summaryrefslogtreecommitdiff
path: root/thirdparty/misc
diff options
context:
space:
mode:
authorRémi Verschelde <rverschelde@gmail.com>2022-02-04 15:35:14 +0100
committerRémi Verschelde <rverschelde@gmail.com>2022-02-04 16:32:21 +0100
commite223bad86d6e5225aa205394d047714a92610967 (patch)
tree2ae7abe5edfd503d72e74f51040f15472c8c342c /thirdparty/misc
parent5f56d385b04f4054ec86605fcda56ffeed4ca5f4 (diff)
Core: Move Vector2i to its own `vector2i.h` header
Also reduce interdependencies and clean up a bit.
Diffstat (limited to 'thirdparty/misc')
-rw-r--r--thirdparty/misc/patches/polypartition-godot-types.patch85
-rw-r--r--thirdparty/misc/polypartition.cpp2
2 files changed, 43 insertions, 44 deletions
diff --git a/thirdparty/misc/patches/polypartition-godot-types.patch b/thirdparty/misc/patches/polypartition-godot-types.patch
index 782f02e8dc..61737f9fd2 100644
--- a/thirdparty/misc/patches/polypartition-godot-types.patch
+++ b/thirdparty/misc/patches/polypartition-godot-types.patch
@@ -1,19 +1,16 @@
diff --git a/thirdparty/misc/polypartition.cpp b/thirdparty/misc/polypartition.cpp
-index 3a8a6efa83..5e94793b79 100644
+index 3a8a6efa83..8c5409bf24 100644
--- a/thirdparty/misc/polypartition.cpp
+++ b/thirdparty/misc/polypartition.cpp
-@@ -23,10 +23,7 @@
-
- #include "polypartition.h"
-
--#include <math.h>
--#include <string.h>
+@@ -26,7 +26,6 @@
+ #include <math.h>
+ #include <string.h>
#include <algorithm>
-#include <vector>
TPPLPoly::TPPLPoly() {
hole = false;
-@@ -186,7 +183,7 @@ int TPPLPartition::Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TP
+@@ -186,7 +185,7 @@ int TPPLPartition::Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TP
// Removes holes from inpolys by merging them with non-holes.
int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
TPPLPolyList polys;
@@ -22,7 +19,7 @@ index 3a8a6efa83..5e94793b79 100644
long i, i2, holepointindex, polypointindex;
TPPLPoint holepoint, polypoint, bestpolypoint;
TPPLPoint linep1, linep2;
-@@ -198,15 +195,15 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
+@@ -198,15 +197,15 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
// Check for the trivial case of no holes.
hasholes = false;
@@ -42,7 +39,7 @@ index 3a8a6efa83..5e94793b79 100644
}
return 1;
}
-@@ -216,8 +213,8 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
+@@ -216,8 +215,8 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
while (1) {
// Find the hole point with the largest x.
hasholes = false;
@@ -53,7 +50,7 @@ index 3a8a6efa83..5e94793b79 100644
continue;
}
-@@ -227,8 +224,8 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
+@@ -227,8 +226,8 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
holepointindex = 0;
}
@@ -64,7 +61,7 @@ index 3a8a6efa83..5e94793b79 100644
holeiter = iter;
holepointindex = i;
}
-@@ -237,24 +234,24 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
+@@ -237,24 +236,24 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
if (!hasholes) {
break;
}
@@ -98,7 +95,7 @@ index 3a8a6efa83..5e94793b79 100644
if (pointfound) {
v1 = Normalize(polypoint - holepoint);
v2 = Normalize(bestpolypoint - holepoint);
-@@ -263,13 +260,13 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
+@@ -263,13 +262,13 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
}
}
pointvisible = true;
@@ -117,7 +114,7 @@ index 3a8a6efa83..5e94793b79 100644
if (Intersects(holepoint, polypoint, linep1, linep2)) {
pointvisible = false;
break;
-@@ -292,18 +289,18 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
+@@ -292,18 +291,18 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
return 0;
}
@@ -142,7 +139,7 @@ index 3a8a6efa83..5e94793b79 100644
i2++;
}
-@@ -312,8 +309,8 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
+@@ -312,8 +311,8 @@ int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
polys.push_back(newpoly);
}
@@ -153,7 +150,7 @@ index 3a8a6efa83..5e94793b79 100644
}
return 1;
-@@ -524,13 +521,13 @@ int TPPLPartition::Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles) {
+@@ -524,13 +523,13 @@ int TPPLPartition::Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles) {
int TPPLPartition::Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
TPPLPolyList outpolys;
@@ -170,7 +167,7 @@ index 3a8a6efa83..5e94793b79 100644
return 0;
}
}
-@@ -543,7 +540,7 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -543,7 +542,7 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
}
TPPLPolyList triangles;
@@ -179,7 +176,7 @@ index 3a8a6efa83..5e94793b79 100644
TPPLPoly *poly1 = NULL, *poly2 = NULL;
TPPLPoly newpoly;
TPPLPoint d1, d2, p1, p2, p3;
