diff options
author | Juan Linietsky <reduzio@gmail.com> | 2020-05-01 09:34:23 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2020-05-10 15:59:09 -0300 |
commit | 1bea8e1eacc68bcedbd3f207395bccf11011dae2 (patch) | |
tree | b75303a69491978c1e13360a3e6f355c5234dfe0 /thirdparty/oidn/mkl-dnn/src/cpu/ref_lrn.cpp | |
parent | 6a0473bcc23c096ef9ee929632a209761c2668f6 (diff) |
New lightmapper
-Added LocalVector (needed it)
-Added stb_rect_pack (It's pretty cool, we could probably use it for other stuff too)
-Fixes and changes all around the place
-Added library for 128 bits fixed point (required for Delaunay3D)
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/ref_lrn.cpp')
-rw-r--r-- | thirdparty/oidn/mkl-dnn/src/cpu/ref_lrn.cpp | 252 |
1 files changed, 252 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/ref_lrn.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/ref_lrn.cpp new file mode 100644 index 0000000000..325e97963b --- /dev/null +++ b/thirdparty/oidn/mkl-dnn/src/cpu/ref_lrn.cpp @@ -0,0 +1,252 @@ +/******************************************************************************* +* Copyright 2016-2018 Intel Corporation +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*******************************************************************************/ + +#include <assert.h> +#include <math.h> + +#include "c_types_map.hpp" +#include "mkldnn_thread.hpp" +#include "type_helpers.hpp" + +#include "ref_lrn.hpp" + +namespace mkldnn { +namespace impl { +namespace cpu { + +static inline float fast_negative_powf(float omega, float beta) { + float Y; +/* + * Y = omega^(-3/4) = + * = 1.0f / sqrtf(omega) * sqrtf(1.0f / sqrtf(omega)) + * = sqrtf(1.0f / sqrtf(omega)) * 1.0f / sqrtf(omega) + * = sqrtf(1.0f / sqrtf(omega)) / sqrtf(omega) + * = sqrtf(1.0f / sqrtf(omega) / omega) + * = sqrtf(1.0f / (sqrtf(omega) * omega)) + */ + if (beta == 0.75f) { + Y = sqrtf(1.0f / (sqrtf(omega) * omega)); + } else { + Y = 1.0f / powf(omega, beta); + } + return Y; +}; + +template <impl::data_type_t data_type> +template <impl::format_tag_t tag> +void ref_lrn_fwd_t<data_type>::execute_forward(const exec_ctx_t &ctx) const { + using namespace alg_kind; + using namespace format_tag; + + auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); + auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); + + const memory_desc_wrapper data_d(pd()->src_md()); + + const int C = pd()->C(); + const int H = pd()->H(); + const int W = pd()->W(); + const size_t stride_mb = data_d.blocking_desc().strides[0]; + const bool across_channels = pd()->desc()->alg_kind == lrn_across_channels; + constexpr int blksize = tag == nChw16c ? 16 : 8; + + auto data_off = [&](int mb, int c, int h, int w) -> size_t { + switch (tag) { + case nChw16c: + case nChw8c: return mb * stride_mb + c / blksize * H * W * blksize + + h * W * blksize + w * blksize + c % blksize; + case nchw: return mb * stride_mb + c * H * W + h * W + w; + case nhwc: return mb * stride_mb + h * W * C + w * C + c; + default: return data_d.off(mb, c, h, w); + } + }; + + auto ker = [=](data_t *d, int mb, int oc, int oh, int ow) { + const float alpha = static_cast<float>(pd()->desc()->lrn_alpha); + const float beta = static_cast<float>(pd()->desc()->lrn_beta); + const float k = static_cast<float>(pd()->desc()->lrn_k); + + const int size = pd()->desc()->local_size; + const int half_size = (size - 1) / 2; + + float sum = 0; + if (across_channels) { + const int c_st = nstl::max(oc - half_size + 0, 0); + const int c_en = nstl::min(oc + half_size + 1, C); + + for (int c = c_st; c < c_en; ++c) { + const float s = src[data_off(mb, c, oh, ow)]; + sum += s * s; + } + } else { + int h_st = nstl::max(oh - half_size + 0, 0); + int h_en = nstl::min(oh + half_size + 1, H); + int w_st = nstl::max(ow - half_size + 0, 0); + int w_en = nstl::min(ow + half_size + 1, W); + for (int h = h_st; h < h_en; ++h) { + for (int w = w_st; w < w_en; ++w) { + const float s = src[data_off(mb, oc, h, w)]; + sum += s * s; + } + } + } + const int summands = across_channels ? size : size * size; + sum = k + alpha * sum / summands; + size_t off = data_off(mb, oc, oh, ow); + d[0] = static_cast<data_t>(src[off] * fast_negative_powf(sum, beta)); + }; + + const int MB = pd()->MB(); + if (tag == nChw16c || tag == nChw8c) { + parallel_nd(MB, utils::div_up(C, blksize), H, W, + [&](int mb, int c_blk, int h, int w) { + int c = c_blk * blksize; + const size_t off = mb * stride_mb + c * H * W + + (h * W + w) * blksize; + PRAGMA_OMP_SIMD() + for (int cc = 0; cc < nstl::min(blksize, C - c); ++cc) + ker(&dst[off + cc], mb, c + cc, h, w); + }); + } else if (tag == nhwc) { + parallel_nd(MB, H, W, C, + [&](int mb, int h, int w, int c) { + const size_t off = mb * stride_mb + h * W * C + w * C + c; + ker(&dst[off], mb, c, h, w); + }); + } else { + parallel_nd(MB, C, H, W, + [&](int mb, int c, int h, int w) { + const size_t off = data_off(mb, c, h, w); + ker(&dst[off], mb, c, h, w); + }); + } +} + +template <impl::data_type_t data_type> +template <mkldnn_format_tag_t tag> +void ref_lrn_bwd_t<data_type>::execute_backward(const exec_ctx_t &ctx) const { + using namespace alg_kind; + using namespace format_tag; + + auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); + auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); + auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); + + const memory_desc_wrapper data_d(pd()->src_md()); + + const int MB = pd()->MB(); + const int C = pd()->C(); + const int H = pd()->H(); + const int W = pd()->W(); + const size_t stride_mb = data_d.blocking_desc().strides[0]; + constexpr int blksize = tag == nChw16c ? 16 : 8; + + const float alpha = static_cast<float>(pd()->desc()->lrn_alpha); + const float beta = static_cast<float>(pd()->desc()->lrn_beta); + const float k = static_cast<float>(pd()->desc()->lrn_k); + const int kernel_size = pd()->desc()->local_size; + const int half_ksize = (kernel_size - 1) / 2; + + auto data_off = [&](int mb, int c, int h, int w) -> size_t { + switch (tag) { + case nChw16c: + case nChw8c: return mb * stride_mb + c/blksize * H * W * blksize + + h * W * blksize + w * blksize + c%blksize; + case nchw: return mb * stride_mb + c * H * W + h * W + w; + case nhwc: return mb * stride_mb + h * W * C + w * C + c; + default: return data_d.off(mb, c, h, w); + } + }; + + auto ker = [=](data_t *d, int mb, int oc, int oh, int ow) { + const int c_st = nstl::max(oc - half_ksize + 0, 0); + const int c_en = nstl::min(oc + half_ksize + 1, C); + + float A = 0, B = 0, omega_mid = 0; + for (int c = c_st; c < c_en; c++) { + float sum = 0.0; + const int i_st = nstl::max(c - half_ksize, 0); + const int i_en = nstl::min(c + kernel_size - half_ksize, C); + + for (int i = i_st; i < i_en; ++i) { + const float value = src[data_off(mb, i, oh, ow)]; + sum += value * value; + } + const float omega = static_cast<float>(k + sum * alpha / kernel_size); + if (c == oc) omega_mid = omega; + float t = src[data_off(mb, c, oh, ow)] + * fast_negative_powf(omega, beta); + B += 1.0f / omega * t * diff_dst[data_off(mb, c, oh, ow)]; + } + + const size_t off = data_off(mb, oc, oh, ow); + A = fast_negative_powf(omega_mid, beta) * diff_dst[off]; + B *= src[off]; + B *= (2.0f * alpha * beta) / kernel_size; + *d = static_cast<data_t>(A - B); // final cast down to data_t + }; + + if (tag == nChw16c || tag == nChw8c) { + parallel_nd(MB, utils::div_up(C, blksize), H, W, + [&](int mb, int c_blk, int h, int w) { + int c = c_blk * blksize; + const size_t off = mb * stride_mb + c * H * W + + (h * W + w) * blksize; + PRAGMA_OMP_SIMD() + for (int cc = 0; cc < nstl::min(blksize, C - c); ++cc) + ker(&diff_src[off + cc], mb, c + cc, h, w); + }); + } else if (tag == nhwc) { + parallel_nd(MB, H, W, C, + [&](int mb, int h, int w, int c) { + const size_t off = mb * stride_mb + h * W * C + w * C + c; + ker(&diff_src[off], mb, c, h, w); + }); + } else { + parallel_nd(MB, C, H, W, + [&](int mb, int c, int h, int w) { + const size_t off = data_off(mb, c, h, w); + ker(&diff_src[off], mb, c, h, w); + }); + } +} + +template void ref_lrn_fwd_t<data_type::f32>:: +execute_forward<format_tag::nChw16c>(const exec_ctx_t &ctx) const; +template void ref_lrn_fwd_t<data_type::f32>:: +execute_forward<format_tag::nChw8c>(const exec_ctx_t &ctx) const; +template void ref_lrn_fwd_t<data_type::f32>:: +execute_forward<format_tag::nchw>(const exec_ctx_t &ctx) const; +template void ref_lrn_fwd_t<data_type::f32>:: +execute_forward<format_tag::nhwc>(const exec_ctx_t &ctx) const; +template void ref_lrn_fwd_t<data_type::f32>:: +execute_forward<format_tag::any>(const exec_ctx_t &ctx) const; +template void ref_lrn_bwd_t<data_type::f32>:: +execute_backward<format_tag::nChw16c>(const exec_ctx_t &ctx) const; +template void ref_lrn_bwd_t<data_type::f32>:: +execute_backward<format_tag::nChw8c>(const exec_ctx_t &ctx) const; +template void ref_lrn_bwd_t<data_type::f32>:: +execute_backward<format_tag::nchw>(const exec_ctx_t &ctx) const; +template void ref_lrn_bwd_t<data_type::f32>:: +execute_backward<format_tag::nhwc>(const exec_ctx_t &ctx) const; +template void ref_lrn_bwd_t<data_type::f32>:: +execute_backward<format_tag::any>(const exec_ctx_t &ctx) const; + +} +} +} + +// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |