diff options
author | RĂ©mi Verschelde <rverschelde@gmail.com> | 2020-05-11 13:45:48 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-05-11 13:45:48 +0200 |
commit | 32133a11b56761df99579ad96ee29a47d2aed6b4 (patch) | |
tree | ab68992cfe6b1f59a618f713545fdcb3b6488b07 /thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp | |
parent | bbdfc7353c3af72fcdf037ff10b8571aa2afc230 (diff) | |
parent | 1bea8e1eacc68bcedbd3f207395bccf11011dae2 (diff) |
Merge pull request #38386 from reduz/new-lightmapper
New GPU lightmapper
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp')
-rw-r--r-- | thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp | 188 |
1 files changed, 188 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp b/thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp new file mode 100644 index 0000000000..98063c1c37 --- /dev/null +++ b/thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp @@ -0,0 +1,188 @@ +/******************************************************************************* +* Copyright 2018 Intel Corporation +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*******************************************************************************/ + +#include "mkldnn.h" +#include <assert.h> + +#include "c_types_map.hpp" +#include "type_helpers.hpp" +#include "utils.hpp" + +using namespace mkldnn::impl; +using namespace mkldnn::impl::utils; +using namespace mkldnn::impl::status; +using namespace mkldnn::impl::prop_kind; +using namespace mkldnn::impl::alg_kind; +using namespace mkldnn::impl::types; + +namespace { +status_t deconv_desc_init(deconvolution_desc_t *deconv_desc, + prop_kind_t prop_kind, alg_kind_t alg_kind, + const memory_desc_t *src_desc, const memory_desc_t *weights_desc, + const memory_desc_t *bias_desc, const memory_desc_t *dst_desc, + const dims_t strides, const dims_t dilates, const dims_t padding_l, + const dims_t padding_r, padding_kind_t padding_kind) { + bool args_ok = true + && !any_null(deconv_desc, src_desc, weights_desc, dst_desc, strides, + padding_l) + && one_of(alg_kind, deconvolution_direct, deconvolution_winograd) + && one_of(padding_kind, padding_kind::padding_zero); + if (!args_ok) + return invalid_arguments; + + if (padding_r == nullptr) + padding_r = padding_l; + + auto dd = deconvolution_desc_t(); + dd.primitive_kind = primitive_kind::deconvolution; + dd.prop_kind = prop_kind; + dd.alg_kind = alg_kind; + + dd.diff_src_desc = dd.src_desc = zero_md(); + dd.diff_dst_desc = dd.dst_desc = zero_md(); + dd.diff_weights_desc = dd.weights_desc = zero_md(); + dd.diff_bias_desc = dd.bias_desc = zero_md(); + + const bool is_fwd = one_of(prop_kind, forward_training, forward_inference); + const bool with_bias + = bias_desc && bias_desc->format_kind != format_kind::undef; + const bool with_groups = weights_desc->ndims == src_desc->ndims + 1; + + (prop_kind == backward_data ? dd.diff_src_desc : dd.src_desc) = *src_desc; + (is_fwd ? dd.dst_desc : dd.diff_dst_desc) = *dst_desc; + (prop_kind == backward_weights ? dd.diff_weights_desc : dd.weights_desc) + = *weights_desc; + if (with_bias) + (prop_kind == backward_weights ? dd.diff_bias_desc : dd.bias_desc) + = *bias_desc; + + int sp_dims = src_desc->ndims - 2; + utils::array_copy(dd.strides, strides, sp_dims); + utils::array_copy(dd.padding[0], padding_l, sp_dims); + utils::array_copy(dd.padding[1], padding_r, sp_dims); + if (dilates) + utils::array_copy(dd.dilates, dilates, sp_dims); + else + utils::array_set(dd.dilates, 0, sp_dims); + + dd.padding_kind = padding_kind; + dd.accum_data_type = types::default_accum_data_type(src_desc->data_type, + weights_desc->data_type, dst_desc->data_type, prop_kind); + + const int g = with_groups ? weights_desc->dims[0] : 1; + bool consistency = true + && src_desc->ndims == dst_desc->ndims + && utils::one_of(src_desc->ndims, 3, 4, 5) + && utils::one_of(weights_desc->ndims, src_desc->ndims, + src_desc->ndims + 1) + && (with_bias ? bias_desc->ndims == 1 : true) + && (with_bias ? bias_desc->dims[0] == dst_desc->dims[1] : true) + && src_desc->dims[0] == dst_desc->dims[0] + && src_desc->dims[1] == g * weights_desc->dims[with_groups + 1] + && dst_desc->dims[1] == g * weights_desc->dims[with_groups + 0]; + for (int i = 2; i < src_desc->ndims; ++i) { + int src = src_desc->dims[i]; + int ker = weights_desc->dims[with_groups + i]; + int dil = dd.dilates[i - 2]; + int pad = padding_l[i - 2] + padding_r[i - 2]; + int str = strides[i - 2]; + int dst = dst_desc->dims[i]; + int ker_range = 1 + (ker - 1) * (dil + 1); + + consistency + = consistency && (dst - ker_range + pad) / str + 1 == src; + } + if (!consistency) + return invalid_arguments; + + *deconv_desc = dd; + return success; +} +} + +status_t mkldnn_deconvolution_forward_desc_init( + deconvolution_desc_t *deconv_desc, prop_kind_t prop_kind, + alg_kind_t alg_kind, const memory_desc_t *src_desc, + const memory_desc_t *weights_desc, const memory_desc_t *bias_desc, + const memory_desc_t *dst_desc, const dims_t strides, + const dims_t padding_l, const dims_t padding_r, + padding_kind_t padding_kind) { + if (!one_of(prop_kind, forward_training, forward_inference)) + return invalid_arguments; + return deconv_desc_init(deconv_desc, prop_kind, alg_kind, src_desc, + weights_desc, bias_desc, dst_desc, strides, nullptr, padding_l, + padding_r, padding_kind); +} + +status_t mkldnn_dilated_deconvolution_forward_desc_init( + deconvolution_desc_t *deconv_desc, prop_kind_t prop_kind, + alg_kind_t alg_kind, const memory_desc_t *src_desc, + const memory_desc_t *weights_desc, const memory_desc_t *bias_desc, + const memory_desc_t *dst_desc, const dims_t strides, + const dims_t dilates, const dims_t padding_l, const dims_t padding_r, + padding_kind_t padding_kind) { + if (!one_of(prop_kind, forward_training, forward_inference)) + return invalid_arguments; + return deconv_desc_init(deconv_desc, prop_kind, alg_kind, src_desc, + weights_desc, bias_desc, dst_desc, strides, dilates, padding_l, + padding_r, padding_kind); +} + +status_t mkldnn_deconvolution_backward_data_desc_init( + deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind, + const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc, + const memory_desc_t *diff_dst_desc, const dims_t strides, + const dims_t padding_l, const dims_t padding_r, + padding_kind_t padding_kind) { + return deconv_desc_init(deconv_desc, backward_data, alg_kind, diff_src_desc, + weights_desc, nullptr, diff_dst_desc, strides, nullptr, padding_l, + padding_r, padding_kind); +} + +status_t mkldnn_dilated_deconvolution_backward_data_desc_init( + deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind, + const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc, + const memory_desc_t *diff_dst_desc, const dims_t strides, + const dims_t dilates, const dims_t padding_l, const dims_t padding_r, + padding_kind_t padding_kind) { + return deconv_desc_init(deconv_desc, backward_data, alg_kind, diff_src_desc, + weights_desc, nullptr, diff_dst_desc, strides,dilates, padding_l, + padding_r, padding_kind); +} + +status_t mkldnn_deconvolution_backward_weights_desc_init( + deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind, + const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc, + const memory_desc_t *diff_bias_desc, const memory_desc_t *diff_dst_desc, + const dims_t strides, const dims_t padding_l, const dims_t padding_r, + padding_kind_t padding_kind) { + return deconv_desc_init(deconv_desc, backward_weights, alg_kind, src_desc, + diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, nullptr, + padding_l, padding_r, padding_kind); +} + +status_t mkldnn_dilated_deconvolution_backward_weights_desc_init( + deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind, + const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc, + const memory_desc_t *diff_bias_desc, const memory_desc_t *diff_dst_desc, + const dims_t strides, const dims_t dilates, const dims_t padding_l, + const dims_t padding_r, padding_kind_t padding_kind) { + return deconv_desc_init(deconv_desc, backward_weights, alg_kind, src_desc, + diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, dilates, + padding_l, padding_r, padding_kind); +} + +// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |