summaryrefslogtreecommitdiff
path: root/thirdparty/opus/celt/arm
diff options
context:
space:
mode:
authorRémi Verschelde <rverschelde@gmail.com>2019-11-18 09:56:09 +0100
committerRémi Verschelde <rverschelde@gmail.com>2019-11-18 09:56:09 +0100
commit974646309bfe09c48c8a72bf751b0ea6ad8b5bc5 (patch)
tree1b6e151a2656a43ab46a5e967598fec62fb34799 /thirdparty/opus/celt/arm
parent58ca9f17a2650bb381972210d1babbf34ac6819c (diff)
Revert "opus: Packaging fixups after #33311"
This reverts commit 0387657fa4c3c71c6cb427ce7ed8bbcdf17ba7e1.
Diffstat (limited to 'thirdparty/opus/celt/arm')
-rw-r--r--thirdparty/opus/celt/arm/armopts.s37
-rw-r--r--thirdparty/opus/celt/arm/celt_pitch_xcorr_arm-gnu.S555
2 files changed, 0 insertions, 592 deletions
diff --git a/thirdparty/opus/celt/arm/armopts.s b/thirdparty/opus/celt/arm/armopts.s
deleted file mode 100644
index fb9196072a..0000000000
--- a/thirdparty/opus/celt/arm/armopts.s
+++ /dev/null
@@ -1,37 +0,0 @@
-/* Copyright (C) 2013 Mozilla Corporation */
-/*
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-
-; Set the following to 1 if we have EDSP instructions
-; (LDRD/STRD, etc., ARMv5E and later).
-OPUS_ARM_MAY_HAVE_EDSP *
-
-; Set the following to 1 if we have ARMv6 media instructions.
-OPUS_ARM_MAY_HAVE_MEDIA *
-
-; Set the following to 1 if we have NEON (some ARMv7)
-OPUS_ARM_MAY_HAVE_NEON *
-
-END
diff --git a/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm-gnu.S b/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm-gnu.S
deleted file mode 100644
index 10668e54a5..0000000000
--- a/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm-gnu.S
+++ /dev/null
@@ -1,555 +0,0 @@
- .syntax unified
-@ Copyright (c) 2007-2008 CSIRO
-@ Copyright (c) 2007-2009 Xiph.Org Foundation
-@ Copyright (c) 2013 Parrot
-@ Written by Aurélien Zanelli
-@
-@ Redistribution and use in source and binary forms, with or without
-@ modification, are permitted provided that the following conditions
-@ are met:
-@
-@ - Redistributions of source code must retain the above copyright
-@ notice, this list of conditions and the following disclaimer.
-@
-@ - Redistributions in binary form must reproduce the above copyright
-@ notice, this list of conditions and the following disclaimer in the
-@ documentation and/or other materials provided with the distribution.
-@
-@ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-@ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-@ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-@ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-@ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-@ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-@ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-@ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-@ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-@ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- .text; .p2align 2; .arch armv7-a
- .fpu neon
- .object_arch armv4t
-
- .include "celt/arm/armopts-gnu.S"
-
- .if OPUS_ARM_MAY_HAVE_EDSP
- .global celt_pitch_xcorr_edsp
- .endif
-
- .if OPUS_ARM_MAY_HAVE_NEON
- .global celt_pitch_xcorr_neon
- .endif
-
- .if OPUS_ARM_MAY_HAVE_NEON
-
-@ Compute sum[k]=sum(x[j]*y[j+k],j=0...len-1), k=0...3
- .type xcorr_kernel_neon, %function; xcorr_kernel_neon: @ PROC
-xcorr_kernel_neon_start:
- @ input:
- @ r3 = int len
- @ r4 = opus_val16 *x
- @ r5 = opus_val16 *y
- @ q0 = opus_val32 sum[4]
- @ output:
- @ q0 = opus_val32 sum[4]
- @ preserved: r0-r3, r6-r11, d2, q4-q7, q9-q15
- @ internal usage:
- @ r12 = int j
- @ d3 = y_3|y_2|y_1|y_0
- @ q2 = y_B|y_A|y_9|y_8|y_7|y_6|y_5|y_4
- @ q3 = x_7|x_6|x_5|x_4|x_3|x_2|x_1|x_0
- @ q8 = scratch
- @
- @ Load y[0...3]
- @ This requires len>0 to always be valid (which we assert in the C code).
