summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/gemm_x8s8s32x_convolution.cpp
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2020-05-01 09:34:23 -0300
committerJuan Linietsky <reduzio@gmail.com>2020-05-10 15:59:09 -0300
commit1bea8e1eacc68bcedbd3f207395bccf11011dae2 (patch)
treeb75303a69491978c1e13360a3e6f355c5234dfe0 /thirdparty/oidn/mkl-dnn/src/cpu/gemm_x8s8s32x_convolution.cpp
parent6a0473bcc23c096ef9ee929632a209761c2668f6 (diff)
New lightmapper
-Added LocalVector (needed it) -Added stb_rect_pack (It's pretty cool, we could probably use it for other stuff too) -Fixes and changes all around the place -Added library for 128 bits fixed point (required for Delaunay3D)
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/gemm_x8s8s32x_convolution.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/gemm_x8s8s32x_convolution.cpp740
1 files changed, 740 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/gemm_x8s8s32x_convolution.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/gemm_x8s8s32x_convolution.cpp
new file mode 100644
index 0000000000..fed7e4d693
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/cpu/gemm_x8s8s32x_convolution.cpp
@@ -0,0 +1,740 @@
+/*******************************************************************************
+* Copyright 2017-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include "c_types_map.hpp"
+#include "utils.hpp"
+#include "type_helpers.hpp"
+#include "mkldnn_thread.hpp"
+#include "math_utils.hpp"
+
+#include "simple_q10n.hpp"
+
+#include "gemm/gemm.hpp"
+#include "gemm_x8s8s32x_convolution.hpp"
+
+namespace mkldnn {
+namespace impl {
+namespace cpu {
+
+using namespace mkldnn::impl::utils;
+using namespace mkldnn::impl::math;
+using namespace mkldnn::impl::memory_tracking::names;
+
+template <data_type_t src_type, data_type_t dst_type>
+void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::
+execute_forward(const exec_ctx_t &ctx) const {
+ auto src_base = CTX_IN_MEM(const src_data_t *, MKLDNN_ARG_SRC);
+ auto wei_base = CTX_IN_MEM(const wei_data_t *, MKLDNN_ARG_WEIGHTS);
+ auto bia_base = CTX_IN_MEM(const char *, MKLDNN_ARG_BIAS);
+ auto dst_base = CTX_OUT_MEM(dst_data_t *, MKLDNN_ARG_DST);
+
+ auto scratchpad = this->scratchpad(ctx);
+
+ const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
+
+ assert(IMPLICATION(
+ jcp.id != 1, jcp.oh_block == jcp.oh && jcp.ow_block == jcp.ow));
+ assert(IMPLICATION(jcp.ow_block != jcp.ow, jcp.oh_block == 1));
+
+ parallel(jcp.nthr, [&](const int ithr, const int nthr) {
+ execute_forward_thr(ithr, nthr, src_base, wei_base, bia_base, dst_base,
+ scratchpad);
+ });
+}
+
+template <data_type_t src_type, data_type_t dst_type>
+_gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::pp_ker_t::pp_ker_t(
+ const pd_t *pd)
+ : ker_(nullptr)
+ , jcp_(pd->jcp_)
+ , OC_(pd->jcp_.oc)
+ , OS_(pd->jcp_.os)
+ , bias_data_type_(data_type::undef)
+ , bias_data_type_size_(0)
