summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <rverschelde@gmail.com>2020-05-11 13:45:48 +0200
committerGitHub <noreply@github.com>2020-05-11 13:45:48 +0200
commit32133a11b56761df99579ad96ee29a47d2aed6b4 (patch)
treeab68992cfe6b1f59a618f713545fdcb3b6488b07 /thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp
parentbbdfc7353c3af72fcdf037ff10b8571aa2afc230 (diff)
parent1bea8e1eacc68bcedbd3f207395bccf11011dae2 (diff)
Merge pull request #38386 from reduz/new-lightmapper
New GPU lightmapper
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp188
1 files changed, 188 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp b/thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp
new file mode 100644
index 0000000000..98063c1c37
--- /dev/null
+++ b/thirdparty/oidn/mkl-dnn/src/common/deconvolution.cpp
@@ -0,0 +1,188 @@
+/*******************************************************************************
+* Copyright 2018 Intel Corporation
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include "mkldnn.h"
+#include <assert.h>
+
+#include "c_types_map.hpp"
+#include "type_helpers.hpp"
+#include "utils.hpp"
+
+using namespace mkldnn::impl;
+using namespace mkldnn::impl::utils;
+using namespace mkldnn::impl::status;
+using namespace mkldnn::impl::prop_kind;
+using namespace mkldnn::impl::alg_kind;
+using namespace mkldnn::impl::types;
+
+namespace {
+status_t deconv_desc_init(deconvolution_desc_t *deconv_desc,
+ prop_kind_t prop_kind, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *weights_desc,
+ const memory_desc_t *bias_desc, const memory_desc_t *dst_desc,
+ const dims_t strides, const dims_t dilates, const dims_t padding_l,
+ const dims_t padding_r, padding_kind_t padding_kind) {
+ bool args_ok = true
+ && !any_null(deconv_desc, src_desc, weights_desc, dst_desc, strides,
+ padding_l)
+ && one_of(alg_kind, deconvolution_direct, deconvolution_winograd)
+ && one_of(padding_kind, padding_kind::padding_zero);
+ if (!args_ok)
+ return invalid_arguments;
+
+ if (padding_r == nullptr)
+ padding_r = padding_l;
+
+ auto dd = deconvolution_desc_t();
+ dd.primitive_kind = primitive_kind::deconvolution;
+ dd.prop_kind = prop_kind;
+ dd.alg_kind = alg_kind;
+
+ dd.diff_src_desc = dd.src_desc = zero_md();
+ dd.diff_dst_desc = dd.dst_desc = zero_md();
+ dd.diff_weights_desc = dd.weights_desc = zero_md();
+ dd.diff_bias_desc = dd.bias_desc = zero_md();
+
+ const bool is_fwd = one_of(prop_kind, forward_training, forward_inference);
+ const bool with_bias
+ = bias_desc && bias_desc->format_kind != format_kind::undef;
+ const bool with_groups = weights_desc->ndims == src_desc->ndims + 1;
+
+ (prop_kind == backward_data ? dd.diff_src_desc : dd.src_desc) = *src_desc;
+ (is_fwd ? dd.dst_desc : dd.diff_dst_desc) = *dst_desc;
+ (prop_kind == backward_weights ? dd.diff_weights_desc : dd.weights_desc)
+ = *weights_desc;
+ if (with_bias)
+ (prop_kind == backward_weights ? dd.diff_bias_desc : dd.bias_desc)
+ = *bias_desc;
+
+ int sp_dims = src_desc->ndims - 2;
+ utils::array_copy(dd.strides, strides, sp_dims);
+ utils::array_copy(dd.padding[0], padding_l, sp_dims);
+ utils::array_copy(dd.padding[1], padding_r, sp_dims);
+ if (dilates)
+ utils::array_copy(dd.dilates, dilates, sp_dims);
+ else
+ utils::array_set(dd.dilates, 0, sp_dims);
+
+ dd.padding_kind = padding_kind;
+ dd.accum_data_type = types::default_accum_data_type(src_desc->data_type,
+ weights_desc->data_type, dst_desc->data_type, prop_kind);
+
+ const int g = with_groups ? weights_desc->dims[0] : 1;
+ bool consistency = true
+ && src_desc->ndims == dst_desc->ndims
+ && utils::one_of(src_desc->ndims, 3, 4, 5)
+ && utils::one_of(weights_desc->ndims, src_desc->ndims,
+ src_desc->ndims + 1)
+ && (with_bias ? bias_desc->ndims == 1 : true)
+ && (with_bias ? bias_desc->dims[0] == dst_desc->dims[1] : true)
+ && src_desc->dims[0] == dst_desc->dims[0]
+ && src_desc->dims[1] == g * weights_desc->dims[with_groups + 1]