- VLD1.16 {d5}, [r5]!
- SUBS r12, r3, #8
- BLE xcorr_kernel_neon_process4
-@ Process 8 samples at a time.
-@ This loop loads one y value more than we actually need. Therefore we have to
-@ stop as soon as there are 8 or fewer samples left (instead of 7), to avoid
-@ reading past the end of the array.
-xcorr_kernel_neon_process8:
- @ This loop has 19 total instructions (10 cycles to issue, minimum), with
- @ - 2 cycles of ARM insrtuctions,
- @ - 10 cycles of load/store/byte permute instructions, and
- @ - 9 cycles of data processing instructions.
- @ On a Cortex A8, we dual-issue the maximum amount (9 cycles) between the
- @ latter two categories, meaning the whole loop should run in 10 cycles per
- @ iteration, barring cache misses.
- @
- @ Load x[0...7]
- VLD1.16 {d6, d7}, [r4]!
- @ Unlike VMOV, VAND is a data processsing instruction (and doesn't get
- @ assembled to VMOV, like VORR would), so it dual-issues with the prior VLD1.
- VAND d3, d5, d5
- SUBS r12, r12, #8
- @ Load y[4...11]
- VLD1.16 {d4, d5}, [r5]!
- VMLAL.S16 q0, d3, d6[0]
- VEXT.16 d16, d3, d4, #1
- VMLAL.S16 q0, d4, d7[0]
- VEXT.16 d17, d4, d5, #1
- VMLAL.S16 q0, d16, d6[1]
- VEXT.16 d16, d3, d4, #2
- VMLAL.S16 q0, d17, d7[1]
- VEXT.16 d17, d4, d5, #2
- VMLAL.S16 q0, d16, d6[2]
- VEXT.16 d16, d3, d4, #3
- VMLAL.S16 q0, d17, d7[2]
- VEXT.16 d17, d4, d5, #3
- VMLAL.S16 q0, d16, d6[3]
- VMLAL.S16 q0, d17, d7[3]
- BGT xcorr_kernel_neon_process8
-@ Process 4 samples here if we have > 4 left (still reading one extra y value).
-xcorr_kernel_neon_process4:
- ADDS r12, r12, #4
- BLE xcorr_kernel_neon_process2
- @ Load x[0...3]
- VLD1.16 d6, [r4]!
- @ Use VAND since it's a data processing instruction again.
- VAND d4, d5, d5
- SUB r12, r12, #4
- @ Load y[4...7]
- VLD1.16 d5, [r5]!
- VMLAL.S16 q0, d4, d6[0]
- VEXT.16 d16, d4, d5, #1
- VMLAL.S16 q0, d16, d6[1]
- VEXT.16 d16, d4, d5, #2
- VMLAL.S16 q0, d16, d6[2]
- VEXT.16 d16, d4, d5, #3
- VMLAL.S16 q0, d16, d6[3]
-@ Process 2 samples here if we have > 2 left (still reading one extra y value).
-xcorr_kernel_neon_process2:
- ADDS r12, r12, #2
- BLE xcorr_kernel_neon_process1
- @ Load x[0...1]
- VLD2.16 {d6[],d7[]}, [r4]!
- @ Use VAND since it's a data processing instruction again.
- VAND d4, d5, d5
- SUB r12, r12, #2
- @ Load y[4...5]
- VLD1.32 {d5[]}, [r5]!
- VMLAL.S16 q0, d4, d6
- VEXT.16 d16, d4, d5, #1
- @ Replace bottom copy of {y5,y4} in d5 with {y3,y2} from d4, using VSRI
- @ instead of VEXT, since it's a data-processing instruction.
- VSRI.64 d5, d4, #32
- VMLAL.S16 q0, d16, d7
-@ Process 1 sample using the extra y value we loaded above.
-xcorr_kernel_neon_process1:
- @ Load next *x
- VLD1.16 {d6[]}, [r4]!