+ , scale_idx_mult_(0)
+ , do_bias_(false)
+ , do_relu_(false)
+ , do_sum_(false)
+{
+ using namespace types;
+
+ const auto dst_md = memory_desc_wrapper(pd->dst_md());
+ dst_os_stride_ = dst_md.blk_off(0, 0, 0, 1);
+
+ scale_idx_mult_ = (pd->attr()->output_scales_.mask_ == (1 << 1));
+
+ auto &post_ops = pd->attr()->post_ops_;
+
+ int entry_idx = -1;
+ for (int idx = 0; idx < post_ops.len_; ++idx) {
+ const auto &e = post_ops.entry_[idx];
+ if (e.is_relu(true, false)) {
+ entry_idx = idx;
+ break;
+ }
+ }
+ do_relu_ = entry_idx >= 0;
+
+ do_signed_scaling_ = jcp_.signed_input;
+
+ do_sum_ = post_ops.contain(primitive_kind::sum, 0);
+ do_bias_ = pd->with_bias();
+ bias_data_type_ = pd->desc()->bias_desc.data_type;
+ if (do_bias_) {
+ assert(bias_data_type_ != data_type::undef);
+ bias_data_type_size_ = data_type_size(bias_data_type_);
+ }
+ const size_t vlen_start
+ = cpu_isa_traits<avx512_common>::vlen / sizeof(float);
+
+ for (size_t i = vlen_start; i > 0; i--) {
+ if (OC_ % i == 0) {
+ vlen_ = i;
+ break;
+ }
+ }
+
+ if (!mayiuse(avx512_core))
+ // use fallback code for older CPUs
+ return;
+ else
+ generate();
+}
+
+template <data_type_t src_type, data_type_t dst_type>
+void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::pp_ker_t::generate()
+{
+ using namespace Xbyak;
+ using namespace utils;
+
+ // TODO: clean-up
+ Reg64 reg_param = abi_param1;
+ Reg64 reg_dst = rdx;
+ Reg64 reg_acc = rax;
+ Reg64 reg_bias = rbx;
+ Reg64 reg_scales = rsi;
+
+ Reg64 reg_len = r8;
+ Reg64 reg_tmp = rcx; // intentional for shifting purposes
+ Reg64 reg_oc_offset = r9;
+ Reg64 reg_rem_mask_short = r10;
+ Reg64 reg_rem_mask_vlen = r11;
+ Opmask kreg_rem_mask_short = k1;
+ Opmask kreg_rem_mask_vlen = k3;
+ Opmask kreg_relu_cmp = k2;
+
+ const size_t vlen = vlen_;
+
+ Zmm vreg_zero = Zmm(0);
+ Zmm vreg_scale = Zmm(1);
+ Zmm vreg_nslope = Zmm(2);
+ Zmm vreg_sum_scale = Zmm(3);
+ Zmm vreg_signed_scale = Zmm(4);
+
+ size_t def_unroll = 4;
+ size_t max_unroll = 12;
+ size_t zmm_step = 2;
+ if (do_sum_) {
+ max_unroll = 8;
+ zmm_step = 3;
+ }
+
+ auto vreg_dst = [&](int idx) {
+ return Zmm(5 + idx * zmm_step + 0);
+ };
+ auto vreg_bias = [&](int idx) {
+ return Zmm(5 + idx * zmm_step + 1);
+ };
+ auto vreg_prev_dst = [&](int idx) {
+ return Zmm(5 + idx * zmm_step + 2);
+ };
+
+ preamble();
+
+#define PARAM_OFF(x) offsetof(ker_args, x)
+ mov(reg_dst, ptr[reg_param + PARAM_OFF(dst)]);
+ mov(reg_acc, ptr[reg_param + PARAM_OFF(acc)]);
+ mov(reg_bias, ptr[reg_param + PARAM_OFF(bias)]);
+ mov(reg_scales, ptr[reg_param + PARAM_OFF(scales)]);
+ mov(reg_len, ptr[reg_param + PARAM_OFF(len)]);
+ mov(reg_oc_offset, ptr[reg_param + PARAM_OFF(oc_offset)]);
+ vbroadcastss(vreg_nslope, ptr[reg_param + PARAM_OFF(nslope)]);
+ vbroadcastss(vreg_sum_scale, ptr[reg_param + PARAM_OFF(sum_scale)]);
+ vbroadcastss(vreg_signed_scale, ptr[reg_param + PARAM_OFF(signed_scale)]);
+ if (scale_idx_mult_ == 0)
