summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.hpp
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2020-05-01 09:34:23 -0300
committerJuan Linietsky <reduzio@gmail.com>2020-05-10 15:59:09 -0300
commit1bea8e1eacc68bcedbd3f207395bccf11011dae2 (patch)
treeb75303a69491978c1e13360a3e6f355c5234dfe0 /thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.hpp
parent6a0473bcc23c096ef9ee929632a209761c2668f6 (diff)
New lightmapper
-Added LocalVector (needed it) -Added stb_rect_pack (It's pretty cool, we could probably use it for other stuff too) -Fixes and changes all around the place -Added library for 128 bits fixed point (required for Delaunay3D)
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.hpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.hpp186
1 files changed, 186 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.hpp b/thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.hpp
new file mode 100644
index 0000000000..5cb74d8007
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.hpp
@@ -0,0 +1,186 @@
+/*******************************************************************************
+* Copyright 2016-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#ifndef CPU_REF_SOFTMAX_HPP
+#define CPU_REF_SOFTMAX_HPP
+
+#include <assert.h>
+
+#include "c_types_map.hpp"
+#include "memory_tracking.hpp"
+#include "type_helpers.hpp"
+#include "utils.hpp"
+
+#include "cpu_softmax_pd.hpp"
+#include "cpu_primitive.hpp"
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+template <impl::data_type_t data_type>
+struct ref_softmax_fwd_t: public cpu_primitive_t {
+ struct pd_t: public cpu_softmax_fwd_pd_t {
+ using cpu_softmax_fwd_pd_t::cpu_softmax_fwd_pd_t;
+
+ DECLARE_COMMON_PD_T("ref:any", ref_softmax_fwd_t);
+
+ status_t init() {
+ bool ok = true
+ && is_fwd()
+ && src_md()->data_type == data_type
+ && attr()->has_default_values();
+ if (!ok) return status::unimplemented;
+
+ init_scratchpad();
+
+ return status::success;
+ }
+
+ private:
+ void init_scratchpad() {
+ const int inner_size = utils::array_product(
+ desc()->data_desc.dims + desc()->softmax_axis + 1,
+ desc()->data_desc.ndims - desc()->softmax_axis - 1);
+
+ if (inner_size > 1) {
+ auto scratchpad = scratchpad_registry().registrar();
+ scratchpad.book(memory_tracking::names::key_softmax_reduction,
+ sizeof(data_t) * 2 * inner_size);
+ }
+ }
+ };
+
+ ref_softmax_fwd_t(const pd_t *apd): cpu_primitive_t(apd)
+ {
+ auto ndims = pd()->desc()->data_desc.ndims;
+ auto dims = pd()->desc()->data_desc.dims;
+ auto axis = pd()->desc()->softmax_axis;
+
+ outer_size_ = utils::array_product(dims, axis);
+ channels_ = dims[axis];
+ inner_size_ = utils::array_product(dims + axis + 1, ndims - axis - 1);
+
+ const memory_desc_wrapper data_d(pd()->src_md());
+
+ bool no_axis_blocking = true;
+ for (int iblk = 0; iblk < data_d.blocking_desc().inner_nblks; ++iblk)
+ if (data_d.blocking_desc().inner_idxs[iblk] == axis)
+ no_axis_blocking = false;
+
+ use_dense_ = inner_size_ == 1 && data_d.is_dense()
+ && no_axis_blocking
+ && data_d.blocking_desc().strides[axis] == 1;
+ }
+
+ typedef typename prec_traits<data_type>::type data_t;
+
+ virtual status_t execute(const exec_ctx_t &ctx) const override {
+ if (use_dense_)
+ execute_forward_dense(ctx);
+ else
+ execute_forward_generic(ctx);
+ return status::success;
+ }
+
+private:
+ void execute_forward_dense(const exec_ctx_t &ctx) const;
+ void execute_forward_generic(const exec_ctx_t &ctx) const;
+
+ void _max(int n, const data_t *x, data_t *max_data) const;
+ void _sub(int n, data_t alpha, const data_t *x, data_t *y) const;
+ void _exp(int n, const data_t *a, data_t *r) const;
+ void _sum(int n, const data_t *x, data_t *sum_data) const;
+ void _scal(int n, data_t alpha, data_t *x) const;
+
+ const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
+
+ bool use_dense_;
+ int outer_size_, channels_, inner_size_;
+};
+
+template <impl::data_type_t data_type>
+struct ref_softmax_bwd_t: public cpu_primitive_t {
+ struct pd_t: public cpu_softmax_bwd_pd_t {
+ using cpu_softmax_bwd_pd_t::cpu_softmax_bwd_pd_t;
+
+ DECLARE_COMMON_PD_T("ref:any", ref_softmax_bwd_t);
+
+ status_t init() {
+ bool ok = true
+ && !is_fwd()
+ && utils::everyone_is(data_type,
+ dst_md()->data_type,
+ diff_src_md()->data_type)
+ && attr()->has_default_values();
+ if (!ok) return status::unimplemented;
+
+ return status::success;
+ }
+ };
+
+ ref_softmax_bwd_t(const pd_t *apd): cpu_primitive_t(apd) {
+ auto dims = pd()->desc()->diff_desc.dims;
+ auto axis = pd()->desc()->softmax_axis;
+ auto ndims = pd()->desc()->diff_desc.ndims;
+
+ outer_size_ = utils::array_product(dims, axis);
+ channels_ = dims[axis];
+ inner_size_ = utils::array_product(dims + axis + 1, ndims - axis - 1);
+
+ const memory_desc_wrapper data_d(pd()->dst_md());
+ const memory_desc_wrapper diff_d(pd()->diff_dst_md());
+
+ bool no_axis_blocking = true;
+ for (int iblk = 0; iblk < diff_d.blocking_desc().inner_nblks; ++iblk)
+ if (diff_d.blocking_desc().inner_idxs[iblk] == axis)
+ no_axis_blocking = false;
+
+ use_dense_ = true
+ && inner_size_ == 1
+ && diff_d == data_d
+ && diff_d.is_dense()
+ && no_axis_blocking
+ && diff_d.blocking_desc().strides[axis] == 1;
+ }
+
+ typedef typename prec_traits<data_type>::type data_t;
+
+ virtual status_t execute(const exec_ctx_t &ctx) const override {
+ if (use_dense_)
+ execute_backward_dense(ctx);
+ else
+ execute_backward_generic(ctx);
+ return status::success;
+ }
+
+private:
+ void execute_backward_dense(const exec_ctx_t &ctx) const;
+ void execute_backward_generic(const exec_ctx_t &ctx) const;
+ const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
+
+ bool use_dense_;
+ int outer_size_, channels_, inner_size_;
+};
+
+
+}
+}
+}
+
+#endif
+
+// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s