- ADDS r12, r12, #1
- @ y[0...3] are left in d5 from prior iteration(s) (if any)
- VMLAL.S16 q0, d5, d6
- MOVLE pc, lr
-@ Now process 1 last sample, not reading ahead.
- @ Load last *y
- VLD1.16 {d4[]}, [r5]!
- VSRI.64 d4, d5, #16
- @ Load last *x
- VLD1.16 {d6[]}, [r4]!
- VMLAL.S16 q0, d4, d6
- MOV pc, lr
- .size xcorr_kernel_neon, .-xcorr_kernel_neon @ ENDP
-
-@ opus_val32 celt_pitch_xcorr_neon(opus_val16 *_x, opus_val16 *_y,
-@ opus_val32 *xcorr, int len, int max_pitch, int arch)
- .type celt_pitch_xcorr_neon, %function; celt_pitch_xcorr_neon: @ PROC
- @ input:
- @ r0 = opus_val16 *_x
- @ r1 = opus_val16 *_y
- @ r2 = opus_val32 *xcorr
- @ r3 = int len
- @ output:
- @ r0 = int maxcorr
- @ internal usage:
- @ r4 = opus_val16 *x (for xcorr_kernel_neon())
- @ r5 = opus_val16 *y (for xcorr_kernel_neon())
- @ r6 = int max_pitch
- @ r12 = int j
- @ q15 = int maxcorr[4] (q15 is not used by xcorr_kernel_neon())
- @ ignored:
- @ int arch
- STMFD sp!, {r4-r6, lr}
- LDR r6, [sp, #16]
- VMOV.S32 q15, #1
- @ if (max_pitch < 4) goto celt_pitch_xcorr_neon_process4_done
- SUBS r6, r6, #4
- BLT celt_pitch_xcorr_neon_process4_done
-celt_pitch_xcorr_neon_process4:
- @ xcorr_kernel_neon parameters:
- @ r3 = len, r4 = _x, r5 = _y, q0 = {0, 0, 0, 0}
- MOV r4, r0
- MOV r5, r1
- VEOR q0, q0, q0
- @ xcorr_kernel_neon only modifies r4, r5, r12, and q0...q3.
- @ So we don't save/restore any other registers.
- BL xcorr_kernel_neon_start
- SUBS r6, r6, #4
- VST1.32 {q0}, [r2]!
- @ _y += 4
- ADD r1, r1, #8
- VMAX.S32 q15, q15, q0
- @ if (max_pitch < 4) goto celt_pitch_xcorr_neon_process4_done
- BGE celt_pitch_xcorr_neon_process4
-@ We have less than 4 sums left to compute.
-celt_pitch_xcorr_neon_process4_done:
- ADDS r6, r6, #4
- @ Reduce maxcorr to a single value
- VMAX.S32 d30, d30, d31
- VPMAX.S32 d30, d30, d30
- @ if (max_pitch <= 0) goto celt_pitch_xcorr_neon_done
- BLE celt_pitch_xcorr_neon_done
-@ Now compute each remaining sum one at a time.
-celt_pitch_xcorr_neon_process_remaining:
- MOV r4, r0
- MOV r5, r1
- VMOV.I32 q0, #0
- SUBS r12, r3, #8
- BLT celt_pitch_xcorr_neon_process_remaining4
-@ Sum terms 8 at a time.
-celt_pitch_xcorr_neon_process_remaining_loop8:
- @ Load x[0...7]
- VLD1.16 {q1}, [r4]!
- @ Load y[0...7]
- VLD1.16 {q2}, [r5]!
- SUBS r12, r12, #8
- VMLAL.S16 q0, d4, d2
- VMLAL.S16 q0, d5, d3
- BGE celt_pitch_xcorr_neon_process_remaining_loop8
-@ Sum terms 4 at a time.
-celt_pitch_xcorr_neon_process_remaining4:
- ADDS r12, r12, #4
- BLT celt_pitch_xcorr_neon_process_remaining4_done
- @ Load x[0...3]
- VLD1.16 {d2}, [r4]!
- @ Load y[0...3]
- VLD1.16 {d3}, [r5]!
- SUB r12, r12, #4
- VMLAL.S16 q0, d3, d2
-celt_pitch_xcorr_neon_process_remaining4_done:
- @ Reduce the sum to a single value.