+ vbroadcastss(vreg_scale, dword[reg_scales]);
+
+#undef PARAM_OFF
+
+ mov(reg_rem_mask_vlen, 1);
+ shl(reg_rem_mask_vlen, vlen);
+ sub(reg_rem_mask_vlen, 1);
+ kmovq(kreg_rem_mask_vlen, reg_rem_mask_vlen);
+
+ if (do_relu_ || dst_type == data_type::u8)
+ vxorps(vreg_zero, vreg_zero, vreg_zero);
+
+ // Load accumulated value, convert to float, apply sum (if any),
+ // bias (if any), scaling, and relu (if any);
+ // then convert to destination type and store
+ auto compute = [&](size_t offset, int idx, bool apply_mask) {
+ auto acc_addr = ptr[reg_acc + offset * sizeof(acc_data_t)];
+
+ if (scale_idx_mult_ > 0) {
+ assert(scale_idx_mult_ == 1);
+ auto scale_addr = ptr[reg_scales + offset * sizeof(float)];
+ auto vreg_scale_ = vreg_scale;
+ if (apply_mask)
+ vreg_scale_ = vreg_scale_ | kreg_rem_mask_short;
+ else
+ vreg_scale_ = vreg_scale_ | kreg_rem_mask_vlen;
+ vmovups(vreg_scale_, scale_addr);
+ }
+
+ auto vreg_dst_ = vreg_dst(idx);
+ if (apply_mask)
+ vreg_dst_ = vreg_dst_ | kreg_rem_mask_short;
+ else
+ vreg_dst_ = vreg_dst_ | kreg_rem_mask_vlen;
+ vcvtdq2ps(vreg_dst_, acc_addr);
+
+ if (do_signed_scaling_)
+ vmulps(vreg_dst(idx), vreg_dst(idx), vreg_signed_scale);
+
+ if (do_bias_) {
+ auto bias_addr = ptr[reg_bias + offset * bias_data_type_size_];
+ auto vreg_bias_ = vreg_bias(idx);
+ if (apply_mask)
+ vreg_bias_ = vreg_bias_ | kreg_rem_mask_short;
+ else
+ vreg_bias_ = vreg_bias_ | kreg_rem_mask_vlen;
+
+ switch (bias_data_type_) {
+ case data_type::s8:
+ vpmovsxbd(vreg_bias_, bias_addr);
+ break;
+ case data_type::u8:
+ vpmovzxbd(vreg_bias_, bias_addr);
+ break;
+ case data_type::s32:
+ case data_type::f32:
+ vmovups(vreg_bias_, bias_addr);
+ break;
+ default: assert(!"unimplemented");
+ }
+ if (bias_data_type_ != data_type::f32)
+ vcvtdq2ps(vreg_bias(idx), vreg_bias(idx));
+ vaddps(vreg_dst(idx), vreg_dst(idx), vreg_bias(idx));
+ }
+
+ vmulps(vreg_dst(idx), vreg_dst(idx), vreg_scale);
+
+ auto dst_addr = ptr[reg_dst + offset * sizeof(dst_data_t)];
+
+ if (do_sum_)
+ {
+ auto vreg_prev_dst_ = vreg_prev_dst(idx);
+ if (apply_mask)
+ vreg_prev_dst_ = vreg_prev_dst_ | kreg_rem_mask_short;
+ else
+ vreg_prev_dst_ = vreg_prev_dst_ | kreg_rem_mask_vlen;
+
+ switch (dst_type) {
+ case data_type::f32:
+ case data_type::s32: vmovups(vreg_prev_dst_, dst_addr); break;
+ case data_type::s8: vpmovsxbd(vreg_prev_dst_, dst_addr); break;
+ case data_type::u8: vpmovzxbd(vreg_prev_dst_, dst_addr); break;
+ default: assert(!"unsupported data type");
+ }
+ if (dst_type != data_type::f32)
+ vcvtdq2ps(vreg_prev_dst(idx), vreg_prev_dst(idx));
+
+ vfmadd231ps(vreg_dst(idx), vreg_prev_dst(idx), vreg_sum_scale);
+ }
+
+ if (do_relu_) {
+ vcmpps(kreg_relu_cmp, vreg_dst(idx), vreg_zero, _cmp_lt_os);
+ vmulps(vreg_dst(idx) | kreg_relu_cmp, vreg_dst(idx), vreg_nslope);
+ }
+
+ if (dst_type != data_type::f32) {
+ vcvtps2dq(vreg_dst(idx), vreg_dst(idx));
+ }
+
