diff options
author | Juan Linietsky <reduzio@gmail.com> | 2020-05-01 09:34:23 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2020-05-10 15:59:09 -0300 |
commit | 1bea8e1eacc68bcedbd3f207395bccf11011dae2 (patch) | |
tree | b75303a69491978c1e13360a3e6f355c5234dfe0 /thirdparty/oidn/mkl-dnn/include/mkldnn.h | |
parent | 6a0473bcc23c096ef9ee929632a209761c2668f6 (diff) |
New lightmapper
-Added LocalVector (needed it)
-Added stb_rect_pack (It's pretty cool, we could probably use it for other stuff too)
-Fixes and changes all around the place
-Added library for 128 bits fixed point (required for Delaunay3D)
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/include/mkldnn.h')
-rw-r--r-- | thirdparty/oidn/mkl-dnn/include/mkldnn.h | 1771 |
1 files changed, 1771 insertions, 0 deletions
diff --git a/thirdparty/oidn/mkl-dnn/include/mkldnn.h b/thirdparty/oidn/mkl-dnn/include/mkldnn.h new file mode 100644 index 0000000000..9b64994922 --- /dev/null +++ b/thirdparty/oidn/mkl-dnn/include/mkldnn.h @@ -0,0 +1,1771 @@ +/******************************************************************************* +* Copyright 2016-2018 Intel Corporation +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*******************************************************************************/ + +#ifndef MKLDNN_H +#define MKLDNN_H + +#ifndef DOXYGEN_SHOULD_SKIP_THIS + +/* All symbols shall be internal unless marked as MKLDNN_API */ +#if defined _WIN32 || defined __CYGWIN__ +# define MKLDNN_HELPER_DLL_IMPORT __declspec(dllimport) +# define MKLDNN_HELPER_DLL_EXPORT __declspec(dllexport) +#else +# if __GNUC__ >= 4 +# define MKLDNN_HELPER_DLL_IMPORT __attribute__ ((visibility ("default"))) +# define MKLDNN_HELPER_DLL_EXPORT __attribute__ ((visibility ("default"))) +# else +# define MKLDNN_HELPER_DLL_IMPORT +# define MKLDNN_HELPER_DLL_EXPORT +# endif +#endif + +#ifdef MKLDNN_DLL +# ifdef MKLDNN_DLL_EXPORTS +# define MKLDNN_API MKLDNN_HELPER_DLL_EXPORT +# else +# define MKLDNN_API MKLDNN_HELPER_DLL_IMPORT +# endif +#else +# define MKLDNN_API +#endif + +#if defined (__GNUC__) +# define MKLDNN_DEPRECATED __attribute__((deprecated)) +#elif defined(_MSC_VER) +# define MKLDNN_DEPRECATED __declspec(deprecated) +#else +# define MKLDNN_DEPRECATED +#endif + +#include "mkldnn_types.h" +#include "mkldnn_version.h" +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup c_api C API + * @{ */ + +/** @addtogroup c_api_primitive Primitive operations + * @{ */ + +/** @addtogroup c_api_primitive_common Common primitive operations + * @{ */ + +/** Creates a primitive descriptor @p iterator for given @p op_desc, @p attr, + * @p engine, and optionally a hint primitive descriptor from forward + * propagation (required for backward propagation). Pass @c NULL for forward + * propagation. + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_iterator_create( + mkldnn_primitive_desc_iterator_t *iterator, + const_mkldnn_op_desc_t op_desc, const_mkldnn_primitive_attr_t attr, + mkldnn_engine_t engine, + const_mkldnn_primitive_desc_t hint_forward_primitive_desc); + +/** Iterates over primitive descriptors. Returns #mkldnn_iterator_ends if no + * more primitive descriptors are available. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_iterator_next( + mkldnn_primitive_desc_iterator_t iterator); + +/** Fetches the current primitive descriptor. + * + * @note + * The user should delete the fetched primitive descriptor using + * mkldnn_primitive_desc_destroy() once it is no longer needed. */ +mkldnn_primitive_desc_t MKLDNN_API mkldnn_primitive_desc_iterator_fetch( + const_mkldnn_primitive_desc_iterator_t iterator); + +/** Deletes a primitive descriptor @p iterator */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_iterator_destroy( + mkldnn_primitive_desc_iterator_t iterator); + +/** Creates a @p primitive_desc using @p op_desc, @p attr, @p engine, and + * optionally a hint primitive descriptor from forward propagation. The call is + * equivalent to creating a primitive descriptor iterator, immediately fetching + * a primitive descriptor, and then destroying the iterator. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_create( + mkldnn_primitive_desc_t *primitive_desc, + const_mkldnn_op_desc_t op_desc, const_mkldnn_primitive_attr_t attr, + mkldnn_engine_t engine, + const_mkldnn_primitive_desc_t hint_forward_primitive_desc); + +/** Makes a copy of a @p primitive_desc. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_clone( + mkldnn_primitive_desc_t *primitive_desc, + const_mkldnn_primitive_desc_t existing_primitive_desc); + +/** Returns a constant reference to the attribute of a @p primitive_desc. + * + * @warning + * The user should not destroy the obtained @p attr. + * + * @warning + * The lifetime of an @p attr is the same as that of a @p primitive_desc, + * so it is illegal to use the @p attr once @p primitive_desc has been + * destroyed. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_get_attr( + const_mkldnn_primitive_desc_t primitive_desc, + const_mkldnn_primitive_attr_t *attr); + +/** Deletes a @p primitive_desc. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_destroy( + mkldnn_primitive_desc_t primitive_desc); + +/** Queries primitive descriptor + * + * One of the most typical use cases is to query a convolution primitive + * descriptor created with source, weights, and destination formats equal + * to #mkldnn_format_tag_any about the corresponding memory descriptors + * (@p what equals #mkldnn_query_src_md, #mkldnn_query_weights_md, and + * #mkldnn_query_dst_md respectively) to be able to prepare memory and + * create reorders if required. + * + * Another quite typical use case is to query an operation primitive + * descriptor for a workspace (@p what equals #mkldnn_query_workspace_md). + * The returned status #mkldnn_not_required indicates that a workspace is + * not required. + * + * A few other possibilities: + * - query an operation primitive descriptor for the underlying operation + * descriptor (#mkldnn_query_convolution_d, #mkldnn_query_eltwise_d, + * #mkldnn_query_rnn_d, etc.) + * - query an operation primitive descriptor for the implementation + * information string (#mkldnn_query_impl_info_str) + * - query an operation primitive descriptor for the number of inputs and + * outputs (#mkldnn_query_num_of_inputs_s32 and + * #mkldnn_query_num_of_outputs_s32 respectively) + * + * @sa mkldnn_query_t for more options + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_query( + const_mkldnn_primitive_desc_t primitive_desc, mkldnn_query_t what, + int index, void *result); + +/** Queries primitive descriptor for memory descriptor + * + * @returns NULL in case of any error. + * + * This is just a specialized version of mkldnn_primitive_desc_query + * used for convenience. + */ +const mkldnn_memory_desc_t MKLDNN_API *mkldnn_primitive_desc_query_md( + const_mkldnn_primitive_desc_t primitive_desc, mkldnn_query_t what, + int index); + +/** Queries primitive descriptor for signed 32bit int + * + * @returns 0 in case of any error (in particular if the queried entity is + * not of type int32_t). Note that 0 might also be the actual returned + * value. + * + * This is just a specialized version of mkldnn_primitive_desc_query + * used for convenience. + */ +int MKLDNN_API mkldnn_primitive_desc_query_s32( + const_mkldnn_primitive_desc_t primitive_desc, mkldnn_query_t what, + int index); + +/** Creates a @p primitive using a @p primitive_desc descriptor. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_create( + mkldnn_primitive_t *primitive, + const_mkldnn_primitive_desc_t primitive_desc); + +/** Executes a @p primitive using a @p stream, and @p nargs arguments + * @p args. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_execute( + const_mkldnn_primitive_t primitive, mkldnn_stream_t stream, + int nargs, const mkldnn_exec_arg_t *args); + +/** Retrieves a reference to the @p primitive_desc descriptor of given @p + * primitive. + * + * @warning + * The returned object must not be destroyed by the user. The @c const + * qualifier of the returned object prevents such attempts. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_get_primitive_desc( + const_mkldnn_primitive_t primitive, + const_mkldnn_primitive_desc_t *primitive_desc); + +/** Deletes a @p primitive. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_destroy( + mkldnn_primitive_t primitive); + +/** @} */ + +/** @addtogroup c_api_attributes Attributes + * An extension for controlling primitive behavior. + * @{ */ + +/** Creates an empty (default) @p attr attribute. All the parameters are set to + * default values. + * + * An empty attribute is used in primitive descriptor creation whenever it + * is not passed explicitly, e.g. in mkldnn_primitive_desc_create. + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_create( + mkldnn_primitive_attr_t *attr); + +/** Makes a copy of an @p existing_attr. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_clone( + mkldnn_primitive_attr_t *attr, + const_mkldnn_primitive_attr_t existing_attr); + +/** Deletes an @p attr. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_destroy( + mkldnn_primitive_attr_t attr); + +/** Returns the scratchpad @p mode set in the attribute @p attr */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_get_scratchpad_mode( + const_mkldnn_primitive_attr_t attr, mkldnn_scratchpad_mode_t *mode); + +/** Sets scratchpad @p mode. + * + * The possible values are: #mkldnn_scratchpad_mode_library (default) and + * #mkldnn_scratchpad_mode_user. */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_scratchpad_mode( + mkldnn_primitive_attr_t attr, mkldnn_scratchpad_mode_t mode); + +/** Returns @p count, correspondence scale @p mask, and a pointer to a constant + * floating point array of output @p scales for given @p attr, previously set + * by mkldnn_primitive_attr_set_output_scales. + * + * @warning + * The @p scales array points to the internal @p attr field, so the user + * should not modify or destroy @p scales. + * + * @warning + * The lifetime of @p scales is the same as that of the @p attr to which it + * belongs, so it is illegal to use @p scales after @p attr is destroyed. + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_get_output_scales( + const_mkldnn_primitive_attr_t attr, mkldnn_dim_t *count, int *mask, + const float **scales); + +/** Sets output @p scales for primitive operations. The number of elements @p + * count and correspondence scale @p mask are stored for future use. + * + * The @p mask argument defines the correspondence between the output tensor + * dimensions and the @p scales array. Set the i-th bit of @p mask to 1 to use a + * dedicated scaling factor for each slice of the output tensor over the i-th + * dimension. Set @p mask to 0 to use a common scaling factor for the whole + * output tensor. + * + * @note + * The dimension order is always native and does not depend on the actual + * layout used. Examples: + * - 2D dimensional data the order of dimensions is always: (n, c) + * - 4D dimensional data the order is always: (n, c, h, w) + * - 5D dimensional weights the order is always: (g, oc, ic, kh, kw) + * + * Example usage: + * @code + * int mb = 32, oc = 32, oh = 14, ow = 14; // convolution output params + * float scales[oc] = { ... }; // unique output scales per output channel + * int oc_dim = 1; // mb_dim = 0, channel_dim = 1, height_dim = 2, ... + * + * mkldnn_convolution_desc_t cd; // create & configure convolution op_desc + * + * mkldnn_primitive_attr_t attr; + * mkldnn_primitive_attr_create(&attr); // create default attributes + * mkldnn_primitive_attr_set_output_scales(attr, oc, 1 << oc_dim, scales); + * + * mkldnn_primitive_desc_t cpd; + * mkldnn_primitive_desc_create(&cpd, &cd, attr, NULL); + * @endcode + * + * @note + * There is no way to check that @p count corresponds to @p mask until an + * actual primitive descriptor is created, so it is the user's + * responsibility to set proper values. The following formula must hold: + * + * \f[count = \prod\limits_{d \in mask} output.dims[d]\f] + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_output_scales( + mkldnn_primitive_attr_t attr, mkldnn_dim_t count, int mask, + const float *scales); + +/** Returns @p post_ops for given @p attr. + * + * @warning + * @p post_ops points to the internal @p attr field, so the user should not + * modify or destroy @p post_ops. Also, the lifetime of @p post_ops is the + * same as that of the @p attr it belongs to, so it is illegal to use @p + * post_ops after @p attr has been destroyed. + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_get_post_ops( + const_mkldnn_primitive_attr_t attr, const_mkldnn_post_ops_t *post_ops); + +/** Sets configured @p post_ops to an attribute @p attr for future use (when + * primitive descriptor is being created). + * + * @note + * At this point in time, there is no way to check whether the primitive + * descriptor does or does not support a given sequence of post operations. + * Therefore the user should handle an error that might occur at the + * mkldnn_primitive_desc_create call. + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_post_ops( + mkldnn_primitive_attr_t attr, const_mkldnn_post_ops_t post_ops); + +/** @addtogroup c_api_attributes_post_ops Sequence of post operations + * An extension for performing extra operations after a base operation. + * @{ */ + +/** Creates an empty sequence of post operations @p post_ops. */ +mkldnn_status_t MKLDNN_API mkldnn_post_ops_create(mkldnn_post_ops_t *post_ops); + +/** Deletes a @p post_ops sequence. */ +mkldnn_status_t MKLDNN_API mkldnn_post_ops_destroy(mkldnn_post_ops_t post_ops); + +/** Returns the @p length of post operations for given @p post_ops. */ +int MKLDNN_API mkldnn_post_ops_len(const_mkldnn_post_ops_t post_ops); + +/** Returns the type of post operation with index @p index in given + * @p post_ops. In case of error, returns #mkldnn_undefined_primitive. */ +mkldnn_primitive_kind_t MKLDNN_API mkldnn_post_ops_get_kind( + const_mkldnn_post_ops_t post_ops, int index); + +/** Appends accumulation (sum) post operation to the @p post_ops. Prior to + * accumulating the result, the previous value would be multiplied by @p scale. + * + * The kind of this post operation is #mkldnn_sum. + * + * This feature might improve performance for cases like residual learning + * blocks, where the result of convolution is accumulated to the previously + * computed activations. The parameter @p scale might be extreme for the + * integer-based computations when the result and previous activations have + * different logical scaling factors. + * + * In the simplest case when the accumulation is the only post operation, the + * computations would be: + * dst[] <- scale * dst[] + op(...) // instead of dst[] <- op(...) + * + * @note + * This post operation (as well as all the others) disregards the original + * layout of the destination; that is, the layout of the original + * destination is expected to be the same as the layout of the stored + * destination. + */ +mkldnn_status_t MKLDNN_API mkldnn_post_ops_append_sum( + mkldnn_post_ops_t post_ops, float scale); + +/** Gets the parameters of the accumulation (sum) post operation with index + * @p index in the sequence of @p post_ops. + * + * @note + * If index @p index would not correspond to the accumulation post + * operation, the function returns #mkldnn_invalid_arguments. + */ +mkldnn_status_t MKLDNN_API mkldnn_post_ops_get_params_sum( + const_mkldnn_post_ops_t post_ops, int index, float *scale); + +/** Appends eltwise post operation to the @p post_ops with given parameters + * @p kind, @p alpha, and @p beta (@sa mkldnn_eltwise_forward_desc_init and + * mkldnn_eltwise_desc_t). + * + * The kind of this post operation is #mkldnn_eltwise. + * + * In the simplest case when the eltwise is the only post operation, the + * computations would be: + * dst[] <- scale * eltwise_op ( op(...) ) // instead of dst[] <- op(...) + * where eltwise_op is configured with the given parameters. + */ +mkldnn_status_t MKLDNN_API mkldnn_post_ops_append_eltwise( + mkldnn_post_ops_t post_ops, float scale, mkldnn_alg_kind_t alg, + float alpha, float beta); + +/** Gets the eltwise parameters of the post operation with index @p index in + * the sequence of @p post_ops. + */ +mkldnn_status_t MKLDNN_API mkldnn_post_ops_get_params_eltwise( + const_mkldnn_post_ops_t post_ops, int index, float *scale, + mkldnn_alg_kind_t *alg, float *alpha, float *beta); + +/** @} */ + +/** @} */ + +/** @addtogroup c_api_memory Memory + * A primitive to describe and store data. + * + * The library supports various data types and