- VADD.S32 d0, d0, d1
- VPADDL.S32 d0, d0
- ADDS r12, r12, #4
- BLE celt_pitch_xcorr_neon_process_remaining_loop_done
-@ Sum terms 1 at a time.
-celt_pitch_xcorr_neon_process_remaining_loop1:
- VLD1.16 {d2[]}, [r4]!
- VLD1.16 {d3[]}, [r5]!
- SUBS r12, r12, #1
- VMLAL.S16 q0, d2, d3
- BGT celt_pitch_xcorr_neon_process_remaining_loop1
-celt_pitch_xcorr_neon_process_remaining_loop_done:
- VST1.32 {d0[0]}, [r2]!
- VMAX.S32 d30, d30, d0
- SUBS r6, r6, #1
- @ _y++
- ADD r1, r1, #2
- @ if (--max_pitch > 0) goto celt_pitch_xcorr_neon_process_remaining
- BGT celt_pitch_xcorr_neon_process_remaining
-celt_pitch_xcorr_neon_done:
- VMOV.32 r0, d30[0]
- LDMFD sp!, {r4-r6, pc}
- .size celt_pitch_xcorr_neon, .-celt_pitch_xcorr_neon @ ENDP
-
- .endif
-
- .if OPUS_ARM_MAY_HAVE_EDSP
-
-@ This will get used on ARMv7 devices without NEON, so it has been optimized
-@ to take advantage of dual-issuing where possible.
- .type xcorr_kernel_edsp, %function; xcorr_kernel_edsp: @ PROC
-xcorr_kernel_edsp_start:
- @ input:
- @ r3 = int len
- @ r4 = opus_val16 *_x (must be 32-bit aligned)
- @ r5 = opus_val16 *_y (must be 32-bit aligned)
- @ r6...r9 = opus_val32 sum[4]
- @ output:
- @ r6...r9 = opus_val32 sum[4]
- @ preserved: r0-r5
- @ internal usage
- @ r2 = int j
- @ r12,r14 = opus_val16 x[4]
- @ r10,r11 = opus_val16 y[4]
- STMFD sp!, {r2,r4,r5,lr}
- LDR r10, [r5], #4 @ Load y[0...1]
- SUBS r2, r3, #4 @ j = len-4
- LDR r11, [r5], #4 @ Load y[2...3]
- BLE xcorr_kernel_edsp_process4_done
- LDR r12, [r4], #4 @ Load x[0...1]
- @ Stall
-xcorr_kernel_edsp_process4:
- @ The multiplies must issue from pipeline 0, and can't dual-issue with each
- @ other. Every other instruction here dual-issues with a multiply, and is
- @ thus "free". There should be no stalls in the body of the loop.
- SMLABB r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x_0,y_0)
- LDR r14, [r4], #4 @ Load x[2...3]
- SMLABT r7, r12, r10, r7 @ sum[1] = MAC16_16(sum[1],x_0,y_1)
- SUBS r2, r2, #4 @ j-=4
- SMLABB r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x_0,y_2)
- SMLABT r9, r12, r11, r9 @ sum[3] = MAC16_16(sum[3],x_0,y_3)
- SMLATT r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x_1,y_1)
- LDR r10, [r5], #4 @ Load y[4...5]
- SMLATB r7, r12, r11, r7 @ sum[1] = MAC16_16(sum[1],x_1,y_2)
- SMLATT r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x_1,y_3)
- SMLATB r9, r12, r10, r9 @ sum[3] = MAC16_16(sum[3],x_1,y_4)
- LDRGT r12, [r4], #4 @ Load x[0...1]
- SMLABB r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],x_2,y_2)
- SMLABT r7, r14, r11, r7 @ sum[1] = MAC16_16(sum[1],x_2,y_3)
- SMLABB r8, r14, r10, r8 @ sum[2] = MAC16_16(sum[2],x_2,y_4)