+ if (dst_type == data_type::u8)
+ vpmaxsd(vreg_dst(idx), vreg_dst(idx), vreg_zero);
+
+ switch (dst_type) {
+ case data_type::s8:
+ vpmovsdb(dst_addr, vreg_dst_);
+ break;
+ case data_type::u8:
+ vpmovusdb(dst_addr, vreg_dst_);
+ break;
+ case data_type::f32:
+ case data_type::s32:
+ vmovups(dst_addr, vreg_dst_);
+ break;
+ default: assert(!"unimplemented");
+ }
+ };
+
+ // Advance all pointers by an immediate
+ auto advance_ptrs_imm = [&](size_t offset) {
+ add(reg_dst, offset * sizeof(dst_data_t));
+ add(reg_acc, offset * sizeof(acc_data_t));
+ if (scale_idx_mult_) {
+ assert(scale_idx_mult_ == 1);
+ add(reg_scales, offset * sizeof(float));
+ }
+ if (do_bias_)
+ add(reg_bias, offset * bias_data_type_size_);
+ };
+
+ // Advance all pointers by a value stored in a register
+ auto advance_ptrs_reg = [&](Reg64 offset) {
+ lea(reg_dst, ptr[reg_dst + offset * sizeof(dst_data_t)]);
+ lea(reg_acc, ptr[reg_acc + offset * sizeof(acc_data_t)]);
+ if (scale_idx_mult_) {
+ assert(scale_idx_mult_ == 1);
+ lea(reg_scales, ptr[reg_scales + offset * sizeof(float)]);
+ }
+ if (do_bias_)
+ lea(reg_bias, ptr[reg_bias + offset * bias_data_type_size_]);
+ };
+
+ // Rewind pointers that point to data that is indexed by output channel
+ // (bias or per-oc scaling factors)
+ auto rewind_ptrs = [&]() {
+ if (do_bias_)
+ sub(reg_bias, OC_ * bias_data_type_size_);
+ if (scale_idx_mult_) {
+ assert(scale_idx_mult_ == 1);
+ sub(reg_scales, OC_ * sizeof(float));
+ }
+ add(reg_dst, (dst_os_stride_ - OC_) * sizeof(dst_data_t));
+ };
+
+ // <--------- OC --------------->
+ //
+ // ^ ................+..............+-------------+.......................
+ // | . : not accessed |Prologue loop| .
+ // | . +--------------+-------------+ .
+ // . | | .
+ // O . | Main loop (unrolled) | .
+ // S . | | .
+ // . +--------------+-------------+ .
+ // | . | Epilogue loop|not accessed : .
+ // v ................+--------------+.............+.......................
+
+ Label prologue_end;
+ cmp(reg_oc_offset, 0);
+ je(prologue_end, T_NEAR);
+
+ // Prologue loop
+ {
+ mov(reg_tmp, OC_);
+ sub(reg_tmp, reg_oc_offset);
+ cmp(reg_tmp, reg_len);
+ cmovg(reg_tmp, reg_len);
+ sub(reg_len, reg_tmp);
+
+ Label prologue_loop, prologue_loop_tail, prologue_loop_end;
+ cmp(reg_tmp, vlen);
+ jle(prologue_loop_tail, T_NEAR);
+ L(prologue_loop); {
+ compute(0, 0, false);
+ advance_ptrs_imm(vlen);
+ sub(reg_tmp, vlen);
+ cmp(reg_tmp, vlen);
+ jge(prologue_loop, T_NEAR);
+ }
+
+ L(prologue_loop_tail);
+ mov(reg_rem_mask_short, 1);
+ // cl == reg_tmp because reg_tmp <= vlen here
+ shl(reg_rem_mask_short, cl);
+ sub(reg_rem_mask_short, 1);
+ jz(prologue_loop_end, T_NEAR);
+
+ kmovq(kreg_rem_mask_short, reg_rem_mask_short);
+ compute(0, 0, true);
+ advance_ptrs_reg(reg_tmp);
+
+ L(prologue_loop_end);
+ rewind_ptrs();
+ }
+ L(prologue_end);
+
+ // Main loop
+ Label main_loop_end;
+ {
+ cmp(reg_len, OC_);
+ jle(main_loop_end, T_NEAR);
+