formats. Memory hierarchy + * consists of three levels of abstraction: + * 1. **Memory descriptor** -- engine agnostic logical description of data + * (number of dimensions, dimensions themselves, and data type), and + * optionally the format/layout that describes the physical representation + * of data in memory. If the format is not known yet, one can pass + * #mkldnn_format_tag_any. This approach is used to allow compute-intensive + * primitives to specify the most appropriate format on their own with + * users required to reorder the data if the incoming format doesn't match + * the primitive's selection. Memory descriptor can be initialized with + * mkldnn_memory_desc_init_by_tag() or mkldnn_memory_desc_init_by_strides() + * functions, or by directly filling the mkldnn_memory_desc_t structure. + * The latter requires deep knowledge of how the physical data + * representation is mapped to the structure. + * The @ref understanding_memory_formats topic should shed some light on + * that. + * For the fully defined memory descriptors (i.e. where the format kind is + * not equal to #mkldnn_format_kind_any) a user can the size, using the + * mkldnn_memory_desc_get_size() function. As described in + * @ref understanding_memory_formats, the size of data sometimes cannot + * be computed as the product of dimensions times the size of the data + * type. So users are encouraged to use this function for better code + * portability. + * Two memory descriptors can be compared with mkldnn_memory_desc_equal(). + * The comparison is especially useful when checking whether a primitive + * requires reorder from the user's data format to the primitive's format. + * 2. **Memory** -- an engine-specific object that handles the data and its + * description (a memory descriptor). For CPU enigne, the data handle is + * simply a pointer to @c void. The data handle can be queried using + * mkldnn_memory_get_data_handle() and set using + * mkldnn_memory_set_data_handle(). The latter function always sets the + * memory in the padding region to zero, which is the invariant maintained + * by all the primitives in Intel MKL-DNN. + * See @ref understanding_memory_formats for more details. + * A memory can be created using mkldnn_memory_create() function. + * A memory can also be queried for the underlying memory descriptor and + * engine using mkldnn_memory_get_memory_desc() and + * mkldnn_memory_get_engine() functions. + * + * Along with ordinary memory with all dimensions being positive, Intel + * MKL-DNN supports *zero-volume* memory with one or more dimensions set to + * zero. This is to support the NumPy\* convention. + * If a *zero-volume* memory is passed to a primitive, the primitive does + * not perform any computations on this memory. For example: + * - Convolution with `(0 batch, 3 input channels, 13 height, 13 width)` + * source and `(16 output channels, 3 inputs, channel, 3 height, 3 width)` + * weights would produce `(0 batch, 16 output channels, 11 height, 11 width)` + * destination (assuming strides are `1` and paddings are zero) and perform + * zero multiply-add operations. + * - Concatenation of three memories of shapes `(3, 4, 13, 13)`, + * `(3, 0, 13, 13)`, and `(3, 1, 13, 13)` along the second axis would produce + * the output of the shape `(3, 5, 13, 13)`, effectively ignoring the second + * input (however, if the user created a concatenation primitive descriptor + * with three inputs they should also provide all three memories to the + * concatenation primitive, including the one with zero second dimension). + * - However, Intel MKL-DNN would return an error when attempting to create a + * convolution with *zero-volume* memory passed for weights because such a + * convolution is not well-defined: + * ~~~ + * dst(1, 16, 11, 11) <-- src(1, 0, 13, 13) (*) wei(16, 0, 3, 3) + * ~~~ + * Should the values in the destination be zeroes or just not accessed at + * all? Moreover, backward pass w.r.t. weights in such cases is also not + * well-defined. + * + * Data handle of *zero-volume* memory is never accessed and hence can be + * unset (NULL in case of CPU engine). + * + * @sa @ref understanding_memory_formats + * @{ */ + +/** Initializes a @p memory_desc memory descriptor using @p ndims, @p dims, @p + * data_type, and @p strides. + * + * The @p strides might be NULL, which means the order of physical dimensions + * is the same as the order of logical ones. + * + * @note The logical order of dimensions is defined by a primitive that + * consumes the memory. + */ +mkldnn_status_t MKLDNN_API mkldnn_memory_desc_init_by_strides( + mkldnn_memory_desc_t *memory_desc, int ndims, const mkldnn_dims_t dims, + mkldnn_data_type_t data_type, const mkldnn_dims_t strides); + +/** Initializes a @p memory_desc memory descriptor using @p ndims, @p dims, @p + * data_type, and format @p tag. + * + * @p tag can be #mkldnn_format_tag_any, which allows a primitive to define + * the appropriate memory format. In this case, the @p format_kind would be set + * to #mkldnn_format_kind_any */ +mkldnn_status_t MKLDNN_API mkldnn_memory_desc_init_by_tag( + mkldnn_memory_desc_t *memory_desc, int ndims, const mkldnn_dims_t dims, + mkldnn_data_type_t data_type, mkldnn_format_tag_t tag); + +/** Initializes a @p memory_desc for a given @p parent_memory_desc, with + * @p dims sizes and @p offsets. May fail if layout used does not allow + * obtain desired submemory. In this case consider using `extract` or `insert` + * primitive */ +mkldnn_status_t MKLDNN_API mkldnn_memory_desc_init_submemory( + mkldnn_memory_desc_t *memory_desc, + const mkldnn_memory_desc_t *parent_memory_desc, + const mkldnn_dims_t dims, const mkldnn_dims_t offsets); + +/** Compares two memory descriptors. + * @return 1 if the descriptors are the same. + * @return 0 if the descriptors are different. + * + * Use this function to identify whether a reorder is required between the + * two memories */ +int MKLDNN_API mkldnn_memory_desc_equal( + const mkldnn_memory_desc_t *lhs, + const mkldnn_memory_desc_t *rhs); + +/** Returns the size (in bytes) that is required for given @p memory_desc */ +size_t MKLDNN_API mkldnn_memory_desc_get_size( + const mkldnn_memory_desc_t *memory_desc); + +/** Creates a memory for given @p memory_desc and @p engine. Also sets handle + * to @p native_handle. + * The @p native_handle can: + * - point to the user allocated memory, i.e. valid handle. In this case the + * library doesn't own allocated memory. + * - be MKLDNN_NATIVE_HANDLE_ALLOCATE to ask the library to allocate and + * attach memory. In this case the library owns allocated memory. + * - be MKLDNN_NATIVE_HANDLE_NONE to create mkldnn_memory w/o attached memory. + */ +mkldnn_status_t MKLDNN_API mkldnn_memory_create(mkldnn_memory_t *memory, + const mkldnn_memory_desc_t *memory_desc, mkldnn_engine_t engine, + void *native_handle); + +/** Returns a @p memory_desc associated with @p memory. */ +mkldnn_status_t MKLDNN_API mkldnn_memory_get_memory_desc( + const_mkldnn_memory_t memory, + const mkldnn_memory_desc_t **memory_desc); + +/** Returns an @p engine associated with @p memory. */ +mkldnn_status_t MKLDNN_API mkldnn_memory_get_engine( + const_mkldnn_memory_t memory, mkldnn_engine_t *engine); + +/** For a @p memory, returns the data @p handle. + * + * For the CPU engine, the data handle is a pointer to the actual data. */ +mkldnn_status_t MKLDNN_API mkldnn_memory_get_data_handle( + const_mkldnn_memory_t memory, void **handle); + +/** For a @p memory, sets the data @p handle. */ +mkldnn_status_t MKLDNN_API mkldnn_memory_set_data_handle( + mkldnn_memory_t memory, void *handle); + +/** Deletes a @p memory. */ +mkldnn_status_t MKLDNN_API mkldnn_memory_destroy(mkldnn_memory_t memory); + +/** @} */ + +/** @addtogroup c_api_reorder Reorder + * A primitive to copy data between memory formats. + * @{ */ + +/** Initializes a @p reorder_primitive_desc using the description of the source + * (@p src_engine and @p src_md) and destination (@p dst_engine and @p dst_md) + * memory, and an @p attr attribute. + * + * Inputs: + * - input (#mkldnn_query_src_md, 0) + * + * Outputs: + * - output (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_reorder_primitive_desc_create( + mkldnn_primitive_desc_t *reorder_primitive_desc, + mkldnn_engine_t src_engine, const mkldnn_memory_desc_t *src_md, + mkldnn_engine_t