- SMLABT r9, r14, r10, r9 @ sum[3] = MAC16_16(sum[3],x_2,y_5)
- SMLATT r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],x_3,y_3)
- LDR r11, [r5], #4 @ Load y[6...7]
- SMLATB r7, r14, r10, r7 @ sum[1] = MAC16_16(sum[1],x_3,y_4)
- SMLATT r8, r14, r10, r8 @ sum[2] = MAC16_16(sum[2],x_3,y_5)
- SMLATB r9, r14, r11, r9 @ sum[3] = MAC16_16(sum[3],x_3,y_6)
- BGT xcorr_kernel_edsp_process4
-xcorr_kernel_edsp_process4_done:
- ADDS r2, r2, #4
- BLE xcorr_kernel_edsp_done
- LDRH r12, [r4], #2 @ r12 = *x++
- SUBS r2, r2, #1 @ j--
- @ Stall
- SMLABB r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x,y_0)
- LDRHGT r14, [r4], #2 @ r14 = *x++
- SMLABT r7, r12, r10, r7 @ sum[1] = MAC16_16(sum[1],x,y_1)
- SMLABB r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x,y_2)
- SMLABT r9, r12, r11, r9 @ sum[3] = MAC16_16(sum[3],x,y_3)
- BLE xcorr_kernel_edsp_done
- SMLABT r6, r14, r10, r6 @ sum[0] = MAC16_16(sum[0],x,y_1)
- SUBS r2, r2, #1 @ j--
- SMLABB r7, r14, r11, r7 @ sum[1] = MAC16_16(sum[1],x,y_2)
- LDRH r10, [r5], #2 @ r10 = y_4 = *y++
- SMLABT r8, r14, r11, r8 @ sum[2] = MAC16_16(sum[2],x,y_3)
- LDRHGT r12, [r4], #2 @ r12 = *x++
- SMLABB r9, r14, r10, r9 @ sum[3] = MAC16_16(sum[3],x,y_4)
- BLE xcorr_kernel_edsp_done
- SMLABB r6, r12, r11, r6 @ sum[0] = MAC16_16(sum[0],tmp,y_2)
- CMP r2, #1 @ j--
- SMLABT r7, r12, r11, r7 @ sum[1] = MAC16_16(sum[1],tmp,y_3)
- LDRH r2, [r5], #2 @ r2 = y_5 = *y++
- SMLABB r8, r12, r10, r8 @ sum[2] = MAC16_16(sum[2],tmp,y_4)
- LDRHGT r14, [r4] @ r14 = *x
- SMLABB r9, r12, r2, r9 @ sum[3] = MAC16_16(sum[3],tmp,y_5)
- BLE xcorr_kernel_edsp_done
- SMLABT r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],tmp,y_3)
- LDRH r11, [r5] @ r11 = y_6 = *y
- SMLABB r7, r14, r10, r7 @ sum[1] = MAC16_16(sum[1],tmp,y_4)
- SMLABB r8, r14, r2, r8 @ sum[2] = MAC16_16(sum[2],tmp,y_5)
- SMLABB r9, r14, r11, r9 @ sum[3] = MAC16_16(sum[3],tmp,y_6)
-xcorr_kernel_edsp_done:
- LDMFD sp!, {r2,r4,r5,pc}
- .size xcorr_kernel_edsp, .-xcorr_kernel_edsp @ ENDP
-
- .type celt_pitch_xcorr_edsp, %function; celt_pitch_xcorr_edsp: @ PROC
- @ input:
- @ r0 = opus_val16 *_x (must be 32-bit aligned)
- @ r1 = opus_val16 *_y (only needs to be 16-bit aligned)
- @ r2 = opus_val32 *xcorr
- @ r3 = int len
- @ output:
- @ r0 = maxcorr
- @ internal usage
- @ r4 = opus_val16 *x
- @ r5 = opus_val16 *y
- @ r6 = opus_val32 sum0
- @ r7 = opus_val32 sum1
- @ r8 = opus_val32 sum2
- @ r9 = opus_val32 sum3
- @ r1 = int max_pitch
- @ r12 = int j
- @ ignored:
- @ int arch
- STMFD sp!, {r4-r11, lr}
- MOV r5, r1
- LDR r1, [sp, #36]
- MOV r4, r0
- TST r5, #3
- @ maxcorr = 1
- MOV r0, #1
- BEQ celt_pitch_xcorr_edsp_process1u_done
-@ Compute one sum at the start to make y 32-bit aligned.