+ Label main_loop;
+ L(main_loop); {
+ size_t OC_loop, OC_tail;
+ if (OC_ < max_unroll * vlen) {
+ // Fully unroll small loops
+ OC_loop = 0;
+ OC_tail = OC_;
+ }
+ else {
+ OC_loop = vlen * def_unroll;
+ OC_tail = OC_ % OC_loop;
+ }
+
+ assert(!!OC_loop || !!OC_tail);
+
+ if (OC_tail % vlen) {
+ int vlen_tail = OC_tail % vlen;
+ unsigned tail_mask = (1 << vlen_tail) - 1;
+ mov(reg_tmp, tail_mask);
+ kmovq(kreg_rem_mask_short, reg_tmp);
+ }
+
+ if (OC_loop) {
+ mov(reg_tmp, rnd_dn(OC_, OC_loop));
+ Label oc_loop;
+ L(oc_loop); {
+ for (size_t offset = 0; offset < OC_loop; offset += vlen)
+ compute(offset, offset / vlen, false);
+ advance_ptrs_imm(OC_loop);
+ sub(reg_tmp, OC_loop);
+ jnz(oc_loop);
+ }
+ }
+
+ if (OC_tail) {
+ for (size_t offset = 0; offset < OC_tail; offset += vlen) {
+ bool use_mask = (offset + vlen) > OC_tail;
+ compute(offset, offset / vlen, use_mask);
+ }
+ advance_ptrs_imm(OC_tail);
+ }
+
+ rewind_ptrs();
+ sub(reg_len, OC_);
+ cmp(reg_len, OC_);
+ jge(main_loop, T_NEAR);
+ }
+ }
+ L(main_loop_end);
+
+ // Epilogue loop
+ Label epilogue_end;
+ {
+ cmp(reg_len, 0);
+ je(epilogue_end, T_NEAR);
+
+ Label epilogue_loop, epilogue_loop_tail;
+ cmp(reg_len, vlen);
+ jle(epilogue_loop_tail, T_NEAR);
+ L(epilogue_loop); {
+ compute(0, 0, false);
+ sub(reg_len, vlen);
+ advance_ptrs_imm(vlen);
+ cmp(reg_len, vlen);
+ jge(epilogue_loop, T_NEAR);
+ }
+
+ L(epilogue_loop_tail);
+ mov(reg_tmp, reg_len); // reg_tmp is rcx, and we need cl for the shift
+ mov(reg_rem_mask_short, 1);
+ shl(reg_rem_mask_short, cl); // reg_tmp == rcx and reg_tail < vlen
+ sub(reg_rem_mask_short, 1);
+ jz(epilogue_end, T_NEAR);
+ kmovq(kreg_rem_mask_short, reg_rem_mask_short);
+ compute(0, 0, true);
+ }
+
+ L(epilogue_end);
+
+ postamble();
+
+ ker_ = getCode<decltype(ker_)>();
+}
+
+template <data_type_t src_type, data_type_t dst_type>
+void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::pp_ker_t::operator ()
+ (dst_data_t *dst, const acc_data_t *acc, const char *bias,
+ const float *scales, float nslope, float sum_scale, float signed_scale,
+ int g, size_t start, size_t end)
+{
+ using math::get_bias;
+
+ if (end <= start)
+ return;
+
+ if (ker_) {
+ // JIT
+ ker_args args;
+ size_t oc_offset = start % OC_;
+ size_t os_offset = start / OC_;
+ args.acc = acc + start;
+ args.dst = dst + os_offset * dst_os_stride_ + oc_offset;
+ args.bias = bias + (g * jcp_.oc + oc_offset) * bias_data_type_size_;
+ args.scales = scales + scale_idx_mult_ * (g * jcp_.oc + oc_offset);
+ args.nslope = nslope;
+ args.sum_scale = sum_scale;
+ args.signed_scale = signed_scale;
+ args.len = end - start;
+ args.oc_offset = oc_offset;
+ ker_(&args);
+ }
+ else {
+ // Fallback
+ const size_t first_oc = start % OC_;
+ const size_t last_oc = (end - 1) % OC_;
+ const size_t first_os = start / OC_;
+ const size_t last_os = (end - 1) / OC_;
+ for (size_t os = first_os; os <= last_os; os++) {