-@@ -578,19 +575,19 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -578,19 +577,19 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
return 0;
}
@@ -203,7 +200,7 @@ index 3a8a6efa83..5e94793b79 100644
for (i21 = 0; i21 < poly2->GetNumPoints(); i21++) {
if ((d2.x != poly2->GetPoint(i21).x) || (d2.y != poly2->GetPoint(i21).y)) {
-@@ -660,16 +657,16 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -660,16 +659,16 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
}
triangles.erase(iter2);
@@ -224,7 +221,7 @@ index 3a8a6efa83..5e94793b79 100644
}
return 1;
-@@ -677,13 +674,13 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -677,13 +676,13 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
int TPPLPartition::ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts) {
TPPLPolyList outpolys;
@@ -241,7 +238,7 @@ index 3a8a6efa83..5e94793b79 100644
return 0;
}
}
-@@ -824,8 +821,8 @@ int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles) {
+@@ -824,8 +823,8 @@ int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles) {
newdiagonal.index1 = 0;
newdiagonal.index2 = n - 1;
diagonals.push_back(newdiagonal);
@@ -252,7 +249,7 @@ index 3a8a6efa83..5e94793b79 100644
diagonals.pop_front();
bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
if (bestvertex == -1) {
-@@ -873,10 +870,10 @@ void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2
+@@ -873,10 +872,10 @@ void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2
pairs->push_front(newdiagonal);
dpstates[a][b].weight = w;
} else {
@@ -265,7 +262,7 @@ index 3a8a6efa83..5e94793b79 100644
pairs->pop_front();
}
pairs->push_front(newdiagonal);
-@@ -885,7 +882,7 @@ void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2
+@@ -885,7 +884,7 @@ void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2
void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
DiagonalList *pairs = NULL;
@@ -274,7 +271,7 @@ index 3a8a6efa83..5e94793b79 100644
long top;
long w;
-@@ -902,23 +899,23 @@ void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPS
+@@ -902,23 +901,23 @@ void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPS
}
if (j - i > 1) {
pairs = &(dpstates[i][j].pairs);
@@ -305,7 +302,7 @@ index 3a8a6efa83..5e94793b79 100644
}
}
}
-@@ -927,7 +924,7 @@ void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPS
+@@ -927,7 +926,7 @@ void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPS
void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
DiagonalList *pairs = NULL;
@@ -314,7 +311,7 @@ index 3a8a6efa83..5e94793b79 100644
long top;
long w;
-@@ -946,21 +943,21 @@ void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPS
+@@ -946,21 +945,21 @@ void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPS
if (k - j > 1) {
pairs = &(dpstates[j][k].pairs);
@@ -343,7 +340,7 @@ index 3a8a6efa83..5e94793b79 100644
}
} else {
w++;
-@@ -981,11 +978,11 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -981,11 +980,11 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
DiagonalList diagonals, diagonals2;
Diagonal diagonal, newdiagonal;
DiagonalList *pairs = NULL, *pairs2 = NULL;
@@ -358,7 +355,7 @@ index 3a8a6efa83..5e94793b79 100644
bool ijreal, jkreal;
n = poly->GetNumPoints();
-@@ -1110,35 +1107,35 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -1110,35 +1109,35 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
newdiagonal.index1 = 0;
newdiagonal.index2 = n - 1;
diagonals.push_front(newdiagonal);
@@ -403,7 +400,7 @@ index 3a8a6efa83..5e94793b79 100644
pairs2->pop_back();
} else {
break;
-@@ -1153,21 +1150,21 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -1153,21 +1152,21 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
diagonals.push_front(newdiagonal);
}
} else {
@@ -431,7 +428,7 @@ index 3a8a6efa83..5e94793b79 100644
pairs2->pop_front();
} else {
break;
-@@ -1197,8 +1194,8 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -1197,8 +1196,8 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
newdiagonal.index1 = 0;
newdiagonal.index2 = n - 1;
diagonals.push_front(newdiagonal);
@@ -442,7 +439,7 @@ index 3a8a6efa83..5e94793b79 100644
diagonals.pop_front();
if ((diagonal.index2 - diagonal.index1) <= 1) {
continue;
-@@ -1210,8 +1207,8 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -1210,8 +1209,8 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
indices.push_back(diagonal.index2);
diagonals2.push_front(diagonal);
@@ -453,7 +450,7 @@ index 3a8a6efa83..5e94793b79 100644
diagonals2.pop_front();
if ((diagonal.index2 - diagonal.index1) <= 1) {
continue;
-@@ -1220,16 +1217,16 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -1220,16 +1219,16 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