- SUBS r12, r3, #4
- @ r14 = sum = 0
- MOV r14, #0
- LDRH r8, [r5], #2
- BLE celt_pitch_xcorr_edsp_process1u_loop4_done
- LDR r6, [r4], #4
- MOV r8, r8, LSL #16
-celt_pitch_xcorr_edsp_process1u_loop4:
- LDR r9, [r5], #4
- SMLABT r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0)
- LDR r7, [r4], #4
- SMLATB r14, r6, r9, r14 @ sum = MAC16_16(sum, x_1, y_1)
- LDR r8, [r5], #4
- SMLABT r14, r7, r9, r14 @ sum = MAC16_16(sum, x_2, y_2)
- SUBS r12, r12, #4 @ j-=4
- SMLATB r14, r7, r8, r14 @ sum = MAC16_16(sum, x_3, y_3)
- LDRGT r6, [r4], #4
- BGT celt_pitch_xcorr_edsp_process1u_loop4
- MOV r8, r8, LSR #16
-celt_pitch_xcorr_edsp_process1u_loop4_done:
- ADDS r12, r12, #4
-celt_pitch_xcorr_edsp_process1u_loop1:
- LDRHGE r6, [r4], #2
- @ Stall
- SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, *x, *y)
- SUBSGE r12, r12, #1
- LDRHGT r8, [r5], #2
- BGT celt_pitch_xcorr_edsp_process1u_loop1
- @ Restore _x
- SUB r4, r4, r3, LSL #1
- @ Restore and advance _y
- SUB r5, r5, r3, LSL #1
- @ maxcorr = max(maxcorr, sum)
- CMP r0, r14
- ADD r5, r5, #2
- MOVLT r0, r14
- SUBS r1, r1, #1
- @ xcorr[i] = sum
- STR r14, [r2], #4
- BLE celt_pitch_xcorr_edsp_done
-celt_pitch_xcorr_edsp_process1u_done:
- @ if (max_pitch < 4) goto celt_pitch_xcorr_edsp_process2
- SUBS r1, r1, #4
- BLT celt_pitch_xcorr_edsp_process2
-celt_pitch_xcorr_edsp_process4:
- @ xcorr_kernel_edsp parameters:
- @ r3 = len, r4 = _x, r5 = _y, r6...r9 = sum[4] = {0, 0, 0, 0}
- MOV r6, #0
- MOV r7, #0
- MOV r8, #0
- MOV r9, #0
- BL xcorr_kernel_edsp_start @ xcorr_kernel_edsp(_x, _y+i, xcorr+i, len)
- @ maxcorr = max(maxcorr, sum0, sum1, sum2, sum3)
- CMP r0, r6
- @ _y+=4
- ADD r5, r5, #8
- MOVLT r0, r6
- CMP r0, r7
- MOVLT r0, r7
- CMP r0, r8
- MOVLT r0, r8
- CMP r0, r9
- MOVLT r0, r9
- STMIA r2!, {r6-r9}
- SUBS r1, r1, #4
- BGE celt_pitch_xcorr_edsp_process4
-celt_pitch_xcorr_edsp_process2:
- ADDS r1, r1, #2
- BLT celt_pitch_xcorr_edsp_process1a
- SUBS r12, r3, #4
- @ {r10, r11} = {sum0, sum1} = {0, 0}
- MOV r10, #0
- MOV r11, #0
- LDR r8, [r5], #4
- BLE celt_pitch_xcorr_edsp_process2_loop_done
- LDR r6, [r4], #4
- LDR r9, [r5], #4
-celt_pitch_xcorr_edsp_process2_loop4:
- SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0)
- LDR r7, [r4], #4
- SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1)
- SUBS r12, r12, #4 @ j-=4
- SMLATT r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_1, y_1)
- LDR r8, [r5], #4
- SMLATB r11, r6, r9, r11 @ sum1 = MAC16_16(sum1, x_1, y_2)
- LDRGT r6, [r4], #4
- SMLABB r10, r7, r9, r10 @ sum0 = MAC16_16(sum0, x_2, y_2)
- SMLABT r11, r7, r9, r11 @ sum1 = MAC16_16(sum1, x_2, y_3)
- SMLATT r10, r7, r9, r10 @ sum0 = MAC16_16(sum0, x_3, y_3)
- LDRGT r9, [r5], #4
