon[i] == aid) + { + insb = i; + break; + } + } + if (insb == -1) + return false; + + // Merge neighbours. + rega.connections.resize(0); + for (int i = 0, ni = acon.size(); i < ni-1; ++i) + rega.connections.push(acon[(insa+1+i) % ni]); + + for (int i = 0, ni = bcon.size(); i < ni-1; ++i) + rega.connections.push(bcon[(insb+1+i) % ni]); + + removeAdjacentNeighbours(rega); + + for (int j = 0; j < regb.floors.size(); ++j) + addUniqueFloorRegion(rega, regb.floors[j]); + rega.spanCount += regb.spanCount; + regb.spanCount = 0; + regb.connections.resize(0); + + return true; +} + +static bool isRegionConnectedToBorder(const rcRegion& reg) +{ + // Region is connected to border if + // one of the neighbours is null id. + for (int i = 0; i < reg.connections.size(); ++i) + { + if (reg.connections[i] == 0) + return true; + } + return false; +} + +static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* srcReg, + int x, int y, int i, int dir) +{ + const rcCompactSpan& s = chf.spans[i]; + unsigned short r = 0; + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); + r = srcReg[ai]; + } + if (r == srcReg[i]) + return false; + return true; +} + +static void walkContour(int x, int y, int i, int dir, + rcCompactHeightfield& chf, + unsigned short* srcReg, + rcIntArray& cont) +{ + int startDir = dir; + int starti = i; + + const rcCompactSpan& ss = chf.spans[i]; + unsigned short curReg = 0; + if (rcGetCon(ss, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir); + curReg = srcReg[ai]; + } + cont.push(curReg); + + int iter = 0; + while (++iter < 40000) + { + const rcCompactSpan& s = chf.spans[i]; + + if (isSolidEdge(chf, srcReg, x, y, i, dir)) + { + // Choose the edge corner + unsigned short r = 0; + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); + r = srcReg[ai]; + } + if (r != curReg) + { + curReg = r; + cont.push(curReg); + } + + dir = (dir+1) & 0x3; // Rotate CW + } + else + { + int ni = -1; + const int nx = x + rcGetDirOffsetX(dir); + const int ny = y + rcGetDirOffsetY(dir); + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; + ni = (int)nc.index + rcGetCon(s, dir); + } + if (ni == -1) + { + // Should not happen. + return; + } + x = nx; + y = ny; + i = ni; + dir = (dir+3) & 0x3; // Rotate CCW + } + + if (starti == i && startDir == dir) + { + break; + } + } + + // Remove adjacent duplicates. + if (cont.size() > 1) + { + for (int j = 0; j < cont.size(); ) + { + int nj = (j+1) % cont.size(); + if (cont[j] == cont[nj]) + { + for (int k = j; k < cont.size()-1; ++k) + cont[k] = cont[k+1]; + cont.pop(); + } + else + ++j; + } + } +} + + +static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize, + unsigned short& maxRegionId, + rcCompactHeightfield& chf, + unsigned short* srcReg, rcIntArray& overlaps) +{ + const int w = chf.width; + const int h = chf.height; + + const int nreg = maxRegionId+1; + rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP); + if (!regions) + { + ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg); + return false; + } + + // Construct regions + for (int i = 0; i < nreg; ++i) + new(®ions[i]) rcRegion((unsigned short)i); + + // Find edge of a region and find connections around the contour. + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + unsigned short r = srcReg[i]; + if (r == 0 || r >= nreg) + continue; + + rcRegion& reg = regions[r]; + reg.spanCount++; + + // Update floors. + for (int j = (int)c.index; j < ni; ++j) + { + if (i == j) continue; + unsigned short floorId = srcReg[j]; + if (floorId == 0 || floorId >= nreg) + continue; + if (floorId == r) + reg.overlap = true; + addUniqueFloorRegion(reg, floorId); + } + + // Have found contour + if (reg.connections.size() > 0) + continue; + + reg.areaType = chf.areas[i]; + + // Check if this cell is next to a border. + int ndir = -1; + for (int dir = 0; dir < 4; ++dir) + { + if (isSolidEdge(chf, srcReg, x, y, i, dir)) + { + ndir = dir; + break; + } + } + + if (ndir != -1) + { + // The cell is at border. + // Walk around the contour to find all the neighbours. + walkContour(x, y, i, ndir, chf, srcReg, reg.connections); + } + } + } + } + + // Remove too small regions. + rcIntArray stack(32); + rcIntArray trace(32); + for (int i = 0; i < nreg; ++i) + { + rcRegion& reg = regions[i]; + if (reg.id == 0 || (reg.id & RC_BORDER_REG)) + continue; + if (reg.spanCount == 0) + continue; + if (reg.visited) + continue; + + // Count the total size of all the connected regions. + // Also keep track of the regions connects to a tile border. + bool connectsToBorder = false; + int spanCount = 0; + stack.resize(0); + trace.resize(0); + + reg.visited = true; + stack.push(i); + + while (stack.size()) + { + // Pop + int ri = stack.pop(); + + rcRegion& creg = regions[ri]; + + spanCount += creg.spanCount; + trace.push(ri); + + for (int j = 0; j < creg.connections.size(); ++j) + { + if (creg.connections[j] & RC_BORDER_REG) + { + connectsToBorder = true; + continue; + } + rcRegion& neireg = regions[creg.connections[j]]; + if (neireg.visited) + continue; + if (neireg.id == 0 || (neireg.id & RC_BORDER_REG)) + continue; + // Visit + stack.push(neireg.id); + neireg.visited = true; + } + } + + // If the accumulated regions size is too small, remove it. + // Do not remove areas which connect to tile borders + // as their size cannot be estimated correctly and removing them + // can potentially remove necessary areas. + if (spanCount < minRegionArea && !connectsToBorder) + { + // Kill all visited regions. + for (int j = 0; j < trace.size(); ++j) + { + regions[trace[j]].spanCount = 0; + regions[trace[j]].id = 0; + } + } + } + + // Merge too small regions to neighbour regions. + int mergeCount = 0 ; + do + { + mergeCount = 0; + for (int i = 0; i < nreg; ++i) + { + rcRegion& reg = regions[i]; + if (reg.id == 0 || (reg.id & RC_BORDER_REG)) + continue; + if (reg.overlap) + continue; + if (reg.spanCount == 0) + continue; + + // Check to see if the region should be merged. + if (reg.spanCount > mergeRegionSize && isRegionConnectedToBorder(reg)) + continue; + + // Small region with more than 1 connection. + // Or region which is not connected to a border at all. + // Find smallest neighbour region that connects to this one. + int smallest = 0xfffffff; + unsigned short mergeId = reg.id; + for (int j = 0; j < reg.connections.size(); ++j) + { + if (reg.connections[j] & RC_BORDER_REG) continue; + rcRegion& mreg = regions[reg.connections[j]]; + if (mreg.id == 0 || (mreg.id & RC_BORDER_REG) || mreg.overlap) continue; + if (mreg.spanCount < smallest && + canMergeWithRegion(reg, mreg) && + canMergeWithRegion(mreg, reg)) + { + smallest = mreg.spanCount; + mergeId = mreg.id; + } + } + // Found new id. + if (mergeId != reg.id) + { + unsigned short oldId = reg.id; + rcRegion& target = regions[mergeId]; + + // Merge neighbours. + if (mergeRegions(target, reg)) + { + // Fixup regions pointing to current region. + for (int j = 0; j < nreg; ++j) + { + if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue; + // If another region was already merged into current region + // change the nid of the previous region too. + if (regions[j].id == oldId) + regions[j].id = mergeId; + // Replace the current region with the new one if the + // current regions is neighbour. + replaceNeighbour(regions[j], oldId, mergeId); + } + mergeCount++; + } + } + } + } + while (mergeCount > 0); + + // Compress region Ids. + for (int i = 0; i < nreg; ++i) + { + regions[i].remap = false; + if (regions[i].id == 0) continue; // Skip nil regions. + if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. + regions[i].remap = true; + } + + unsigned short regIdGen = 0; + for (int i = 0; i < nreg; ++i) + { + if (!regions[i].remap) + continue; + unsigned short oldId = regions[i].id; + unsigned short newId = ++regIdGen; + for (int j = i; j < nreg; ++j) + { + if (regions[j].id == oldId) + { + regions[j].id = newId; + regions[j].remap = false; + } + } + } + maxRegionId = regIdGen; + + // Remap regions. + for (int i = 0; i < chf.spanCount; ++i) + { + if ((srcReg[i] & RC_BORDER_REG) == 0) + srcReg[i] = regions[srcReg[i]].id; + } + + // Return regions that we found to be overlapping. + for (int i = 0; i < nreg; ++i) + if (regions[i].overlap) + overlaps.push(regions[i].id); + + for (int i = 0; i < nreg; ++i) + regions[i].~rcRegion(); + rcFree(regions); + + + return true; +} + + +static void addUniqueConnection(rcRegion& reg, int n) +{ + for (int i = 0; i < reg.connections.size(); ++i) + if (reg.connections[i] == n) + return; + reg.connections.push(n); +} + +static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea, + unsigned short& maxRegionId, + rcCompactHeightfield& chf, + unsigned short* srcReg, rcIntArray& /*overlaps*/) +{ + const int w = chf.width; + const int h = chf.height; + + const int nreg = maxRegionId+1; + rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP); + if (!regions) + { + ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg); + return false; + } + + // Construct regions + for (int i = 0; i < nreg; ++i) + new(®ions[i]) rcRegion((unsigned short)i); + + // Find region neighbours and overlapping regions. + rcIntArray lregs(32); + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + + lregs.resize(0); + + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + const unsigned short ri = srcReg[i]; + if (ri == 0 || ri >= nreg) continue; + rcRegion& reg = regions[ri]; + + reg.spanCount++; + + reg.ymin = rcMin(reg.ymin, s.y); + reg.ymax = rcMax(reg.ymax, s.y); + + // Collect all region layers. + lregs.push(ri); + + // Update neighbours + for (int dir = 0; dir < 4; ++dir) + { + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); + const unsigned short rai = srcReg[ai]; + if (rai > 0 && rai < nreg && rai != ri) + addUniqueConnection(reg, rai); + if (rai & RC_BORDER_REG) + reg.connectsToBorder = true; + } + } + + } + + // Update overlapping regions. + for (int i = 0; i < lregs.size()-1; ++i) + { + for (int j = i+1; j < lregs.size(); ++j) + { + if (lregs[i] != lregs[j]) + { + rcRegion& ri = regions[lregs[i]]; + rcRegion& rj = regions[lregs[j]]; + addUniqueFloorRegion(ri, lregs[j]); + addUniqueFloorRegion(rj, lregs[i]); + } + } + } + + } + } + + // Create 2D layers from regions. + unsigned short layerId = 1; + + for (int i = 0; i < nreg; ++i) + regions[i].id = 0; + + // Merge montone regions to create non-overlapping areas. + rcIntArray stack(32); + for (int i = 1; i < nreg; ++i) + { + rcRegion& root = regions[i]; + // Skip already visited. + if (root.id != 0) + continue; + + // Start search. + root.id = layerId; + + stack.resize(0); + stack.push(i); + + while (stack.size() > 0) + { + // Pop front + rcRegion& reg = regions[stack[0]]; + for (int j = 0; j < stack.size()-1; ++j) + stack[j] = stack[j+1]; + stack.resize(stack.size()-1); + + const int ncons = (int)reg.connections.size(); + for (int j = 0; j < ncons; ++j) + { + const int nei = reg.connections[j]; + rcRegion& regn = regions[nei]; + // Skip already visited. + if (regn.id != 0) + continue; + // Skip if the neighbour is overlapping root region. + bool overlap = false; + for (int k = 0; k < root.floors.size(); k++) + { + if (root.floors[k] == nei) + { + overlap = true; + break; + } + } + if (overlap) + continue; + + // Deepen + stack.push(nei); + + // Mark layer id + regn.id = layerId; + // Merge current layers to root. + for (int k = 0; k < regn.floors.size(); ++k) + addUniqueFloorRegion(root, regn.floors[k]); + root.ymin = rcMin(root.ymin, regn.ymin); + root.ymax = rcMax(root.ymax, regn.ymax); + root.spanCount += regn.spanCount; + regn.spanCount = 0; + root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder; + } + } + + layerId++; + } + + // Remove small regions + for (int i = 0; i < nreg; ++i) + { + if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder) + { + unsigned short reg = regions[i].id; + for (int j = 0; j < nreg; ++j) + if (regions[j].id == reg) + regions[j].id = 0; + } + } + + // Compress region Ids. + for (int i = 0; i < nreg; ++i) + { + regions[i].remap = false; + if (regions[i].id == 0) continue; // Skip nil regions. + if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. + regions[i].remap = true; + } + + unsigned short regIdGen = 0; + for (int i = 0; i < nreg; ++i) + { + if (!regions[i].remap) + continue; + unsigned short oldId = regions[i].id; + unsigned short newId = ++regIdGen; + for (int j = i; j < nreg; ++j) + { + if (regions[j].id == oldId) + { + regions[j].id = newId; + regions[j].remap = false; + } + } + } + maxRegionId = regIdGen; + + // Remap regions. + for (int i = 0; i < chf.spanCount; ++i) + { + if ((srcReg[i] & RC_BORDER_REG) == 0) + srcReg[i] = regions[srcReg[i]].id; + } + + for (int i = 0; i < nreg; ++i) + regions[i].~rcRegion(); + rcFree(regions); + + return true; +} + + + +/// @par +/// +/// This is usually the second to the last step in creating a fully built +/// compact heightfield. This step is required before regions are built +/// using #rcBuildRegions or #rcBuildRegionsMonotone. +/// +/// After this step, the distance data is available via the rcCompactHeightfield::maxDistance +/// and rcCompactHeightfield::dist fields. +/// +/// @see rcCompactHeightfield, rcBuildRegions, rcBuildRegionsMonotone +bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf) +{ + rcAssert(ctx); + + rcScopedTimer timer(ctx, RC_TIMER_BUILD_DISTANCEFIELD); + + if (chf.dist) + { + rcFree(chf.dist); + chf.dist = 0; + } + + unsigned short* src = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP); + if (!src) + { + ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'src' (%d).", chf.spanCount); + return false; + } + unsigned short* dst = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP); + if (!dst) + { + ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dst' (%d).", chf.spanCount); + rcFree(src); + return false; + } + + unsigned short maxDist = 0; + + { + rcScopedTimer timerDist(ctx, RC_TIMER_BUILD_DISTANCEFIELD_DIST); + + calculateDistanceField(chf, src, maxDist); + chf.maxDistance = maxDist; + } + + { + rcScopedTimer timerBlur(ctx, RC_TIMER_BUILD_DISTANCEFIELD_BLUR); + + // Blur + if (boxBlur(chf, 1, src, dst) != src) + rcSwap(src, dst); + + // Store distance. + chf.dist = src; + } + + rcFree(dst); + + return true; +} + +static void paintRectRegion(int minx, int maxx, int miny, int maxy, unsigned short regId, + rcCompactHeightfield& chf, unsigned short* srcReg) +{ + const int w = chf.width; + for (int y = miny; y < maxy; ++y) + { + for (int x = minx; x < maxx; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + if (chf.areas[i] != RC_NULL_AREA) + srcReg[i] = regId; + } + } + } +} + + +static const unsigned short RC_NULL_NEI = 0xffff; + +struct rcSweepSpan +{ + unsigned short rid; // row id + unsigned short id; // region id + unsigned short ns; // number samples + unsigned short nei; // neighbour id +}; + +/// @par +/// +/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour. +/// Contours will form simple polygons. +/// +/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be +/// re-assigned to the zero (null) region. +/// +/// Partitioning can result in smaller than necessary regions. @p mergeRegionArea helps +/// reduce unecessarily small regions. +/// +/// See the #rcConfig documentation for more information on the configuration parameters. +/// +/// The region data will be available via the rcCompactHeightfield::maxRegions +/// and rcCompactSpan::reg fields. +/// +/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions. +/// +/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig +bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, + const int borderSize, const int minRegionArea, const int mergeRegionArea) +{ + rcAssert(ctx); + + rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); + + const int w = chf.width; + const int h = chf.height; + unsigned short id = 1; + + rcScopedDelete<unsigned short> srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP)); + if (!srcReg) + { + ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount); + return false; + } + memset(srcReg,0,sizeof(unsigned short)*chf.spanCount); + + const int nsweeps = rcMax(chf.width,chf.height); + rcScopedDelete<rcSweepSpan> sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP)); + if (!sweeps) + { + ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps); + return false; + } + + + // Mark border regions. + if (borderSize > 0) + { + // Make sure border will not overflow. + const int bw = rcMin(w, borderSize); + const int bh = rcMin(h, borderSize); + // Paint regions + paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++; + + chf.borderSize = borderSize; + } + + rcIntArray prev(256); + + // Sweep one line at a time. + for (int y = borderSize; y < h-borderSize; ++y) + { + // Collect spans from this row. + prev.resize(id+1); + memset(&prev[0],0,sizeof(int)*id); + unsigned short rid = 1; + + for (int x = borderSize; x < w-borderSize; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + if (chf.areas[i] == RC_NULL_AREA) continue; + + // -x + unsigned short previd = 0; + if (rcGetCon(s, 0) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(0); + const int ay = y + rcGetDirOffsetY(0); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); + if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) + previd = srcReg[ai]; + } + + if (!previd) + { + previd = rid++; + sweeps[previd].rid = previd; + sweeps[previd].ns = 0; + sweeps[previd].nei = 0; + } + + // -y + if (rcGetCon(s,3) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(3); + const int ay = y + rcGetDirOffsetY(3); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); + if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) + { + unsigned short nr = srcReg[ai]; + if (!sweeps[previd].nei || sweeps[previd].nei == nr) + { + sweeps[previd].nei = nr; + sweeps[previd].ns++; + prev[nr]++; + } + else + { + sweeps[previd].nei = RC_NULL_NEI; + } + } + } + + srcReg[i] = previd; + } + } + + // Create unique ID. + for (int i = 1; i < rid; ++i) + { + if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 && + prev[sweeps[i].nei] == (int)sweeps[i].ns) + { + sweeps[i].id = sweeps[i].nei; + } + else + { + sweeps[i].id = id++; + } + } + + // Remap IDs + for (int x = borderSize; x < w-borderSize; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + if (srcReg[i] > 0 && srcReg[i] < rid) + srcReg[i] = sweeps[srcReg[i]].id; + } + } + } + + + { + rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); + + // Merge regions and filter out small regions. + rcIntArray overlaps; + chf.maxRegions = id; + if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps)) + return false; + + // Monotone partitioning does not generate overlapping regions. + } + + // Store the result out. + for (int i = 0; i < chf.spanCount; ++i) + chf.spans[i].reg = srcReg[i]; + + return true; +} + +/// @par +/// +/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour. +/// Contours will form simple polygons. +/// +/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be +/// re-assigned to the zero (null) region. +/// +/// Watershed partitioning can result in smaller than necessary regions, especially in diagonal corridors. +/// @p mergeRegionArea helps reduce