summaryrefslogtreecommitdiff
path: root/thirdparty/msdfgen
diff options
context:
space:
mode:
authorbruvzg <7645683+bruvzg@users.noreply.github.com>2022-02-09 14:20:15 +0200
committerbruvzg <7645683+bruvzg@users.noreply.github.com>2022-02-09 14:24:26 +0200
commit346a4b4f5043dd99bc9e870dacb32964ee1994b7 (patch)
tree8bc48ba943291e3387b83d8cfcdfb5cdfbab6749 /thirdparty/msdfgen
parentc768189bd218937e5a754ba02fd41e936f278aba (diff)
msdfgen: Update to version 1.9.2
Diffstat (limited to 'thirdparty/msdfgen')
-rw-r--r--thirdparty/msdfgen/core/edge-coloring.cpp4
-rw-r--r--thirdparty/msdfgen/core/equation-solver.cpp47
2 files changed, 23 insertions, 28 deletions
diff --git a/thirdparty/msdfgen/core/edge-coloring.cpp b/thirdparty/msdfgen/core/edge-coloring.cpp
index 370f9aa38d..914f1769fd 100644
--- a/thirdparty/msdfgen/core/edge-coloring.cpp
+++ b/thirdparty/msdfgen/core/edge-coloring.cpp
@@ -473,7 +473,7 @@ void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long l
edgeMatrix[i] = &edgeMatrixStorage[i*splineCount];
int nextEdge = 0;
for (; nextEdge < graphEdgeCount && !*graphEdgeDistances[nextEdge]; ++nextEdge) {
- int elem = graphEdgeDistances[nextEdge]-distanceMatrixBase;
+ int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
int row = elem/splineCount;
int col = elem%splineCount;
edgeMatrix[row][col] = 1;
@@ -483,7 +483,7 @@ void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long l
std::vector<int> coloring(2*splineCount);
colorSecondDegreeGraph(&coloring[0], &edgeMatrix[0], splineCount, seed);
for (; nextEdge < graphEdgeCount; ++nextEdge) {
- int elem = graphEdgeDistances[nextEdge]-distanceMatrixBase;
+ int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
tryAddEdge(&coloring[0], &edgeMatrix[0], splineCount, elem/splineCount, elem%splineCount, &coloring[splineCount]);
}
diff --git a/thirdparty/msdfgen/core/equation-solver.cpp b/thirdparty/msdfgen/core/equation-solver.cpp
index fbe906428b..4144fa3340 100644
--- a/thirdparty/msdfgen/core/equation-solver.cpp
+++ b/thirdparty/msdfgen/core/equation-solver.cpp
@@ -4,17 +4,15 @@
#define _USE_MATH_DEFINES
#include <cmath>
-#define TOO_LARGE_RATIO 1e12
-
namespace msdfgen {
int solveQuadratic(double x[2], double a, double b, double c) {
- // a = 0 -> linear equation
- if (a == 0 || fabs(b)+fabs(c) > TOO_LARGE_RATIO*fabs(a)) {
- // a, b = 0 -> no solution
- if (b == 0 || fabs(c) > TOO_LARGE_RATIO*fabs(b)) {
+ // a == 0 -> linear equation
+ if (a == 0 || fabs(b) > 1e12*fabs(a)) {
+ // a == 0, b == 0 -> no solution
+ if (b == 0) {
if (c == 0)
- return -1; // 0 = 0
+ return -1; // 0 == 0
return 0;
}
x[0] = -c/b;
@@ -35,41 +33,38 @@ int solveQuadratic(double x[2], double a, double b, double c) {
static int solveCubicNormed(double x[3], double a, double b, double c) {
double a2 = a*a;
- double q = (a2 - 3*b)/9;
- double r = (a*(2*a2-9*b) + 27*c)/54;
+ double q = 1/9.*(a2-3*b);
+ double r = 1/54.*(a*(2*a2-9*b)+27*c);
double r2 = r*r;
double q3 = q*q*q;
- double A, B;
+ a *= 1/3.;
if (r2 < q3) {
double t = r/sqrt(q3);
if (t < -1) t = -1;
if (t > 1) t = 1;
t = acos(t);
- a /= 3; q = -2*sqrt(q);
- x[0] = q*cos(t/3)-a;
- x[1] = q*cos((t+2*M_PI)/3)-a;
- x[2] = q*cos((t-2*M_PI)/3)-a;
+ q = -2*sqrt(q);
+ x[0] = q*cos(1/3.*t)-a;
+ x[1] = q*cos(1/3.*(t+2*M_PI))-a;
+ x[2] = q*cos(1/3.*(t-2*M_PI))-a;
return 3;
} else {
- A = -pow(fabs(r)+sqrt(r2-q3), 1/3.);
- if (r < 0) A = -A;
- B = A == 0 ? 0 : q/A;
- a /= 3;
- x[0] = (A+B)-a;
- x[1] = -0.5*(A+B)-a;
- x[2] = 0.5*sqrt(3.)*(A-B);
- if (fabs(x[2]) < 1e-14)
+ double u = (r < 0 ? 1 : -1)*pow(fabs(r)+sqrt(r2-q3), 1/3.);
+ double v = u == 0 ? 0 : q/u;
+ x[0] = (u+v)-a;
+ if (u == v || fabs(u-v) < 1e-12*fabs(u+v)) {
+ x[1] = -.5*(u+v)-a;
return 2;
+ }
return 1;
}
}
int solveCubic(double x[3], double a, double b, double c, double d) {
if (a != 0) {
- double bn = b/a, cn = c/a, dn = d/a;
- // Check that a isn't "almost zero"
- if (fabs(bn) < TOO_LARGE_RATIO && fabs(cn) < TOO_LARGE_RATIO && fabs(dn) < TOO_LARGE_RATIO)
- return solveCubicNormed(x, bn, cn, dn);
+ double bn = b/a;
+ if (fabs(bn) < 1e6) // Above this ratio, the numerical error gets larger than if we treated a as zero
+ return solveCubicNormed(x, bn, c/a, d/a);
}
return solveQuadratic(x, b, c, d);
}