+ const size_t start_oc = (os == first_os) ? first_oc : 0;
+ const size_t end_oc = (os == last_os) ? last_oc : OC_ - 1;
+ for (size_t oc = start_oc; oc <= end_oc; oc++) {
+ const size_t acc_off = os * jcp_.oc + oc;
+ const size_t dst_off = os * dst_os_stride_ + oc;
+
+ float d = (float)(acc[acc_off]);
+ if (jcp_.signed_input)
+ d *= signed_scale;
+
+ if (do_bias_)
+ d += get_bias(bias, g * jcp_.oc + oc,
+ bias_data_type_);
+
+ d *= scales[(g * jcp_.oc + oc) * scale_idx_mult_];
+ if (do_sum_)
+ d += sum_scale * dst[dst_off];
+ if (do_relu_ && d < 0)
+ d *= nslope;
+ dst[dst_off] = qz_a1b0<float, dst_data_t>()(d);
+ }
+ }
+ }
+};
+
+template <data_type_t src_type, data_type_t dst_type>
+void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::
+execute_forward_thr(const int ithr, const int nthr, const src_data_t *src_base,
+ const wei_data_t *wei_base, const char *bia_base, dst_data_t *dst_base,
+ const memory_tracking::grantor_t &scratchpad) const {
+ const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
+
+ const auto src_md = memory_desc_wrapper(pd()->src_md());
+ const size_t src_mb_stride = src_md.blk_off(1);
+ const size_t src_g_stride = src_md.blk_off(0, 1) * jcp.ic;
+
+ const auto wei_md = memory_desc_wrapper(pd()->weights_md(0));
+ const size_t wei_g_stride = pd()->with_groups() ? wei_md.blk_off(1) : 0;
+
+ const auto dst_md = memory_desc_wrapper(pd()->dst_md());
+ const size_t dst_mb_stride = dst_md.blk_off(1);
+ const size_t dst_g_stride = dst_md.blk_off(0, 1) * jcp.oc;
+
+ const float *scales = pd()->attr()->output_scales_.scales_;
+
+ const auto &post_ops = pd()->attr()->post_ops_;
+ const bool do_sum = post_ops.contain(primitive_kind::sum, 0);
+ const float sum_scale = do_sum ? post_ops.entry_[0].sum.scale : 0;
+
+ float nslope = 0;
+ for (int idx = 0; idx < post_ops.len_; ++idx) {
+ const auto &e = post_ops.entry_[idx];
+ if (e.is_relu(true, false)) {
+ nslope = e.eltwise.alpha;
+ break;
+ }
+ }
+
+ auto col = scratchpad.get<uint8_t>(key_conv_gemm_col)
+ + (ptrdiff_t)ithr * jcp.im2col_sz;
+ src_data_t *__restrict imtr = scratchpad.get<src_data_t>(key_conv_gemm_imtr)
+ + (ptrdiff_t)ithr * jcp.is * jcp.ic;
+ auto acc = scratchpad.get<acc_data_t>(key_conv_int_dat_in_acc_dt)
+ + (ptrdiff_t)ithr * jcp.oh_block * jcp.ow_block * jcp.oc;
+
+ const ptrdiff_t offset = (ptrdiff_t)jcp.ngroups * jcp.ks * jcp.ic * jcp.oc;
+ const int32_t *_wei_comp = (const int32_t *)(wei_base + offset);
+
+ int g{ 0 }, n{ 0 }, ohb{ 0 }, owb{ 0 };
+ size_t start = 0, end = 0;
+
+ const int nb_oh = div_up(jcp.oh, jcp.oh_block);
+ const int nb_ow = div_up(jcp.ow, jcp.ow_block);
+ const size_t work_amount = jcp.ngroups * jcp.mb * nb_oh * nb_ow;
+ balance211(work_amount, nthr, ithr, start, end);
+ nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, ohb,
+ nb_oh, owb, nb_ow);
+
+ for (size_t iwork = start; iwork < end; ++iwork) {
+ int oh = ohb * jcp.oh_block;
+ int ow = owb * jcp.ow_block;