unecessarily small regions. +/// +/// See the #rcConfig documentation for more information on the configuration parameters. +/// +/// The region data will be available via the rcCompactHeightfield::maxRegions +/// and rcCompactSpan::reg fields. +/// +/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions. +/// +/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig +bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, + const int borderSize, const int minRegionArea, const int mergeRegionArea) +{ + rcAssert(ctx); + + rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); + + const int w = chf.width; + const int h = chf.height; + + rcScopedDelete<unsigned short> buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP)); + if (!buf) + { + ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'tmp' (%d).", chf.spanCount*4); + return false; + } + + ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED); + + const int LOG_NB_STACKS = 3; + const int NB_STACKS = 1 << LOG_NB_STACKS; + rcIntArray lvlStacks[NB_STACKS]; + for (int i=0; i<NB_STACKS; ++i) + lvlStacks[i].resize(1024); + + rcIntArray stack(1024); + rcIntArray visited(1024); + + unsigned short* srcReg = buf; + unsigned short* srcDist = buf+chf.spanCount; + unsigned short* dstReg = buf+chf.spanCount*2; + unsigned short* dstDist = buf+chf.spanCount*3; + + memset(srcReg, 0, sizeof(unsigned short)*chf.spanCount); + memset(srcDist, 0, sizeof(unsigned short)*chf.spanCount); + + unsigned short regionId = 1; + unsigned short level = (chf.maxDistance+1) & ~1; + + // TODO: Figure better formula, expandIters defines how much the + // watershed "overflows" and simplifies the regions. Tying it to + // agent radius was usually good indication how greedy it could be. +// const int expandIters = 4 + walkableRadius * 2; + const int expandIters = 8; + + if (borderSize > 0) + { + // Make sure border will not overflow. + const int bw = rcMin(w, borderSize); + const int bh = rcMin(h, borderSize); + + // Paint regions + paintRectRegion(0, bw, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; + paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; + paintRectRegion(0, w, 0, bh, regionId|RC_BORDER_REG, chf, srcReg); regionId++; + paintRectRegion(0, w, h-bh, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; + + chf.borderSize = borderSize; + } + + int sId = -1; + while (level > 0) + { + level = level >= 2 ? level-2 : 0; + sId = (sId+1) & (NB_STACKS-1); + +// ctx->startTimer(RC_TIMER_DIVIDE_TO_LEVELS); + + if (sId == 0) + sortCellsByLevel(level, chf, srcReg, NB_STACKS, lvlStacks, 1); + else + appendStacks(lvlStacks[sId-1], lvlStacks[sId], srcReg); // copy left overs from last level + +// ctx->stopTimer(RC_TIMER_DIVIDE_TO_LEVELS); + + { + rcScopedTimer timerExpand(ctx, RC_TIMER_BUILD_REGIONS_EXPAND); + + // Expand current regions until no empty connected cells found. + if (expandRegions(expandIters, level, chf, srcReg, srcDist, dstReg, dstDist, lvlStacks[sId], false) != srcReg) + { + rcSwap(srcReg, dstReg); + rcSwap(srcDist, dstDist); + } + } + + { + rcScopedTimer timerFloor(ctx, RC_TIMER_BUILD_REGIONS_FLOOD); + + // Mark new regions with IDs. + for (int j = 0; j<lvlStacks[sId].size(); j += 3) + { + int x = lvlStacks[sId][j]; + int y = lvlStacks[sId][j+1]; + int i = lvlStacks[sId][j+2]; + if (i >= 0 && srcReg[i] == 0) + { + if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack)) + { + if (regionId == 0xFFFF) + { + ctx->log(RC_LOG_ERROR, "rcBuildRegions: Region ID overflow"); + return false; + } + + regionId++; + } + } + } + } + } + + // Expand current regions until no empty connected cells found. + if (expandRegions(expandIters*8, 0, chf, srcReg, srcDist, dstReg, dstDist, stack, true) != srcReg) + { + rcSwap(srcReg, dstReg); + rcSwap(srcDist, dstDist); + } + + ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED); + + { + rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); + + // Merge regions and filter out smalle regions. + rcIntArray overlaps; + chf.maxRegions = regionId; + if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps)) + return false; + + // If overlapping regions were found during merging, split those regions. + if (overlaps.size() > 0) + { + ctx->log(RC_LOG_ERROR, "rcBuildRegions: %d overlapping regions.", overlaps.size()); + } + } + + // Write the result out. + for (int i = 0; i < chf.spanCount; ++i) + chf.spans[i].reg = srcReg[i]; + + return true; +} + + +bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, + const int borderSize, const int minRegionArea) +{ + rcAssert(ctx); + + rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); + + const int w = chf.width; + const int h = chf.height; + unsigned short id = 1; + + rcScopedDelete<unsigned short> srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP)); + if (!srcReg) + { + ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'src' (%d).", chf.spanCount); + return false; + } + memset(srcReg,0,sizeof(unsigned short)*chf.spanCount); + + const int nsweeps = rcMax(chf.width,chf.height); + rcScopedDelete<rcSweepSpan> sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP)); + if (!sweeps) + { + ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'sweeps' (%d).", nsweeps); + return false; + } + + + // Mark border regions. + if (borderSize > 0) + { + // Make sure border will not overflow. + const int bw = rcMin(w, borderSize); + const int bh = rcMin(h, borderSize); + // Paint regions + paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++; + + chf.borderSize = borderSize; + } + + rcIntArray prev(256); + + // Sweep one line at a time. + for (int y = borderSize; y < h-borderSize; ++y) + { + // Collect spans from this row. + prev.resize(id+1); + memset(&prev[0],0,sizeof(int)*id); + unsigned short rid = 1; + + for (int x = borderSize; x < w-borderSize; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + if (chf.areas[i] == RC_NULL_AREA) continue; + + // -x + unsigned short previd = 0; + if (rcGetCon(s, 0) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(0); + const int ay = y + rcGetDirOffsetY(0); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); + if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) + previd = srcReg[ai]; + } + + if (!previd) + { + previd = rid++; + sweeps[previd].rid = previd; + sweeps[previd].ns = 0; + sweeps[previd].nei = 0; + } + + // -y + if (rcGetCon(s,3) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(3); + const int ay = y + rcGetDirOffsetY(3); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); + if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) + { + unsigned short nr = srcReg[ai]; + if (!sweeps[previd].nei || sweeps[previd].nei == nr) + { + sweeps[previd].nei = nr; + sweeps[previd].ns++; + prev[nr]++; + } + else + { + sweeps[previd].nei = RC_NULL_NEI; + } + } + } + + srcReg[i] = previd; + } + } + + // Create unique ID. + for (int i = 1; i < rid; ++i) + { + if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 && + prev[sweeps[i].nei] == (int)sweeps[i].ns) + { + sweeps[i].id = sweeps[i].nei; + } + else + { + sweeps[i].id = id++; + } + } + + // Remap IDs + for (int x = borderSize; x < w-borderSize; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + if (srcReg[i] > 0 && srcReg[i] < rid) + srcReg[i] = sweeps[srcReg[i]].id; + } + } + } + + + { + rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); + + // Merge monotone regions to layers and remove small regions. + rcIntArray overlaps; + chf.maxRegions = id; + if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg, overlaps)) + return false; + } + + + // Store the result out. + for (int i = 0; i < chf.spanCount; ++i) + chf.spans[i].reg = srcReg[i]; + + return true; +} |