summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/rnn/cell_gru.cpp
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2020-05-01 09:34:23 -0300
committerJuan Linietsky <reduzio@gmail.com>2020-05-10 15:59:09 -0300
commit1bea8e1eacc68bcedbd3f207395bccf11011dae2 (patch)
treeb75303a69491978c1e13360a3e6f355c5234dfe0 /thirdparty/oidn/mkl-dnn/src/cpu/rnn/cell_gru.cpp
parent6a0473bcc23c096ef9ee929632a209761c2668f6 (diff)
New lightmapper
-Added LocalVector (needed it) -Added stb_rect_pack (It's pretty cool, we could probably use it for other stuff too) -Fixes and changes all around the place -Added library for 128 bits fixed point (required for Delaunay3D)
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/rnn/cell_gru.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/rnn/cell_gru.cpp180
1 files changed, 180 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/rnn/cell_gru.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/rnn/cell_gru.cpp
new file mode 100644
index 0000000000..e1a61d4c62
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/rnn/cell_gru.cpp
@@ -0,0 +1,180 @@
+/*******************************************************************************
+* Copyright 2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+/*
+ * Cell execution GRU
+ */
+
+#include "math_utils.hpp"
+#include "mkldnn_thread.hpp"
+
+#include "ref_rnn.hpp"
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+using namespace mkldnn::impl::utils;
+using namespace mkldnn::impl::math;
+using namespace rnn_utils;
+
+#define AOC array_offset_calculator
+template <>
+rnn_cell_execution_sig(ref_rnn_fwd_f32_t::cell_execution_gru) {
+ ws_gates_aoc_t ws_gates(rnn, ws_gates_);
+ bias_aoc_t bias(rnn, bias_[0]);
+ ws_states_aoc_t states_t_l(rnn, states_t_l_);
+ ws_states_aoc_t states_tm1_l(rnn, states_tm1_l_);
+
+ // 1. gemm Wx[0-2],x
+ if (!rnn.merge_gemm_layer) {
+ (this->*gemm_layer_func)('N', 'N', rnn.n_gates * rnn.dic, rnn.mb,
+ rnn.slc, 1.0, w_layer_[0], rnn.weights_layer_ld,
+ states_t_lm1_, rnn.states_ws_ld, 0.0, ws_gates_,
+ rnn.gates_ws_ld);
+ }
+
+ // 2. gemm Wh[0-1],h
+ (this->*gemm_iter_func)('N', 'N', (rnn.n_gates - 1) * rnn.dic, rnn.mb,
+ rnn.sic, 1.0, w_iter_[0], rnn.weights_iter_ld, states_tm1_l_,
+ rnn.states_ws_ld, 1.0, ws_gates_, rnn.gates_ws_ld);
+
+ // 3. activation zt and rt + elemwise multiplication rt,ht-1
+ parallel_nd(rnn.mb, [&](int i) {
+ PRAGMA_OMP_SIMD()
+ for (int j = 0; j < rnn.dic; j++) {
+ ws_gates(i, 0, j) = logistic_fwd(ws_gates(i, 0, j) + bias(0, j));
+ ws_gates(i, 1, j) = logistic_fwd(ws_gates(i, 1, j) + bias(1, j));
+ states_t_l(i, j) = states_tm1_l(i, j) * ws_gates(i, 1, j);
+ }
+ });
+
+ // 4. gemm Wh[2],h~t
+ (this->*gemm_iter_func)('N', 'N', rnn.dic, rnn.mb, rnn.sic, 1.0, w_iter_[1],
+ rnn.weights_iter_ld, states_t_l_, rnn.states_ws_ld, 1.0,
+ &(ws_gates(0, 2, 0)), rnn.gates_ws_ld);
+
+ // 5. activation h~t + calculate ht
+ parallel_nd(rnn.mb, [&](int i) {
+ PRAGMA_OMP_SIMD()
+ for (int j = 0; j < rnn.dic; j++) {
+ ws_gates(i, 2, j) = tanh_fwd(ws_gates(i, 2, j) + bias(2, j));
+ states_t_l(i, j) = states_tm1_l(i, j) * ws_gates(i, 0, j)
+ + (1.0f - ws_gates(i, 0, j)) * ws_gates(i, 2, j);
+ }
+ });
+}
+
+template <>
+rnn_cell_execution_sig(ref_rnn_fwd_u8s8_t::cell_execution_gru) {
+ assert(!"GRU int8 is not supported");
+}
+
+template <>
+rnn_cell_execution_sig(ref_rnn_bwd_f32_t::cell_execution_gru) {