dst_engine, const mkldnn_memory_desc_t *dst_md, + const_mkldnn_primitive_attr_t attr); + +/** @} */ + +/** @addtogroup c_api_concat Concat + * A primitive to concatenate data by arbitrary dimension. + * @{ */ + +/** Creates out-of-place @p concat_primitive_desc for concatenation of @p n + * inputs by @p concat_dimension with resulting @p output_desc memory + * descriptor. @p output_desc can be NULL or specified with the + * #mkldnn_format_kind_any format kind -- in this case, the appropriate memory + * format would be chosen automatically. + * + * Inputs: + * - input 0 (#mkldnn_query_src_md, 0) + * - input 1 (#mkldnn_query_src_md, 1) + * - ... + * - input @p n - 1 (#mkldnn_query_src_md, @p n - 1) + * + * Outputs: + * - output (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_concat_primitive_desc_create( + mkldnn_primitive_desc_t *concat_primitive_desc, + const mkldnn_memory_desc_t *dst_md, + int n, int concat_dimension, + const mkldnn_memory_desc_t *src_mds, + const_mkldnn_primitive_attr_t attr, + mkldnn_engine_t engine); + +/** @} */ + +/** @addtogroup c_api_sum Sum + * A primitive to sum data. + * @{ */ + +/** Creates out-of-place @p sum_primitive_desc for sum of @p n + * inputs multiplied by scale with resulting @p output_desc memory + * descriptor. @p output_desc can be NULL or specified with the + * #mkldnn_format_kind_any format kind -- in this case, the appropriate memory + * format would be chosen automatically. + * + * Inputs: + * - src 0 (#mkldnn_query_src_md, 0) + * - src 1 (#mkldnn_query_src_md, 1) + * - ... + * - src @p n - 1 (#mkldnn_query_src_md, @p n - 1) + * + * Outputs: + * - output (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_sum_primitive_desc_create( + mkldnn_primitive_desc_t *sum_primitive_desc, + const mkldnn_memory_desc_t *dst_mds, + int n, const float *scales, + const mkldnn_memory_desc_t *src_mds, + const_mkldnn_primitive_attr_t attr, + mkldnn_engine_t engine); + +/** @} */ + +/** @addtogroup c_api_convolution Convolution + * A primitive to compute convolution using different algorithms. + * + * \f[dst[n][oc][oh][ow] = + * \sum_{kw=0}^{KW}\sum_{kh=0}^{KH}\sum_{ic=0}^{IC} + * src[n][ic][oh \cdot s_h - p_l[0] + kh][ow \cdot s_w - p_r[1] + kw] + * \cdot weights[g][oc][ic][kh][kw] + * + bias[g][oc],\f] + * + * where size of output spatial domain is given by + * \f$ OH = \left\lfloor{\frac{IH - KH + p_l[0] + p_r[0]}{s_h}} + * \right\rfloor + 1\f$, + * \f$ OW = \left\lfloor{\frac{IW - KW + p_l[1] + p_r[1]}{s_w}} + * \right\rfloor + 1\f$, + * + * and summation is carried over input channels \f$ic\f$ in + * group \f$g\f$, and \f$s_h, s_w\f$ are @p strides and + * \f$p_l, p_r\f$ are @p padding_l and @p padding_r. + * @{ */ + +/** Initializes a convolution descriptor @p conv_desc for forward propagation + * using @p prop_kind (possible values are #mkldnn_forward_training and + * #mkldnn_forward_inference), @p alg_kind, memory descriptors, @p strides, @p + * padding_l, @p padding_r, and @p padding_kind. In order to create a + * convolution without bias, @p bias_desc should either be @c NULL or point to + * a descriptor with memory format kind equal to #mkldnn_format_kind_undef. + * + * @note If @p padding_r is @c NULL, the padding is supposed to be symmetric. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * - bias (#mkldnn_query_weights_md, 1), if created with bias + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_convolution_forward_desc_init( + mkldnn_convolution_desc_t *conv_desc, mkldnn_prop_kind_t prop_kind, + mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *bias_desc, + const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r, + mkldnn_padding_kind_t padding_kind); + +/** Initializes a dilated convolution descriptor @p conv_desc for forward + * propagation using @p prop_kind (possible values are #mkldnn_forward_training + * and #mkldnn_forward_inference), @p alg_kind, memory descriptors, @p strides, + * @p dilates, @p padding_l, @p padding_r, and @p padding_kind. + * In order to create a dilated convolution without bias, @p bias_desc + * should either be @c NULL or point to a descriptor with memory format kind + * equals #mkldnn_format_kind_undef. + * + * @note If @p padding_r is @c NULL, the padding is supposed to be symmetric. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * - bias (#mkldnn_query_weights_md, 1), if created with bias + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_dilated_convolution_forward_desc_init( + mkldnn_convolution_desc_t *conv_desc, mkldnn_prop_kind_t prop_kind, + mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *bias_desc, + const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l, + const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind); + +/** Initializes a convolution descriptor @p conv_desc for backward propagation + * with respect to data using @p alg_kind, memory descriptors, @p strides, @p + * padding_l, @p padding_r, and @p padding_kind. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_convolution_backward_data_desc_init( + mkldnn_convolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *diff_src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r, + mkldnn_padding_kind_t padding_kind); + +/** Initializes a dilated convolution descriptor @p conv_desc for backward + * propagation with respect to data using @p alg_kind, memory descriptors, @p + * strides, @p dilates @p padding_l, @p padding_r, and @p padding_kind. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_dilated_convolution_backward_data_desc_init( + mkldnn_convolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *diff_src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l, + const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind); + +/** Initializes a convolution descriptor @p conv_desc for backward propagation + * with respect to weights using @p alg_kind, memory descriptors, @p strides, + * @p padding_l, @p padding_r, and @p padding_kind. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * + * Outputs: + * - diff_weights (#mkldnn_query_diff_weights_md, 0) + * - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias + */ +mkldnn_status_t MKLDNN_API mkldnn_convolution_backward_weights_desc_init( + mkldnn_convolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *diff_weights_desc, + const mkldnn_memory_desc_t *diff_bias_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r, + mkldnn_padding_kind_t padding_kind); + +/** Initializes a convolution descriptor @p conv_desc for backward propagation + * with respect to weights using @p alg_kind, memory descriptors, @p strides, + * @p dilates @p padding_l, @p padding_r, and @p padding_kind. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * + * Outputs: + * - diff_weights (#mkldnn_query_diff_weights_md, 0) + * - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias + */ +mkldnn_status_t MKLDNN_API +mkldnn_dilated_convolution_backward_weights_desc_init( + mkldnn_convolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *diff_weights_desc, + const mkldnn_memory_desc_t *diff_bias_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l, + const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind); + +/** @} */ + +/** @addtogroup c_api_deconvolution Deconvolution + * A primitive to compute deconvolution using different algorithms. + * + * @{ */ + + +/** Initializes a deconvolution descriptor @p deconv_desc for forward + * propagation using @p prop_kind (possible values are #mkldnn_forward_training + * and #mkldnn_forward_inference), @p alg_kind, memory descriptors, @p strides, + * @p padding_l, @p padding_r, and @p padding_kind. In order to create a + * deconvolution without bias, @p bias_desc should either be @c NULL or point to + * a descriptor with memory format kind equals #mkldnn_format_kind_undef. + * + * @note If @p padding_r is @c NULL, the padding is supposed to be symmetric. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * - bias (#mkldnn_query_weights_md, 1), if created with bias + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_deconvolution_forward_desc_init( + mkldnn_deconvolution_desc_t *conv_desc, mkldnn_prop_kind_t prop_kind, + mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *bias_desc, + const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r, + mkldnn_padding_kind_t padding_kind); + +/** Initializes a dilated deconvolution descriptor @p deconv_desc for forward + * propagation using @p prop_kind (possible values are #mkldnn_forward_training + * and #mkldnn_forward_inference), @p alg_kind, memory descriptors, @p strides, + * @p dilates, @p padding_l, @p padding_r, and @p padding_kind. In order to + * create a dilated deconvolution without bias, @p bias_desc should either be + * @c NULL or point to a descriptor with memory format kind equal + * #mkldnn_format_kind_undef. + * + * @note If @p padding_r is @c NULL, the padding is supposed to be symmetric. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * - bias (#mkldnn_query_weights_md, 1), if created with bias + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_dilated_deconvolution_forward_desc_init( + mkldnn_deconvolution_desc_t *conv_desc, mkldnn_prop_kind_t prop_kind, + mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *bias_desc, + const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l, + const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind); + +/** Initializes a deconvolution descriptor @p conv_desc for backward propagation + * with respect to data using @p alg_kind, memory descriptors, @p strides, @p + * padding_l, @p padding_r, and @p padding_kind. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_deconvolution_backward_data_desc_init( + mkldnn_deconvolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *diff_src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r, + mkldnn_padding_kind_t padding_kind); + +/** Initializes a dilated deconvolution descriptor @p conv_desc for backward + * propagation with respect to data using @p alg_kind, memory descriptors, @p + * strides, @p dilates, @p padding_l, @p padding_r, and @p padding_kind. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_dilated_deconvolution_backward_data_desc_init( + mkldnn_deconvolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *diff_src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l, + const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind); + +/** Initializes a deconvolution descriptor @p conv_desc for backward propagation + * with respect to weights using @p alg_kind, memory descriptors, @p strides, + * @p padding_l, @p padding_r, and @p padding_kind. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * + * Outputs: + * - diff_weights (#mkldnn_query_diff_weights_md, 0) + * - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias + */ +mkldnn_status_t MKLDNN_API mkldnn_deconvolution_backward_weights_desc_init( + mkldnn_deconvolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *diff_weights_desc, + const mkldnn_memory_desc_t *diff_bias_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r, + mkldnn_padding_kind_t padding_kind); + +/** Initializes a dilated deconvolution descriptor @p conv_desc for backward + * propagation with respect to weights using @p alg_kind, memory descriptors, + * @p strides, @p dilates, @p padding_l, @p padding_r, and @p padding_kind. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * + * Outputs: + * - diff_weights (#mkldnn_query_diff_weights_md, 0) + * - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias + */ +mkldnn_status_t MKLDNN_API mkldnn_dilated_deconvolution_backward_weights_desc_init( + mkldnn_deconvolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *diff_weights_desc, + const mkldnn_memory_desc_t *diff_bias_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l, + const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind); + +/** @} */ + +/** @addtogroup c_api_shuffle Shuffle + * A primitive to shuffle data along the axis. + * @{ */ + +/** Initializes a @p shuffle_desc for forward propagation using @p prop_kind, + * memory descriptor @p data_desc, @p axis, and @p group_size. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + * + */ +mkldnn_status_t MKLDNN_API mkldnn_shuffle_forward_desc_init( + mkldnn_shuffle_desc_t *shuffle_desc, mkldnn_prop_kind_t prop_kind, + const mkldnn_memory_desc_t *data_desc, int axis, + mkldnn_dim_t group_size); + +/** Initializes a @p shuffle_desc for backward propagation using memory + * descriptor @p diff_data_desc, @p axis, and @p group_size. + * + * + * Inputs: + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + * + */ +mkldnn_status_t MKLDNN_API mkldnn_shuffle_backward_desc_init( + mkldnn_shuffle_desc_t *shuffle_desc, + const mkldnn_memory_desc_t *diff_data_desc, int axis, + mkldnn_dim_t group_size); + +/** @} */ + +/** @addtogroup c_api_eltwise Eltwise + * A primitive to compute element-wise operations like parametric rectifier + * linear unit (ReLU). + * + * Both forward and backward passes support in-place operation; that is, src + * and dst point to the same memory for forward pass, and diff_dst and diff_src + * point to the same memory for backward pass. + * + * @warning Because the original src is required for backward pass, in-place + * forward pass in general cannot be applied during training. However, for some + * kinds of element-wise operations (namely ReLU with alpha parameter equals 0), + * dst and src can be interchangeable for the backward pass, which enables + * performing in-place forward even for training. + * + * @{ */ + +/** Initializes an @p eltwise_desc for forward propagation using @p prop_kind + * (possible values are #mkldnn_forward_training and #mkldnn_forward_inference), + * @p alg_kind algorithm, memory descriptor @p data_desc, @p alpha, and + * @p beta parameters. + * + * @sa mkldnn_eltwise_desc_t for details. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_eltwise_forward_desc_init( + mkldnn_eltwise_desc_t *eltwise_desc, mkldnn_prop_kind_t prop_kind, + mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *data_desc, + float alpha, float beta); + +/** Initializes an @p eltwise_desc for backward propagation using @p alg_kind + * algorithm memory descriptors @p diff_data_desc and @p data_desc, and the + * @p alpha and @p beta parameters. + * + * @sa mkldnn_eltwise_desc_t for details. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_eltwise_backward_desc_init( + mkldnn_eltwise_desc_t *eltwise_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *diff_data_desc, + const mkldnn_memory_desc_t *data_desc, float alpha, float beta); + +/** @} */ + +/** @addtogroup c_api_softmax Softmax + * A primitive to perform softmax. + * + * \f[dst[u][c][in] = + * \frac{\exp(src[ou][c][in]) - \max\limits_{c}(src[ou][c][in])} + * {\sum\limits_{c}\{\exp(src[ou][c][in]) + * - \max\limits_{c}(src[ou][c][in])\}},\f] + * + * where \f$ou, iu\f$ are outer and inner sizes repectively, defined + * by @p data_desc.dims and @p softmax_axis. + * @{ */ + +/** Initializes a @p softmax_desc for forward propagation using @p prop_kind + * (possible values are #mkldnn_forward_training and #mkldnn_forward_inference) + * and memory descriptor @p data_desc. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_softmax_forward_desc_init( + mkldnn_softmax_desc_t *softmax_desc, mkldnn_prop_kind_t prop_kind, + const mkldnn_memory_desc_t *data_desc, int softmax_axis); + +/** Initializes a @p softmax_desc for backward propagation using memory + * descriptors @p diff_desc and @p data_desc. + * + * Inputs: + * - dst (#mkldnn_query_dst_md, 0) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_softmax_backward_desc_init( + mkldnn_softmax_desc_t *softmax_desc, + const mkldnn_memory_desc_t *diff_desc, + const mkldnn_memory_desc_t *data_desc, int softmax_axis); + +/** @} */ + +/** @addtogroup c_api_pooling Pooling + * A primitive to perform max or average pooling. + * + * Max pooling: + * \f[dst[n][oc][oh][ow] = + * \max\limits_{kw,kh} + * (src[n][ic][oh \cdot s_h - p_l[0] + kh][ow \cdot s_w - p_r[1] + kw]),\f] + * + * Average pooling: + * \f[dst[n][oc][oh][ow] = + * \frac{1}{KW \cdot KH}\sum\limits_{kw,kh} + * src[n][ic][oh \cdot s_h - p_l[0] + kh][ow \cdot s_w - p_r[1] + kw],\f] + * + * where \f$p_l, p_r\f$ are @p padding_l and @p padding_r respectively, and + * output spatial dimensions are calculated similarly to how they are done in + * convolution. + * + * During training, max pooling requires a workspace on forward + * (#mkldnn_forward_training) and backward (#mkldnn_backward) passes to + * save indices where maximum was found. The workspace layout is opaque, and + * the indices cannot be restored from it. However, one can use backward + * pooling to perform up-sampling (used in some detection topologies). + * + * @{ */ + +/** Initializes a pooling descriptor @p pool_desc for forward propagation using + * @p prop_kind (possible values are #mkldnn_forward_training and + * #mkldnn_forward_inference), @p alg_kind, memory descriptors, and pooling + * parameters in the spatial domain: @p strides, @p kernel sizes, @p padding_l, + * @p padding_r, and @p padding_kind. + * + * @note If @p padding_r is @c NULL, the padding is supposed to be symmetric. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + * - workspace (#mkldnn_query_workspace_md, 0), + * if @p alg_kind = #mkldnn_pooling_max and + * @p prop_kind = #mkldnn_forward_training + */ +mkldnn_status_t MKLDNN_API mkldnn_pooling_forward_desc_init( + mkldnn_pooling_desc_t *pool_desc, mkldnn_prop_kind_t prop_kind, + mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t kernel, const mkldnn_dims_t padding_l, + const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind); + +/** Initializes a pooling descriptor @p pool_desc for backward propagation + * using @p alg_kind, memory descriptors, and pooling parameters in the spatial + * domain: @p strides, @p kernel sizes, @p padding_l, @p padding_r, and @p + * padding_kind. + * + * @note If @p padding_r is @c NULL, the padding is supposed to be symmetric. + * + * Inputs: + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * - workspace (#mkldnn_query_workspace_md, 0), + * if @p alg_kind = #mkldnn_pooling_max + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_pooling_backward_desc_init( + mkldnn_pooling_desc_t *pool_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *diff_src_desc, + const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, + const mkldnn_dims_t kernel, const mkldnn_dims_t padding_l, + const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind); + +/** @} */ + +/** @addtogroup c_api_lrn LRN + * A primitive to perform local response normalization (LRN) across or within + * channels. + * + * LRN accross channels: + * \f[dst[n][c][h][w] = \left\{k + \frac{\alpha}{n_{l}} + * \sum\limits_{i=-(n_{l}-1)/2}^{(n_{l}+1)/2} + * (src[n][c+i][h][w])^2\right\}^{-\beta} + * src[n][c][h][w],\f] + * + * LRN within channels: + * \f[dst[n][c][h][w] = \left\{k + \frac{\alpha}{n_{l}} + * \sum\limits_{i=-(n_{l}-1)/2}^{(n_{l}+1)/2} + * (src[n][c][h+i][w+i])^2\right\}^{-\beta} + * src[n][c][h][w],\f] + * + * where \f$n_{l}\f$ is the @p local_size. + * + * During training, LRN might or might not require a workspace on forward + * (#mkldnn_forward_training) and backward (#mkldnn_backward) passes. The + * behavior is implementation specific. Optimized implementations typically + * require a workspace and use it to save some intermediate results from the + * forward pass that accelerate computations on the backward pass. + * + * To check whether a workspace is required, query the LRN primitive descriptor + * for the workspace (#mkldnn_query_workspace_md). Success indicates that the + * workspace is required and its description will be returned. + * @sa mkldnn_primitive_desc_query and mkldnn_primitive_desc_query_pd + * + * @{ */ + +/** Initializes an @p lrn_desc for forward propagation using @p prop_kind + * (possible values are #mkldnn_forward_training and #mkldnn_forward_inference), + * @p alg_kind, memory descriptor @p data_desc, and regularization + * parameters @p local_size, @p alpha, @p beta, and @p k. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + * - workspace (#mkldnn_query_workspace_md, 0), + * if the underlying implementation requires + */ +mkldnn_status_t MKLDNN_API mkldnn_lrn_forward_desc_init( + mkldnn_lrn_desc_t *lrn_desc, mkldnn_prop_kind_t prop_kind, + mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *data_desc, + mkldnn_dim_t local_size, float alpha, float beta, float k); + +/** Initializes an @p lrn_desc for backward propagation using @p alg_kind, + * memory descriptors @p data_desc and @p diff_data_desc, and regularization + * parameters @p local_size, @p alpha, @p beta, and @p k. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * - workspace (#mkldnn_query_workspace_md, 0), + * if the underlying implementation requires + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_lrn_backward_desc_init( + mkldnn_lrn_desc_t *lrn_desc, mkldnn_alg_kind_t alg_kind, + const mkldnn_memory_desc_t *diff_data_desc, + const mkldnn_memory_desc_t *data_desc, mkldnn_dim_t local_size, + float alpha, float beta, float k); + +/** @} */ + +/** @addtogroup c_api_batch_normalization Batch Normalization + * A primitive to perform batch normalization. + * + * \f[dst[n][c][h][w] = \gamma[c] \frac{src[n][c][h][w] - \mu[c]} + * {\sqrt{\sigma[c] + eps}} + \beta[c],\f] + * + * where \f$\gamma[c], \beta[c]\f$ are weights and bias for a channel and, + * + * \f$\mu[c] = \frac{1}{NHW} \sum\limits_{whn} src[n][c][h][w]\f$, + * \f$\sigma[c] = \frac{1}{NHW} \sum\limits_{whn} + * (src[n][c][h][w] - \mu[c])^2\f$, + * + * and @c eps is a constant to improve numerical stability. + * + * Both forward and backward passes support in-place operation; that is, src + * and dst point to the same memory for forward pass, and diff_dst and diff_src + * point to the same memory for backward pass. + * + * Batch normalization supports different flavors controlled by + * mkldnn_batch_normalization_desc_t. For example, batch normalization can + * compute the mean and variance on its own or take them as inputs. It can + * either perform scaling and shifting using gamma and beta parameters or not. + * Optionally it can also perform a fused ReLU, which in case of training would + * also require a workspace. + * + * @sa mkldnn_batch_normalization_desc_t + * @{ */ + +/** Initializes a batch normalization descriptor @p bnrm_desc for forward + * propagation using @p prop_kind (possible values are + * #mkldnn_forward_training and #mkldnn_forward_inference), memory descriptor + * @p data_desc, normalization parameter @p epsilon, and @p flags set using bit + * flags of type mkldnn_batch_normalization_desc_t. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - mean (#mkldnn_query_src_md, 1), + * if #mkldnn_use_global_stats bit-flags is set in @p flags + * - variance (#mkldnn_query_src_md, 2), + * if #mkldnn_use_global_stats bit-flags is set in @p flags + * - scale_and_shift (#mkldnn_query_weights_md, 0), + * if #mkldnn_use_scaleshift bit-flags is set in @p flags + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + * - mean (#mkldnn_query_dst_md, 1), + * if #mkldnn_use_global_stats bit-flags is not set in @p flags + * @p prop_kind = #mkldnn_forward_training + * - variance (#mkldnn_query_dst_md, 2), + * if #mkldnn_use_global_stats bit-flags is not set in @p flags + * and @p prop_kind = #mkldnn_forward_training + * - workspace (#mkldnn_query_workspace_md, 0), + * if #mkldnn_fuse_bn_relu bit-flags is set in @p flags + * and @p prop_kind = #mkldnn_forward_training + * + * @note In-place operation is supported; that is, dst points to the same memory + * as src. + * + * @sa mkldnn_batch_normalization_desc_t + */ +mkldnn_status_t MKLDNN_API mkldnn_batch_normalization_forward_desc_init( + mkldnn_batch_normalization_desc_t *bnrm_desc, + mkldnn_prop_kind_t prop_kind, const mkldnn_memory_desc_t *data_desc, + float epsilon, unsigned flags); + +/** Initializes a batch normalization descriptor @p bnrm_desc for backward + * propagation with respect to data and scale-shift parameters using memory + * descriptors @p data_desc and @p diff_data_desc, normalization parameter + * @p epsilon, and @p flags set using bit flags of type + * mkldnn_batch_normalization_desc_t. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - mean (#mkldnn_query_src_md, 1) + * - variance (#mkldnn_query_src_md, 2) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * - scale_and_shift (#mkldnn_query_weights_md, 0), + * if #mkldnn_use_scaleshift bit-flags is set in @p flags + * - workspace (#mkldnn_query_workspace_md, 0), + * if #mkldnn_fuse_bn_relu bit-flags is set in @p flags + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + * - diff_scale_and_shift (#mkldnn_query_diff_weights_md, 0), + * if #mkldnn_use_scaleshift bit-flags is set in @p flags + * and @p prop_kind = #mkldnn_backward + * + * @note in-place operation is supported, + * i.e. diff_src points to the same memory as diff_dst. + * + * @sa mkldnn_batch_normalization_desc_t + */ +mkldnn_status_t MKLDNN_API mkldnn_batch_normalization_backward_desc_init( + mkldnn_batch_normalization_desc_t *bnrm_desc, + mkldnn_prop_kind_t prop_kind, + const mkldnn_memory_desc_t *diff_data_desc, + const mkldnn_memory_desc_t *data_desc, + float epsilon, unsigned flags); + +/** @} */ + +/** @addtogroup c_api_inner_product Inner product + * A primitive to compute an inner product. + * + * Inner product layer is also known as fully connected layer. + * With spatial dimension: + * + * \f[dst[n][oc] = \sum\limits_{ic, kh, kw} + * src[n][ic][kh][kw] \cdot weights[oc][ic][kh][kw] + * + bias[oc]\f] + * @{ */ + +/** Initializes an inner product descriptor @p ip_desc for forward propagation + * using @p prop_kind (possible values are #mkldnn_forward_training and + * #mkldnn_forward_inference) and memory descriptors. In order to create an + * inner product without bias, @p bias_desc should be either @c NULL or a + * pointer to a descriptor with memory format kind equals + * #mkldnn_format_kind_undef. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * - bias (#mkldnn_query_weights_md, 1), if created with bias + * + * Outputs: + * - dst (#mkldnn_query_dst_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_inner_product_forward_desc_init( + mkldnn_inner_product_desc_t *ip_desc, mkldnn_prop_kind_t prop_kind, + const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *bias_desc, + const mkldnn_memory_desc_t *dst_desc); + +/** Initializes an inner product descriptor @p ip_desc for backward propagation + * with respect to data using memory descriptors. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * - weights (#mkldnn_query_weights_md, 0) + * + * Outputs: + * - diff_src (#mkldnn_query_diff_src_md, 0) + */ +mkldnn_status_t MKLDNN_API mkldnn_inner_product_backward_data_desc_init( + mkldnn_inner_product_desc_t *ip_desc, + const mkldnn_memory_desc_t *diff_src_desc, + const mkldnn_memory_desc_t *weights_desc, + const mkldnn_memory_desc_t *diff_dst_desc); + +/** Initializes an inner product descriptor @p ip_desc for backward propagation + * with respect to weights using memory descriptors. + * + * @note Memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src (#mkldnn_query_src_md, 0) + * - diff_dst (#mkldnn_query_diff_dst_md, 0) + * + * Outputs: + * - diff_weights (#mkldnn_query_diff_weights_md, 0) + * - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias + */ +mkldnn_status_t MKLDNN_API mkldnn_inner_product_backward_weights_desc_init( + mkldnn_inner_product_desc_t *ip_desc, + const mkldnn_memory_desc_t *src_desc, + const mkldnn_memory_desc_t *diff_weights_desc, + const mkldnn_memory_desc_t *diff_bias_desc, + const mkldnn_memory_desc_t *diff_dst_desc); + +/** @} */ + +/** @addtogroup c_api_rnn RNN + * A primitive to compute the common recurrent layer. + * @todo add additional description for the group + * @{ */ + +/** + * Initializes a recurrent cell descriptor @p rnn_cell_desc + * using @p rnn_cell_desc, @p kind (possible values are + * #mkldnn_vanilla_rnn, #mkldnn_vanilla_lstm, #mkldnn_vanilla_gru, and + * #mkldnn_gru_linear_before_reset), + * @p f (possible values are #mkldnn_eltwise_relu and + * #mkldnn_eltwise_tanh), @p flags, @p alpha, and @p clipping. + */ +mkldnn_status_t MKLDNN_API mkldnn_rnn_cell_desc_init( + mkldnn_rnn_cell_desc_t *rnn_cell_desc, + mkldnn_alg_kind_t kind, mkldnn_alg_kind_t f, + unsigned int flags, float alpha, float clipping); + +/** Returns the number of gates of a particular @p rnn_cell_desc. */ +int MKLDNN_API mkldnn_rnn_cell_get_gates_count( + const mkldnn_rnn_cell_desc_t *rnn_cell_desc); + +/** Returns the number of states of a particular @p rnn_cell_desc. */ +int MKLDNN_API mkldnn_rnn_cell_get_states_count( + const mkldnn_rnn_cell_desc_t *rnn_cell_desc); + +/** Sets quantization @p scale and @p shift for RNN data tensors. + * For performance reasons, low precision configuration of RNN primitive + * expects input activations to have unsigned int8 data type. Scale and shift + * used to quantize floating point data to unsigned integer must be passed to + * RNN primitive using attributes. + * Example usage: + * @code + * // rnn parameters + * int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32; + * // activations quantization parameters + * float scale = ..., shift = ..; + * + * mkldnn_primitive_attr_t rnn_attr; + * // create default attributes + * mkldnn_primitive_attr_create(&rnn_attr); + * + * // set scale and shift for int8 quantization of activation + * mkldnn_primitive_attr_set_rnn_data_qparams(rnn_attr, scale, shift); + * + * // create & configure rnn op_desc + * mkldnn_rnn_desc_t rnn_d; + * mkldnn_primitive_desc_t rnn_pd; + * mkldnn_primitive_desc_create(&rnn_pd, &rnn_d, attr, engine, NULL); + * @endcode + * @note + * Quantization scale and shift are common for src_layer, src_iter, + * dst_iter and dst_layer. + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_rnn_data_qparams( + mkldnn_primitive_attr_t attr, const float scale, const float shift); + +/** Sets quantization scales @p weights_scales for RNN weights tensors. + * Low precision configuration of RNN primitive expects input weights to have + * signed int8 data type. Scales used to quantize floating point data + * to signed integer must be passed to RNN primitive using attributes. + * The @p mask argument defines correspondence between output tensor dimensions + * and the @p weights_scales array. Set i-th bit of @p mask to 1 to use + * dedicated scaling factor for each slice of the output tensor over i-th + * dimension. Set @p mask to 0 to use common scaling factor for the whole output + * tensor. Example usage: + * @code + * // rnn parameters + * int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32; + * // unique output scales per output channel + * float weights_scales[dic * n_gates] = { ... }; + * // mask that specifies last two dimensions of ldigo format + * int mask = 0x3; + * + * mkldnn_primitive_attr_t attr; + * // create default attributes + * mkldnn_primitive_attr_create(&attr); + * + * // set output channel-wise weights scales + * mkldnn_primitive_attr_set_rnn_weights_qparams(attr, dic * n_gates, mask, + * weights_scales); + * + * // create & configure rnn op_desc + * mkldnn_rnn_desc_t rnn_d; + * mkldnn_primitive_desc_t rnn_pd; + * mkldnn_primitive_desc_create(&rnn_pd, &rnn_d, attr, engine, NULL); + * @endcode + * @note + * The dimension order is always native and does not depend on the actual + * layout used. For example, 5 dimensional weights always have + * (l, d, i, g, o) logical dimension ordering. + * @note + * Quantization sales are common for weights_layer and weights_iteration + * @note + * There is no way to check that @p count corresponds to @p mask until an + * actual primitive descriptor is created, so it is user's responsibility + * to set proper values. The following formula must be held: + * + * \f[count = \prod\limits_{d \in mask} output.dims[d]\f] + */ +mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_rnn_weights_qparams ( + mkldnn_primitive_attr_t attr, mkldnn_dim_t count, int mask, + const float *weights_scales); + +/** Initializes a rnn descriptor @p rnn_desc for forward propagation + * using @p prop_kind, @p rnn_cell_desc, @p direction, and memory descriptors. + * @note If @p prop_kind equals #mkldnn_forward_training, you must query a + * workspace memory descriptor before creating the primitive. + * + * @p src_iter_desc, @p bias_desc, and @p dst_iter_desc are allowed to either be + * @c NULL or point to a zero memory descriptor, which would indicate that the + * RNN primitive should not use them. + * + * @note All memory descriptors except @p src_iter_desc are allowed to be + * initialized with #mkldnn_format_kind_any value of @p format_kind. + * + * Inputs: + * - src_layer (#mkldnn_query_src_md, 0) + * - src_iter (#mkldnn_query_src_md, 1), if used + * - weights_layer (#mkldnn_query_weights_md, 0) + * - weights_iter (#mkldnn_query_weights_md, 1) + * - bias (#mkldnn_query_weights_md, 2), if used + * + * Outputs: + * - dst_layer (#mkldnn_query_dst_md, 0) + * - dst_iter (#mkldnn_query_dst_md, 1), if used + * - workspace (#mkldnn_query_workspace_md, 0), + * if @p prop_kind equals #mkldnn_forward_training + */ +mkldnn_status_t MKLDNN_API mkldnn_rnn_forward_desc_init( + mkldnn_rnn_desc_t *rnn_desc, mkldnn_prop_kind_t prop_kind, + const mkldnn_rnn_cell_desc_t *rnn_cell_desc, + const mkldnn_rnn_direction_t direction, + const mkldnn_memory_desc_t *src_layer_desc, + const mkldnn_memory_desc_t *src_iter_desc, + const mkldnn_memory_desc_t *weights_layer_desc, + const mkldnn_memory_desc_t *weights_iter_desc, + const mkldnn_memory_desc_t *bias_desc, + const mkldnn_memory_desc_t *dst_layer_desc, + const mkldnn_memory_desc_t *dst_iter_desc); + +/** Initializes a rnn descriptor @p rnn_desc for backward propagation + * using @p prop_kind, @p rnn_cell_desc, @p direction, and memory descriptors. + * + * @note All memory descriptors are allowed to be initialized with + * #mkldnn_format_kind_any value of @p format_kind. + * + * @p src_iter_desc (simultaneously with @p diff_src_iter_desc), + * @p bias_desc (simultaneously with @p diff_bias_desc), and + * @p dst_iter_desc (simultaneously with @p diff_src_iter_desc) are allowed to + * either be @c NULL or point to a zero memory descriptor, which would indicate + * that the RNN primitive should not use them. + * + * Inputs: + * - src_layer (#mkldnn_query_src_md, 0) + * - src_iter (#mkldnn_query_src_md, 1), if used + * - weights_layer (#mkldnn_query_weights_md, 0) + * - weights_iter (#mkldnn_query_weights_md, 1) + * - bias (#mkldnn_query_weights_md, 2), if used + * - dst_layer (#mkldnn_query_dst_md, 0) + * - dst_iter (#mkldnn_query_dst_md, 1), if used + * - diff_dst_layer (#mkldnn_query_diff_dst_md, 0) + * - diff_dst_iter (#mkldnn_query_diff_dst_md, 1), if used + * - workspace (#mkldnn_query_workspace_md, 0) + * + * Outputs: + * - diff_src_layer (#mkldnn_query_diff_src_md, 0) + * - diff_src_iter (#mkldnn_query_diff_src_md, 1), if used + * - diff_weights_layer (#mkldnn_query_diff_weights_md, 0) + * - diff_weights_iter (#mkldnn_query_diff_weights_md, 1) + * - diff_bias (#mkldnn_query_diff_weights_md, 2), if used + */ +mkldnn_status_t MKLDNN_API mkldnn_rnn_backward_desc_init( + mkldnn_rnn_desc_t *rnn_desc, mkldnn_prop_kind_t prop_kind, + const mkldnn_rnn_cell_desc_t *rnn_cell_desc, + const mkldnn_rnn_direction_t direction, + const mkldnn_memory_desc_t *src_layer_desc, + const mkldnn_memory_desc_t *src_iter_desc, + const mkldnn_memory_desc_t *weights_layer_desc, + const mkldnn_memory_desc_t *weights_iter_desc, + const mkldnn_memory_desc_t *bias_desc, + const mkldnn_memory_desc_t *dst_layer_desc, + const mkldnn_memory_desc_t *dst_iter_desc, + const mkldnn_memory_desc_t *diff_src_layer_desc, + const mkldnn_memory_desc_t *diff_src_iter_desc, + const mkldnn_memory_desc_t *diff_weights_layer_desc, + const mkldnn_memory_desc_t *diff_weights_iter_desc, + const mkldnn_memory_desc_t *diff_bias_desc, + const mkldnn_memory_desc_t *diff_dst_layer, + const mkldnn_memory_desc_t *diff_dst_iter_desc); + +/** @} */ + +/** @} */ + +/** @addtogroup c_api_engine Engine operations + * @{ */ + +/** Returns the number of engines of a particular @p kind. */ +size_t MKLDNN_API mkldnn_engine_get_count(mkldnn_engine_kind_t kind); + +/** Creates an @p engine of particular @p kind and @p index. */ +mkldnn_status_t MKLDNN_API mkldnn_engine_create(mkldnn_engine_t *engine, + mkldnn_engine_kind_t kind, size_t index); + +/** Returns the kind of an @p engine. */ +mkldnn_status_t MKLDNN_API mkldnn_engine_get_kind(mkldnn_engine_t engine, + mkldnn_engine_kind_t *kind); + +/** Destroys an @p engine. */ +mkldnn_status_t MKLDNN_API mkldnn_engine_destroy(mkldnn_engine_t engine); + +/** @} */ + +/** @addtogroup c_api_stream Execution stream operations + * @{ */ + +/** Creates an execution @p stream for @p engine and with @p flags. */ +mkldnn_status_t MKLDNN_API mkldnn_stream_create(mkldnn_stream_t *stream, + mkldnn_engine_t engine, unsigned flags); + +/** Destroys an execution @p stream. */ +mkldnn_status_t MKLDNN_API mkldnn_stream_destroy(mkldnn_stream_t stream); + +/** @} */ + +/** @addtogroup c_api_service Service functions + * @{ */ + +/** Sets verbosity level (print information to stdout). + * Possible levels are: + * - 0 -- no verbose output (default) + * - 1 -- primitive information at execution + * - 2 -- primitive information at creation and execution + * + * @note + * Dumping information might affect performance. + * This setting overrides the MKLDNN_VERBOSE environment variable. */ +mkldnn_status_t MKLDNN_API mkldnn_set_verbose(int level); + +/** Enables or disables dumping of JIT-generated code. + * The enable parameter can be: + * - 0 -- disable + * - any other value -- enable + * + * @note + * This setting overrides the MKLDNN_JIT_DUMP environment variable. */ +mkldnn_status_t MKLDNN_API mkldnn_set_jit_dump(int enable); + +/** Gets library version information. + * Version information includes: + * - major -- major version number + * - minor -- minor version number + * - patch -- patch release number + * - hash -- git commit hash */ +const mkldnn_version_t MKLDNN_API *mkldnn_version(); + +/** @} */ + +/** @addtogroup c_api_blas BLAS functions + * A subset of Basic Linear ALgebra (BLAS) functions to perform + * matrix-matrix multiplication. + * @{ */ + +/** SGEMM performs a matrix-matrix multiplication operation defined as + * + * C := alpha*op( A )*op( B ) + beta*C + * + * where + * - op( X ) is one of op( X ) = X or op( X ) = X**T, + * - alpha and beta are scalars, + * - A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix + * and C an m by n matrix. + * + * The matrices are assumed to be stored in column-major order (the elements + * in a matrix columns are contiguous in memory). + * + * @note + * The API is different from the standard BLAS routine + * because it returns mkldnn_status_t for error handling. + * XERBLA is not supported: no error message will be printed + * in case of incorrect parameters. */ +mkldnn_status_t MKLDNN_API mkldnn_sgemm( + const char *transa, const char *transb, + const mkldnn_dim_t *M, const mkldnn_dim_t *N, const mkldnn_dim_t *K, + const float *alpha, const float *A, const mkldnn_dim_t *lda, + const float *B, const mkldnn_dim_t *ldb, + const float *beta, float *C, const mkldnn_dim_t *ldc); + +/** gemm_s8u8s32 and gemm_s8s8s32 perform a matrix-matrix multiplication + * operation and add the result to a scalar-matrix product. For the final + * result, a vector is added to each row or column of the output matrix. + * The operation is defined as: + * + * C := alpha*(op(A) + A_offset) * (op(B) + B_offset) + beta*C + C_offset + * + * where + * - op( X ) = X or op( X ) = X**T, + * - A_offset is an m-by-k matrix with every element equal to the value oa, + * - B_offset is an k-by-n matrix with every element equal to the value ob, + * - C_offset is an m-by-n matrix defined by the oc array, size len: + * - if offsetc = F: len must be at least 1 + * - if offsetc = C: len must be at least max(1, m) + * - if offsetc = R: len must be at least max(1, n) + * - alpha and beta are scalars, and A, B and C are matrices, with op( A ) + * an m-by-k matrix, op( B ) a k-by-n matrix and C an m-by-n matrix. + * + * The matrices are assumed to be stored in column-major order (the elements + * in a matrix columns are contiguous in memory). + * + * @note + * The API is different compared with the standard BLAS routine + * because it returns mkldnn_status_t for error handling. + * XERBLA is not supported: no error message will be printed + * in case of incorrect parameters. */ +mkldnn_status_t MKLDNN_API mkldnn_gemm_s8u8s32( + const char *transa, const char *transb, const char *offsetc, + const mkldnn_dim_t *M, const mkldnn_dim_t *N, const mkldnn_dim_t *K, + const float *alpha, + const int8_t *A, const mkldnn_dim_t *lda, const int8_t *ao, + const uint8_t *B, const mkldnn_dim_t *ldb, const int8_t *bo, + const float *beta, + int32_t *c, const mkldnn_dim_t *ldc, const int32_t *co); + +mkldnn_status_t MKLDNN_API mkldnn_gemm_s8s8s32( + const char *transa, const char *transb, const char *offsetc, + const mkldnn_dim_t *M, const mkldnn_dim_t *N, const mkldnn_dim_t *K, + const float *alpha, + const int8_t *A, const mkldnn_dim_t *lda, const int8_t *ao, + const int8_t *B, const mkldnn_dim_t *ldb, const int8_t *bo, + const float *beta, + int32_t *c, const mkldnn_dim_t *ldc, const int32_t *co); +/** @} */ + +/** @} */ + +#ifdef __cplusplus +} +#endif + +#endif |