diff options
author | Juan Linietsky <reduzio@gmail.com> | 2020-05-01 09:34:23 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2020-05-10 15:59:09 -0300 |
commit | 1bea8e1eacc68bcedbd3f207395bccf11011dae2 (patch) | |
tree | b75303a69491978c1e13360a3e6f355c5234dfe0 /thirdparty/oidn/mkl-dnn/src/common/rnn_pd.hpp | |
parent | 6a0473bcc23c096ef9ee929632a209761c2668f6 (diff) |
New lightmapper
-Added LocalVector (needed it)
-Added stb_rect_pack (It's pretty cool, we could probably use it for other stuff too)
-Fixes and changes all around the place
-Added library for 128 bits fixed point (required for Delaunay3D)
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/common/rnn_pd.hpp')
-rw-r--r-- | thirdparty/oidn/mkl-dnn/src/common/rnn_pd.hpp | 280 |
1 files changed, 280 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/common/rnn_pd.hpp b/thirdparty/oidn/mkl-dnn/src/common/rnn_pd.hpp new file mode 100644 index 0000000000..1ee2ba1114 --- /dev/null +++ b/thirdparty/oidn/mkl-dnn/src/common/rnn_pd.hpp @@ -0,0 +1,280 @@ +/******************************************************************************* +* Copyright 2018 Intel Corporation +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*******************************************************************************/ + +#ifndef RNN_PD_HPP +#define RNN_PD_HPP + +#include "mkldnn.h" + +#include "c_types_map.hpp" +#include "primitive_desc.hpp" +#include "type_helpers.hpp" + +namespace mkldnn { +namespace impl { + +struct rnn_fwd_pd_t; + +struct rnn_pd_t : public primitive_desc_t { + static constexpr auto base_pkind = primitive_kind::rnn; + + rnn_pd_t(engine_t *engine, + const rnn_desc_t *adesc, + const primitive_attr_t *attr, + const rnn_fwd_pd_t *hint_fwd_pd) + : primitive_desc_t(engine, attr, base_pkind) + , desc_(*adesc) + , hint_fwd_pd_(hint_fwd_pd) + , src_layer_md_(desc_.src_layer_desc) + , src_iter_md_(desc_.src_iter_desc) + , weights_layer_md_(desc_.weights_layer_desc) + , weights_iter_md_(desc_.weights_iter_desc) + , bias_md_(desc_.bias_desc) + , dst_layer_md_(desc_.dst_layer_desc) + , dst_iter_md_(desc_.dst_iter_desc) + , ws_md_() + {} + + const rnn_desc_t *desc() const { return &desc_; } + virtual const op_desc_t *op_desc() const override + { return reinterpret_cast<const op_desc_t *>(this->desc()); } + virtual void init_info() override { impl::init_info(this, this->info_); } + + virtual status_t query(query_t what, int idx, void *result) const override { + switch (what) { + case query::rnn_d: *(const rnn_desc_t **)result = desc(); break; + default: return primitive_desc_t::query(what, idx, result); + } + return status::success; + } + + virtual const memory_desc_t *src_md(int index = 0) const override { + if (index == 0) return &src_layer_md_; + if (index == 1 && with_src_iter()) return &src_iter_md_; + return nullptr; + } + virtual const memory_desc_t *weights_md(int index = 0) const override { + if (index == 0) return &weights_layer_md_; + if (index == 1) return &weights_iter_md_; + if (index == 2 && with_bias()) return &bias_md_; + return nullptr; + } + virtual const memory_desc_t *dst_md(int index = 0) const override { + if (index == 0) return &dst_layer_md_; + if (index == 1 && with_dst_iter()) return &dst_iter_md_; + return nullptr; + } + virtual const memory_desc_t *workspace_md(int index = 0) const override + { return index == 0 && !types::is_zero_md(&ws_md_) ? &ws_md_ : nullptr; } + + /* common pooling aux functions */ + + bool is_training() const { + return utils::one_of(desc_.prop_kind, prop_kind::forward_training, + prop_kind::backward); + } + + bool is_fwd() const { + return utils::one_of(desc_.prop_kind, prop_kind::forward_training, + prop_kind::forward_inference); + } + + dim_t T() const { return desc_.src_layer_desc.dims[0]; } + dim_t MB() const { return desc_.src_layer_desc.dims[1]; } + + dim_t L() const { return desc_.weights_layer_desc.dims[0]; } + dim_t D() const { return desc_.weights_layer_desc.dims[1]; } + + dim_t SIC() const { return desc_.weights_iter_desc.dims[2]; } + + dim_t SLC() const { return desc_.weights_layer_desc.dims[2]; } + dim_t G() const { return desc_.weights_layer_desc.dims[3]; } + dim_t DIC() const { return desc_.weights_layer_desc.dims[4]; } + + dim_t DLC() const { return desc_.dst_layer_desc.dims[2]; } + + bool with_bias() const + { return !memory_desc_wrapper(desc_.bias_desc).is_zero(); } + + bool with_src_iter() const + { return !(memory_desc_wrapper(desc_.src_iter_desc).is_zero()); } + + bool with_dst_iter() const + { return !memory_desc_wrapper(desc_.dst_iter_desc).is_zero(); } + + mkldnn::impl::alg_kind_t cell_kind() const + { return desc_.cell_desc.cell_kind; } + mkldnn::impl::alg_kind_t activation_kind() const + { return desc_.cell_desc.activation_kind; } + + bool is_lbr() const + { return cell_kind() == mkldnn_gru_linear_before_reset; } + + mkldnn_rnn_direction_t direction() const { return desc_.direction; } + +protected: + rnn_desc_t desc_; + const rnn_fwd_pd_t *hint_fwd_pd_; + + memory_desc_t src_layer_md_; + memory_desc_t src_iter_md_; + memory_desc_t weights_layer_md_; + memory_desc_t weights_iter_md_; + memory_desc_t bias_md_; + memory_desc_t dst_layer_md_; + memory_desc_t dst_iter_md_; + + memory_desc_t ws_md_; +}; + +struct rnn_fwd_pd_t: public rnn_pd_t { + typedef rnn_fwd_pd_t base_class; + typedef rnn_fwd_pd_t hint_class; + + rnn_fwd_pd_t(engine_t *engine, + const rnn_desc_t *adesc, + const primitive_attr_t *attr, + const rnn_fwd_pd_t *hint_fwd_pd) + : rnn_pd_t(engine, adesc, attr, hint_fwd_pd) + {} + + virtual arg_usage_t arg_usage(primitive_arg_index_t arg) const override { + if (arg == MKLDNN_ARG_SRC_LAYER) + return arg_usage_t::input; + + if (arg == MKLDNN_ARG_SRC_ITER && with_src_iter()) + return arg_usage_t::input; + + if (utils::one_of(arg, MKLDNN_ARG_WEIGHTS_LAYER, + MKLDNN_ARG_WEIGHTS_ITER)) + return arg_usage_t::input; + + if (arg == MKLDNN_ARG_BIAS && with_bias()) + return arg_usage_t::input; + + if (arg == MKLDNN_ARG_DST_LAYER) + return arg_usage_t::output; + + if (arg == MKLDNN_ARG_DST_ITER && with_dst_iter()) + return arg_usage_t::output; + + if (arg == MKLDNN_ARG_WORKSPACE && is_training()) + return arg_usage_t::output; + + return primitive_desc_t::arg_usage(arg); + } + + virtual int n_inputs() const override + { return 3 + with_bias() + with_src_iter(); } + virtual int n_outputs() const override + { return 1 + with_dst_iter() + is_training(); } +}; + +struct rnn_bwd_pd_t : public rnn_pd_t { + typedef rnn_bwd_pd_t base_class; + typedef rnn_fwd_pd_t hint_class; + + rnn_bwd_pd_t(engine_t *engine, + const rnn_desc_t *adesc, + const primitive_attr_t *attr, + const rnn_fwd_pd_t *hint_fwd_pd) + : rnn_pd_t(engine, adesc, attr, hint_fwd_pd) + , diff_src_layer_md_(desc_.diff_src_layer_desc) + , diff_src_iter_md_(desc_.diff_src_iter_desc) + , diff_weights_layer_md_(desc_.diff_weights_layer_desc) + , diff_weights_iter_md_(desc_.diff_weights_iter_desc) + , diff_bias_md_(desc_.diff_bias_desc) + , diff_dst_layer_md_(desc_.diff_dst_layer_desc) + , diff_dst_iter_md_(desc_.diff_dst_iter_desc) + {} + + virtual arg_usage_t arg_usage(primitive_arg_index_t arg) const override { + if (utils::one_of(arg, MKLDNN_ARG_SRC_LAYER, MKLDNN_ARG_DST_LAYER, + MKLDNN_ARG_DIFF_DST_LAYER)) + return arg_usage_t::input; + + if (with_src_iter()) { + if (arg == MKLDNN_ARG_SRC_ITER) + return arg_usage_t::input; + + if (arg == MKLDNN_ARG_DIFF_SRC_ITER) + return arg_usage_t::output; + } + + if (utils::one_of(arg, MKLDNN_ARG_WEIGHTS_LAYER, + MKLDNN_ARG_WEIGHTS_ITER)) + return arg_usage_t::input; + + if (with_bias()) { + if (arg == MKLDNN_ARG_BIAS) + return arg_usage_t::input; + + if (arg == MKLDNN_ARG_DIFF_BIAS) + return arg_usage_t::output; + } + + if (utils::one_of(arg, MKLDNN_ARG_DST_ITER, MKLDNN_ARG_DIFF_DST_ITER) + && with_dst_iter()) + return arg_usage_t::input; + + if (arg == MKLDNN_ARG_WORKSPACE) + return arg_usage_t::input; + + if (utils::one_of(arg, MKLDNN_ARG_DIFF_SRC_LAYER, + MKLDNN_ARG_DIFF_WEIGHTS_LAYER, + MKLDNN_ARG_DIFF_WEIGHTS_ITER)) + return arg_usage_t::output; + + return primitive_desc_t::arg_usage(arg); + } + + virtual const memory_desc_t *diff_src_md(int index = 0) const override { + if (index == 0) return &diff_src_layer_md_; + if (index == 1 && with_src_iter()) return &diff_src_iter_md_; + return nullptr; + } + virtual const memory_desc_t *diff_weights_md( + int index = 0) const override { + if (index == 0) return &diff_weights_layer_md_; + if (index == 1) return &diff_weights_iter_md_; + if (index == 2 && with_bias()) return &diff_bias_md_; + return nullptr; + } + virtual const memory_desc_t *diff_dst_md(int index = 0) const override { + if (index == 0) return &diff_dst_layer_md_; + if (index == 1 && with_dst_iter()) return &diff_dst_iter_md_; + return nullptr; + } + + virtual int n_inputs() const override + { return 6 + with_src_iter() + with_bias() + 2 * with_dst_iter(); } + virtual int n_outputs() const override + { return 3 + with_src_iter() + with_bias(); } + +protected: + memory_desc_t diff_src_layer_md_; + memory_desc_t diff_src_iter_md_; + memory_desc_t diff_weights_layer_md_; + memory_desc_t diff_weights_iter_md_; + memory_desc_t diff_bias_md_; + memory_desc_t diff_dst_layer_md_; + memory_desc_t diff_dst_iter_md_; +}; + +} +} + +#endif |