+ const src_data_t *__restrict src = src_base + n * src_mb_stride
+ + g * src_g_stride;
+ const wei_data_t *__restrict wei = wei_base + g * wei_g_stride;
+ dst_data_t *__restrict dst =
+ dst_base + n * dst_mb_stride + g * dst_g_stride;
+ const int32_t *wei_comp = _wei_comp + g * jcp.oc;
+ const int h_step = nstl::min(jcp.oh_block, jcp.oh - oh);
+ const int w_step = nstl::min(jcp.ow_block, jcp.ow - ow);
+
+ if (jcp.im2col_sz)
+ jit_gemm_convolution_utils::im2col_u8<src_data_t>(
+ jcp, src, imtr, col, oh, h_step, ow, w_step);
+
+ const int M = jcp.oc;
+ const int K = jcp.ks * jcp.ic;
+ const int N = h_step * w_step;
+ const int LDA = M * jcp.ngroups;
+ const int LDB = jcp.im2col_sz ? N : K;
+ const char *BT = jcp.im2col_sz ? "T" : "N";
+ const int8_t off_a = 0, off_b = 0;
+ const int32_t off_c = 0;
+ const float onef = 1.0, zerof = 0.0;
+ gemm_s8x8s32("N", BT, jcp.signed_input ? "C" : "F",
+ &M, &N, &K, &onef, wei, &LDA, &off_a,
+ jcp.im2col_sz ? col : (uint8_t *)src, &LDB, &off_b,
+ &zerof, acc, &M, jcp.signed_input ? wei_comp : &off_c);
+
+ auto wei_adj_scale =
+ (wei_md.extra().flags | memory_extra_flags::scale_adjust)
+ ? wei_md.extra().scale_adjust : 1.f;
+
+ parallel(0, [&](int ithr, int nthr) {
+ size_t start, end;
+ balance211((size_t)N * jcp.oc, nthr, ithr, start, end);
+ (*pp_ker_)(dst + (oh * jcp.ow + ow) * pp_ker_->dst_os_stride_,
+ acc, bia_base, scales, nslope, sum_scale,
+ 1.f / wei_adj_scale, g, start, end);
+ });
+
+ nd_iterator_step(n, jcp.mb, g, jcp.ngroups, ohb, nb_oh,
+ owb, nb_ow);
+ }
+}
+
+template <data_type_t dst_type>
+void _gemm_u8s8s32x_convolution_bwd_data_t<dst_type>::
+execute_backward_data(const exec_ctx_t &ctx) const {
+ auto diff_dst_base = CTX_IN_MEM(const diff_dst_data_t *, MKLDNN_ARG_DIFF_DST);
+ auto wei_base = CTX_IN_MEM(const wei_data_t *, MKLDNN_ARG_WEIGHTS);
+ auto bia_base = CTX_IN_MEM(const char *, MKLDNN_ARG_BIAS);
+ auto diff_src_base = CTX_OUT_MEM(diff_src_data_t *, MKLDNN_ARG_DIFF_SRC);
+
+ auto scratchpad = this->scratchpad(ctx);
+
+ const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
+
+ parallel(jcp.nthr, [&](const int ithr, const int nthr) {
+ execute_backward_data_thr(ithr, nthr, diff_dst_base, wei_base,
+ bia_base, diff_src_base, scratchpad);
+ });
+}
+
+template <data_type_t dst_type>
+void _gemm_u8s8s32x_convolution_bwd_data_t<dst_type>::
+execute_backward_data_thr(const int ithr, const int nthr,
+ const diff_dst_data_t *diff_dst_base, const wei_data_t *wei_base,
+ const char *bia_base, diff_src_data_t *diff_src_base,
+ const memory_tracking::grantor_t &scratchpad) const
+{
+ const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
+
+ const auto diff_dst_md = memory_desc_wrapper(pd()->diff_dst_md());
+ const size_t diff_dst_mb_stride = diff_dst_md.blk_off(1);
+ const size_t diff_dst_g_stride = diff_dst_md.blk_off(0, 1) * jcp.oc;
+
+ const auto wei_md = memory_desc_wrapper(pd()->weights_md(0));