jkreal = true;
pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
if (!vertices[diagonal.index1].isConvex) {
@@ -476,7 +473,7 @@ index 3a8a6efa83..5e94793b79 100644
jkreal = false;
}
}
-@@ -1253,11 +1250,12 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -1253,11 +1252,12 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
indices.push_back(j);
}
@@ -492,7 +489,7 @@ index 3a8a6efa83..5e94793b79 100644
k++;
}
parts->push_back(newpoly);
-@@ -1281,7 +1279,7 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
+@@ -1281,7 +1281,7 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
// "Computational Geometry: Algorithms and Applications"
// by Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys) {
@@ -501,7 +498,7 @@ index 3a8a6efa83..5e94793b79 100644
MonotoneVertex *vertices = NULL;
long i, numvertices, vindex, vindex2, newnumvertices, maxnumvertices;
long polystartindex, polyendindex;
-@@ -1291,11 +1289,8 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
+@@ -1291,11 +1291,8 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
bool error = false;
numvertices = 0;
@@ -515,7 +512,7 @@ index 3a8a6efa83..5e94793b79 100644
}
maxnumvertices = numvertices * 3;
-@@ -1303,8 +1298,8 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
+@@ -1303,8 +1300,8 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
newnumvertices = numvertices;
polystartindex = 0;
@@ -526,7 +523,7 @@ index 3a8a6efa83..5e94793b79 100644
polyendindex = polystartindex + poly->GetNumPoints() - 1;
for (i = 0; i < poly->GetNumPoints(); i++) {
vertices[i + polystartindex].p = poly->GetPoint(i);
-@@ -1360,14 +1355,14 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
+@@ -1360,14 +1357,14 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
// Note that while set doesn't actually have to be implemented as
// a tree, complexity requirements for operations are the same as
// for the balanced binary search tree.
@@ -546,7 +543,7 @@ index 3a8a6efa83..5e94793b79 100644
}
// For each vertex.
-@@ -1387,13 +1382,14 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
+@@ -1387,13 +1384,14 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
newedge.p1 = v->p;
newedge.p2 = vertices[v->next].p;
newedge.index = vindex;
@@ -564,7 +561,7 @@ index 3a8a6efa83..5e94793b79 100644
error = true;
break;
}
-@@ -1412,29 +1408,30 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
+@@ -1412,29 +1410,30 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
newedge.p1 = v->p;
newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge);
@@ -601,7 +598,7 @@ index 3a8a6efa83..5e94793b79 100644
error = true;
break;
}
-@@ -1452,25 +1449,25 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
+@@ -1452,25 +1451,25 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
newedge.p1 = v->p;
newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge);
@@ -632,7 +629,7 @@ index 3a8a6efa83..5e94793b79 100644
error = true;
break;
}
-@@ -1488,27 +1485,28 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
+@@ -1488,27 +1487,28 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
newedge.p1 = v2->p;
newedge.p2 = vertices[v2->next].p;
newedge.index = vindex2;
@@ -668,7 +665,7 @@ index 3a8a6efa83..5e94793b79 100644
}
break;
}
-@@ -1569,8 +1567,8 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
+@@ -1569,8 +1569,8 @@ int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monoto
// Adds a diagonal to the doubly-connected list of vertices.
void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
@@ -679,7 +676,7 @@ index 3a8a6efa83..5e94793b79 100644
long newindex1, newindex2;
newindex1 = *numvertices;
-@@ -1597,14 +1595,14 @@ void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, lon
+@@ -1597,14 +1597,14 @@ void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, lon
vertextypes[newindex1] = vertextypes[index1];
edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
helpers[newindex1] = helpers[index1];
@@ -698,7 +695,7 @@ index 3a8a6efa83..5e94793b79 100644
}
}
-@@ -1830,13 +1828,13 @@ int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles
+@@ -1830,13 +1830,13 @@ int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles
int TPPLPartition::Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
TPPLPolyList monotone;
diff --git a/thirdparty/misc/polypartition.cpp b/thirdparty/misc/polypartition.cpp
index 5e94793b79..8c5409bf24 100644
--- a/thirdparty/misc/polypartition.cpp
+++ b/thirdparty/misc/polypartition.cpp
@@ -23,6 +23,8 @@
#include "polypartition.h"
+#include <math.h>
+#include <string.h>
#include <algorithm>
TPPLPoly::TPPLPoly() {