- SMLATB r11, r7, r8, r11 @ sum1 = MAC16_16(sum1, x_3, y_4)
- BGT celt_pitch_xcorr_edsp_process2_loop4
-celt_pitch_xcorr_edsp_process2_loop_done:
- ADDS r12, r12, #2
- BLE celt_pitch_xcorr_edsp_process2_1
- LDR r6, [r4], #4
- @ Stall
- SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0)
- LDR r9, [r5], #4
- SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1)
- SUB r12, r12, #2
- SMLATT r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_1, y_1)
- MOV r8, r9
- SMLATB r11, r6, r9, r11 @ sum1 = MAC16_16(sum1, x_1, y_2)
-celt_pitch_xcorr_edsp_process2_1:
- LDRH r6, [r4], #2
- ADDS r12, r12, #1
- @ Stall
- SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0)
- LDRHGT r7, [r4], #2
- SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1)
- BLE celt_pitch_xcorr_edsp_process2_done
- LDRH r9, [r5], #2
- SMLABT r10, r7, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_1)
- SMLABB r11, r7, r9, r11 @ sum1 = MAC16_16(sum1, x_0, y_2)
-celt_pitch_xcorr_edsp_process2_done:
- @ Restore _x
- SUB r4, r4, r3, LSL #1
- @ Restore and advance _y
- SUB r5, r5, r3, LSL #1
- @ maxcorr = max(maxcorr, sum0)
- CMP r0, r10
- ADD r5, r5, #2
- MOVLT r0, r10
- SUB r1, r1, #2
- @ maxcorr = max(maxcorr, sum1)
- CMP r0, r11
- @ xcorr[i] = sum
- STR r10, [r2], #4
- MOVLT r0, r11
- STR r11, [r2], #4
-celt_pitch_xcorr_edsp_process1a:
- ADDS r1, r1, #1
- BLT celt_pitch_xcorr_edsp_done
- SUBS r12, r3, #4
- @ r14 = sum = 0
- MOV r14, #0
- BLT celt_pitch_xcorr_edsp_process1a_loop_done
- LDR r6, [r4], #4
- LDR r8, [r5], #4
- LDR r7, [r4], #4
- LDR r9, [r5], #4
-celt_pitch_xcorr_edsp_process1a_loop4:
- SMLABB r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0)
- SUBS r12, r12, #4 @ j-=4
- SMLATT r14, r6, r8, r14 @ sum = MAC16_16(sum, x_1, y_1)
- LDRGE r6, [r4], #4
- SMLABB r14, r7, r9, r14 @ sum = MAC16_16(sum, x_2, y_2)
- LDRGE r8, [r5], #4
- SMLATT r14, r7, r9, r14 @ sum = MAC16_16(sum, x_3, y_3)
- LDRGE r7, [r4], #4
- LDRGE r9, [r5], #4
- BGE celt_pitch_xcorr_edsp_process1a_loop4
-celt_pitch_xcorr_edsp_process1a_loop_done:
- ADDS r12, r12, #2
- LDRGE r6, [r4], #4
- LDRGE r8, [r5], #4
- @ Stall
- SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0)
- SUBGE r12, r12, #2
- SMLATTGE r14, r6, r8, r14 @ sum = MAC16_16(sum, x_1, y_1)
- ADDS r12, r12, #1
- LDRHGE r6, [r4], #2
- LDRHGE r8, [r5], #2
- @ Stall
- SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, *x, *y)
- @ maxcorr = max(maxcorr, sum)
- CMP r0, r14
- @ xcorr[i] = sum
- STR r14, [r2], #4
- MOVLT r0, r14
-celt_pitch_xcorr_edsp_done:
- LDMFD sp!, {r4-r11, pc}
- .size celt_pitch_xcorr_edsp, .-celt_pitch_xcorr_edsp @ ENDP
-
- .endif
-
-@ END:
- .section .note.GNU-stack,"",%progbits