+ const size_t wei_g_stride = pd()->with_groups() ? wei_md.blk_off(1) : 0;
+
+ const auto diff_src_md = memory_desc_wrapper(pd()->diff_src_md());
+ const size_t diff_src_mb_stride = diff_src_md.blk_off(1);
+ const size_t diff_src_g_stride = diff_src_md.blk_off(0, 1) * jcp.ic;
+ const size_t diff_src_os_stride = diff_src_md.blk_off(0, 0, 0, 1);
+
+ /* scale_idx_mult = 1 for per_oc scales and 0, otherwise */
+ const int scale_idx_mult = pd()->attr()->output_scales_.mask_ == (1 << 1);
+ const float *scales = pd()->attr()->output_scales_.scales_;
+ const size_t work_amount = jcp.ngroups * jcp.mb;
+
+ auto col = scratchpad.get<acc_data_t>(key_conv_gemm_col)
+ + (ptrdiff_t)ithr * jcp.im2col_sz;
+ auto acc = scratchpad.get<acc_data_t>(key_conv_int_dat_in_acc_dt)
+ + (ptrdiff_t)ithr * jcp.is * jcp.ic;
+
+ int n{0}, g{0};
+ size_t start = 0, end = 0;
+
+ balance211(work_amount, nthr, ithr, start, end);
+ nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups);
+
+ for (size_t iwork = start; iwork < end; ++iwork) {
+ const diff_dst_data_t *diff_dst = diff_dst_base
+ + n * diff_dst_mb_stride + g * diff_dst_g_stride;
+ const wei_data_t *wei = wei_base + g * wei_g_stride;
+ diff_src_data_t *diff_src = diff_src_base + n * diff_src_mb_stride
+ + g * diff_src_g_stride;
+
+ const int M = jcp.ks * jcp.ic;
+ const int N = jcp.os;
+ const int K = jcp.oc;
+ const int8_t off_a = 0, off_b = 0;
+ const int32_t off_c = 0;
+ const float onef = 1.0, zerof = 0.0;
+ const int LD = K * jcp.ngroups;
+
+ gemm_s8x8s32("T", "N", "F", &M, &N, &K, &onef,
+ wei, &LD, &off_a, diff_dst, &LD, &off_b,
+ &zerof, jcp.im2col_sz ? col : acc, &M, &off_c);
+
+ if (jcp.im2col_sz)
+ jit_gemm_convolution_utils::col2im_s32(jcp, col, acc);
+
+ parallel_nd(jcp.is, jcp.ic, [&](int is, int ic) {
+ float d = (float)acc[is * jcp.ic + ic];
+ if (jcp.with_bias)
+ d += get_bias(bia_base, g * jcp.ic + ic,
+ pd()->desc()->bias_desc.data_type);
+ d *= scales[(g * jcp.ic + ic) * scale_idx_mult];
+ const size_t diff_src_off = is * diff_src_os_stride + ic;
+ diff_src[diff_src_off] =
+ qz_a1b0<float, diff_src_data_t>()(d);
+ });
+ nd_iterator_step(n, jcp.mb, g, jcp.ngroups);
+ }
+}
+
+using namespace data_type;
+
+template struct _gemm_x8s8s32x_convolution_fwd_t<u8, f32>;
+template struct _gemm_x8s8s32x_convolution_fwd_t<u8, s32>;
+template struct _gemm_x8s8s32x_convolution_fwd_t<u8, s8>;
+template struct _gemm_x8s8s32x_convolution_fwd_t<u8, u8>;
+
+template struct _gemm_x8s8s32x_convolution_fwd_t<s8, f32>;
+template struct _gemm_x8s8s32x_convolution_fwd_t<s8, s32>;
+template struct _gemm_x8s8s32x_convolution_fwd_t<s8, s8>;
+template struct _gemm_x8s8s32x_convolution_fwd_t<s8, u8>;
+
+template struct _gemm_u8s8s32x_convolution_bwd_data_t<f32>;
+template struct _gemm_u8s8s32x_convolution_bwd_data_t<s32>;
+template struct _gemm_u8s8s32x_convolution_bwd_data_t<s8>;
+template struct _gemm_u8s8s32x_convolution_bwd_data_t<u8>;
+}
+}
+}