+ ws_gates_aoc_t ws_gates(rnn, ws_gates_);
+ ws_states_aoc_t states_t_l(rnn, states_t_l_);
+ ws_states_aoc_t states_tm1_l(rnn, states_tm1_l_);
+ ws_diff_w_iter_aoc_t diff_w_iter(rnn, diff_w_iter_);
+ ws_diff_states_aoc_t diff_states_t_l(rnn, diff_states_t_l_);
+ ws_diff_states_aoc_t diff_states_tp1_l(rnn, diff_states_tp1_l_);
+ ws_diff_states_aoc_t diff_states_t_lp1(rnn, diff_states_t_lp1_);
+
+ // use state memory for intermediate computations
+ // TODO: use cell ws for that
+ float *dhG1_ = &(diff_states_t_l(rnn.n_states, 0, 0));
+ float *hG1_ = dhG1_;
+ AOC<float, 2> dhG1(dhG1_, rnn.states_nld, rnn.states_ws_ld);
+ AOC<float, 2> hG1(hG1_, rnn.states_nld, rnn.states_ws_ld);
+
+ // 1. calculate dG2, dG1, and part of dht-1
+ // dG2^ = dh * (1 - G0) * (1 - G2^2)
+ // dG0^ = dh * (ht-1 - G2) * u * (1 - G0)
+ // dht-1 (part) = dh * G0
+ parallel_nd(rnn.mb, [&](int i) {
+ PRAGMA_OMP_SIMD()
+ for (int j = 0; j < rnn.dic; j++) {
+ float h = states_tm1_l(i, j);
+ float dHt = diff_states_tp1_l(0, i, j)
+ + diff_states_t_lp1(rnn.n_states, i, j);
+ float dG2 = (1.0f - ws_gates(i, 0, j)) * dHt
+ * one_m_square(ws_gates(i, 2, j));
+ float dG0 = (h - ws_gates(i, 2, j)) * dHt
+ * x_m_square(ws_gates(i, 0, j));
+
+ diff_states_t_l(0, i, j) = dHt * ws_gates(i, 0, j);
+ ws_gates(i, 0, j) = dG0;
+ ws_gates(i, 2, j) = dG2;
+ }
+ });
+
+ // 2. calculate intermediate d(hG1)
+ // d(hG1) = dG2 * W2h^t
+ (this->*gemm_iter_func)('N', 'N', rnn.sic, rnn.mb, rnn.dic, 1.0, w_iter_[1],
+ rnn.weights_iter_ld, &(ws_gates(0, 2, 0)), rnn.gates_ws_ld, 0.0,
+ dhG1_, rnn.states_ws_ld);
+
+ // 3. calculate dG1^ and part of dht-1
+ // dG1^ = d(hG1) * h * G1 * (1 - G1)
+ // dht-1 (part) += d(hG1) * G1
+ // h * G1 (required for dWh)
+ parallel_nd(rnn.mb, [&](int i) {
+ PRAGMA_OMP_SIMD()
+ for (int j = 0; j < rnn.dic; j++) {
+ float h = states_tm1_l(i, j);
+ float G1 = ws_gates(i, 1, j);
+ diff_states_t_l(0, i, j) += dhG1(i, j) * G1;
+ ws_gates(i, 1, j) = dhG1(i, j) * h * x_m_square(G1);
+ hG1(i, j) = G1 * h;
+ }
+ });
+
+ // 4. calculate diff weights
+ // dWh1 += dG1 * h, dWh2 += dG2 * h, dWh3 += dG3 * (G1(*)h)
+ gemm('N', 'T', (rnn.n_gates - 1) * rnn.dic, rnn.sic, rnn.mb, 1.0, ws_gates_,
+ rnn.gates_ws_ld, states_tm1_l_, rnn.states_ws_ld, 1.0, diff_w_iter_,
+ rnn.diff_weights_iter_ld);
+ gemm('N', 'T', rnn.dic, rnn.sic, rnn.mb, 1.0, &(ws_gates(0, 2, 0)),
+ rnn.gates_ws_ld, hG1_, rnn.states_ws_ld, 1.0,
+ &(diff_w_iter(0, 2, 0)), rnn.diff_weights_iter_ld);
+
+ // 5. calculate diff states
+ // dht-1 += dG1 * W1h + dG0 * W0h
+ (this->*gemm_iter_func)('N', 'N', rnn.sic, rnn.mb,
+ (rnn.n_gates - 1) * rnn.dic, 1.0, w_iter_[0],
+ rnn.weights_iter_ld, ws_gates_, rnn.gates_ws_ld, 1.0,
+ diff_states_t_l_, rnn.states_ws_ld);
+
+ if (!rnn.merge_gemm_layer) {
+ // dWx += [dG0 dG1 dG2] * [x]
+ gemm('N', 'T', rnn.n_gates * rnn.dic, rnn.slc, rnn.mb, 1.0, ws_gates_,
+ rnn.gates_ws_ld, states_t_lm1_, rnn.states_ws_ld, 1.0,
+ diff_w_layer_, rnn.diff_weights_layer_ld);
+ // dx = dG2 * W2x + dG1 * W1x + dG0 * W0x
+ (this->*gemm_layer_func)('N', 'N', rnn.slc, rnn.mb,
+ rnn.n_gates * rnn.dic, 1.0, w_layer_[0],
+ rnn.weights_layer_ld, ws_gates_, rnn.gates_ws_ld, 0.0,
+ &(diff_states_t_l(rnn.n_states, 0, 0)), rnn.states_ws_ld);
+ }
+
+ // 6. calculate diff bias
+ gates_reduction(rnn, ws_gates_, diff_bias_);
+}
+#undef AOC
+
+}
+}
+}