+ && dst_desc->dims[1] == g * weights_desc->dims[with_groups + 0];
+ for (int i = 2; i < src_desc->ndims; ++i) {
+ int src = src_desc->dims[i];
+ int ker = weights_desc->dims[with_groups + i];
+ int dil = dd.dilates[i - 2];
+ int pad = padding_l[i - 2] + padding_r[i - 2];
+ int str = strides[i - 2];
+ int dst = dst_desc->dims[i];
+ int ker_range = 1 + (ker - 1) * (dil + 1);
+
+ consistency
+ = consistency && (dst - ker_range + pad) / str + 1 == src;
+ }
+ if (!consistency)
+ return invalid_arguments;
+
+ *deconv_desc = dd;
+ return success;
+}
+}
+
+status_t mkldnn_deconvolution_forward_desc_init(
+ deconvolution_desc_t *deconv_desc, prop_kind_t prop_kind,
+ alg_kind_t alg_kind, const memory_desc_t *src_desc,
+ const memory_desc_t *weights_desc, const memory_desc_t *bias_desc,
+ const memory_desc_t *dst_desc, const dims_t strides,
+ const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ if (!one_of(prop_kind, forward_training, forward_inference))
+ return invalid_arguments;
+ return deconv_desc_init(deconv_desc, prop_kind, alg_kind, src_desc,
+ weights_desc, bias_desc, dst_desc, strides, nullptr, padding_l,
+ padding_r, padding_kind);
+}
+
+status_t mkldnn_dilated_deconvolution_forward_desc_init(
+ deconvolution_desc_t *deconv_desc, prop_kind_t prop_kind,
+ alg_kind_t alg_kind, const memory_desc_t *src_desc,
+ const memory_desc_t *weights_desc, const memory_desc_t *bias_desc,
+ const memory_desc_t *dst_desc, const dims_t strides,
+ const dims_t dilates, const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ if (!one_of(prop_kind, forward_training, forward_inference))
+ return invalid_arguments;
+ return deconv_desc_init(deconv_desc, prop_kind, alg_kind, src_desc,
+ weights_desc, bias_desc, dst_desc, strides, dilates, padding_l,
+ padding_r, padding_kind);
+}
+
+status_t mkldnn_deconvolution_backward_data_desc_init(
+ deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind,
+ const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc,
+ const memory_desc_t *diff_dst_desc, const dims_t strides,
+ const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ return deconv_desc_init(deconv_desc, backward_data, alg_kind, diff_src_desc,
+ weights_desc, nullptr, diff_dst_desc, strides, nullptr, padding_l,
+ padding_r, padding_kind);
+}
+
+status_t mkldnn_dilated_deconvolution_backward_data_desc_init(
+ deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind,
+ const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc,
+ const memory_desc_t *diff_dst_desc, const dims_t strides,
+ const dims_t dilates, const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ return deconv_desc_init(deconv_desc, backward_data, alg_kind, diff_src_desc,
+ weights_desc, nullptr, diff_dst_desc, strides,dilates, padding_l,
+ padding_r, padding_kind);
+}
+
+status_t mkldnn_deconvolution_backward_weights_desc_init(
+ deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc,
+ const memory_desc_t *diff_bias_desc, const memory_desc_t *diff_dst_desc,
+ const dims_t strides, const dims_t padding_l, const dims_t padding_r,
+ padding_kind_t padding_kind) {
+ return deconv_desc_init(deconv_desc, backward_weights, alg_kind, src_desc,
+ diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, nullptr,
+ padding_l, padding_r, padding_kind);
+}
+
+status_t mkldnn_dilated_deconvolution_backward_weights_desc_init(
+ deconvolution_desc_t *deconv_desc, alg_kind_t alg_kind,
+ const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc,
+ const memory_desc_t *diff_bias_desc, const memory_desc_t *diff_dst_desc,
+ const dims_t strides, const dims_t dilates, const dims_t padding_l,
+ const dims_t padding_r, padding_kind_t padding_kind) {
+ return deconv_desc_init(deconv_desc, backward_weights, alg_kind, src_desc,
+ diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, dilates,
+ padding_l, padding_r, padding_kind);
+}
+
+// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s