summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/common/pooling.cpp
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <rverschelde@gmail.com>2020-05-11 13:45:48 +0200
committerGitHub <noreply@github.com>2020-05-11 13:45:48 +0200
commit32133a11b56761df99579ad96ee29a47d2aed6b4 (patch)
treeab68992cfe6b1f59a618f713545fdcb3b6488b07 /thirdparty/oidn/mkl-dnn/src/common/pooling.cpp
parentbbdfc7353c3af72fcdf037ff10b8571aa2afc230 (diff)
parent1bea8e1eacc68bcedbd3f207395bccf11011dae2 (diff)
Merge pull request #38386 from reduz/new-lightmapper
New GPU lightmapper
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/common/pooling.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/common/pooling.cpp114
1 files changed, 114 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/common/pooling.cpp b/thirdparty/oidn/mkl-dnn/src/common/pooling.cpp
new file mode 100644
index 0000000000..be96e654ff
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/common/pooling.cpp
@@ -0,0 +1,114 @@
+/*******************************************************************************
+* Copyright 2016-2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include <assert.h>
+#include "mkldnn.h"
+
+#include "c_types_map.hpp"
+#include "type_helpers.hpp"
+#include "utils.hpp"
+
+using namespace mkldnn::impl;
+using namespace mkldnn::impl::utils;
+using namespace mkldnn::impl::status;
+using namespace mkldnn::impl::prop_kind;
+using namespace mkldnn::impl::alg_kind;
+using namespace mkldnn::impl::types;
+
+namespace {
+status_t pooling_desc_init(pooling_desc_t *pool_desc,
+ prop_kind_t prop_kind, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *dst_desc,
+ const dims_t strides, const dims_t kernel, const dims_t padding_l,
+ const dims_t padding_r, padding_kind_t padding_kind) {
+ bool args_ok = true
+ && !any_null(pool_desc, src_desc, dst_desc, strides, kernel, padding_l)
+ && one_of(alg_kind, pooling_max,
+ pooling_avg_include_padding,
+ pooling_avg_exclude_padding)
+ && one_of(padding_kind, padding_kind::padding_zero);
+ if (!args_ok) return invalid_arguments;
+
+ if (padding_r == nullptr) padding_r = padding_l;
+
+ auto pd = pooling_desc_t();
+ pd.primitive_kind = primitive_kind::pooling;
+ pd.prop_kind = prop_kind;
+ pd.alg_kind = alg_kind;
+ pd.src_desc.ndims = src_desc->ndims;
+
+ const bool is_fwd = one_of(prop_kind, forward_training, forward_inference);
+
+ pd.diff_src_desc = pd.src_desc = zero_md();
+ pd.diff_dst_desc = pd.dst_desc = zero_md();
+
+ (is_fwd ? pd.src_desc : pd.diff_src_desc) = *src_desc;
+ (is_fwd ? pd.dst_desc : pd.diff_dst_desc) = *dst_desc;
+
+ int sp_dims = src_desc->ndims - 2;
+ utils::array_copy(pd.strides, strides, sp_dims);
+ utils::array_copy(pd.kernel, kernel, sp_dims);
+ utils::array_copy(pd.padding[0], padding_l, sp_dims);
+ utils::array_copy(pd.padding[1], padding_r, sp_dims);
+
+ pd.padding_kind = padding_kind;
+ if (one_of(alg_kind, pooling_max, pooling_avg_include_padding,
+ pooling_avg_exclude_padding)) {
+ pd.accum_data_type = types::default_accum_data_type(
+ src_desc->data_type, dst_desc->data_type);
+ } else {
+ pd.accum_data_type = dst_desc->data_type;
+ }
+
+ bool consistency = true
+ && utils::one_of(src_desc->ndims, 4, 5)
+ && utils::one_of(dst_desc->ndims, 4, 5)
+ && src_desc->dims[0] == dst_desc->dims[0]
+ && src_desc->dims[1] == dst_desc->dims[1];
+ for (int i = 2; i < src_desc->ndims; ++i)
+ consistency = consistency && (
+ (src_desc->dims[i] - kernel[i - 2] + padding_l[i - 2]
+ + padding_r[i - 2]) / strides[i - 2] + 1
+ == dst_desc->dims[i]);
+ if (!consistency) return invalid_arguments;
+
+ *pool_desc = pd;
+ return success;
+}
+}
+
+status_t mkldnn_pooling_forward_desc_init(pooling_desc_t *pool_desc,
+ prop_kind_t prop_kind, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *dst_desc,
+ const dims_t strides, const dims_t kernel, const dims_t padding_l,
+ const dims_t padding_r, padding_kind_t padding_kind) {
+ if (!one_of(prop_kind, forward_training, forward_inference))
+ return invalid_arguments;
+ return pooling_desc_init(pool_desc, prop_kind, alg_kind, src_desc,
+ dst_desc, strides, kernel, padding_l, padding_r, padding_kind);
+}
+
+status_t mkldnn_pooling_backward_desc_init(pooling_desc_t *pool_desc,
+ alg_kind_t alg_kind, const memory_desc_t *diff_src_desc,
+ const memory_desc_t *diff_dst_desc, const dims_t strides,
+ const dims_t kernel, const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ return pooling_desc_init(pool_desc, prop_kind::backward_data, alg_kind,
+ diff_src_desc, diff_dst_desc, strides, kernel, padding_l,
+ padding_r, padding_kind);
+}
+
+// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s