diff options
author | Hendrik Brucker <hendrik.brucker@mail.de> | 2022-03-20 14:53:45 +0100 |
---|---|---|
committer | Hendrik Brucker <hendrik.brucker@mail.de> | 2022-03-20 14:53:45 +0100 |
commit | 2a55f10e8be2d3a9ffcbb57ab6dd278419c64b37 (patch) | |
tree | 90bf78ae0c5bfa29092398a0dd10ea2a304462ec /thirdparty/misc/open-simplex-noise.c | |
parent | c251ea01db289feb2f0b237eb3d865e28b0fa1cb (diff) |
Add FastNoiseLite / general noise overhaul
- replace OpenSimplexNoise
Co-authored-by: Cory Petkovsek <tinmanjuggernaut@users.noreply.github.com>
Diffstat (limited to 'thirdparty/misc/open-simplex-noise.c')
-rw-r--r-- | thirdparty/misc/open-simplex-noise.c | 2255 |
1 files changed, 0 insertions, 2255 deletions
diff --git a/thirdparty/misc/open-simplex-noise.c b/thirdparty/misc/open-simplex-noise.c deleted file mode 100644 index 44a072cad1..0000000000 --- a/thirdparty/misc/open-simplex-noise.c +++ /dev/null @@ -1,2255 +0,0 @@ -/* - * OpenSimplex (Simplectic) Noise in C. - * Ported by Stephen M. Cameron from Kurt Spencer's java implementation - * - * v1.1 (October 5, 2014) - * - Added 2D and 4D implementations. - * - Proper gradient sets for all dimensions, from a - * dimensionally-generalizable scheme with an actual - * rhyme and reason behind it. - * - Removed default permutation array in favor of - * default seed. - * - Changed seed-based constructor to be independent - * of any particular randomization library, so results - * will be the same when ported to other languages. - */ - -// -- GODOT start -- -// Modified to work without allocating memory, also removed some unused function. -// -- GODOT end -- - -#include <math.h> -#include <stdlib.h> -#include <stdint.h> -#include <string.h> -#include <errno.h> - -#include "open-simplex-noise.h" - -#define STRETCH_CONSTANT_2D (-0.211324865405187) /* (1 / sqrt(2 + 1) - 1 ) / 2; */ -#define SQUISH_CONSTANT_2D (0.366025403784439) /* (sqrt(2 + 1) -1) / 2; */ -#define STRETCH_CONSTANT_3D (-1.0 / 6.0) /* (1 / sqrt(3 + 1) - 1) / 3; */ -#define SQUISH_CONSTANT_3D (1.0 / 3.0) /* (sqrt(3+1)-1)/3; */ -#define STRETCH_CONSTANT_4D (-0.138196601125011) /* (1 / sqrt(4 + 1) - 1) / 4; */ -#define SQUISH_CONSTANT_4D (0.309016994374947) /* (sqrt(4 + 1) - 1) / 4; */ - -#define NORM_CONSTANT_2D (47.0) -#define NORM_CONSTANT_3D (103.0) -#define NORM_CONSTANT_4D (30.0) - -#define DEFAULT_SEED (0LL) - -// -- GODOT start -- -/*struct osn_context { - int16_t *perm; - int16_t *permGradIndex3D; -};*/ -// -- GODOT end -- -#define ARRAYSIZE(x) (sizeof((x)) / sizeof((x)[0])) - -/* - * Gradients for 2D. They approximate the directions to the - * vertices of an octagon from the center. - */ -static const int8_t gradients2D[] = { - 5, 2, 2, 5, - -5, 2, -2, 5, - 5, -2, 2, -5, - -5, -2, -2, -5, -}; - -/* - * Gradients for 3D. They approximate the directions to the - * vertices of a rhombicuboctahedron from the center, skewed so - * that the triangular and square facets can be inscribed inside - * circles of the same radius. - */ -static const signed char gradients3D[] = { - -11, 4, 4, -4, 11, 4, -4, 4, 11, - 11, 4, 4, 4, 11, 4, 4, 4, 11, - -11, -4, 4, -4, -11, 4, -4, -4, 11, - 11, -4, 4, 4, -11, 4, 4, -4, 11, - -11, 4, -4, -4, 11, -4, -4, 4, -11, - 11, 4, -4, 4, 11, -4, 4, 4, -11, - -11, -4, -4, -4, -11, -4, -4, -4, -11, - 11, -4, -4, 4, -11, -4, 4, -4, -11, -}; - -/* - * Gradients for 4D. They approximate the directions to the - * vertices of a disprismatotesseractihexadecachoron from the center, - * skewed so that the tetrahedral and cubic facets can be inscribed inside - * spheres of the same radius. - */ -static const signed char gradients4D[] = { - 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, - -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, - 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, - -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, - 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, - -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, - 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, - -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, - 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, - -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3, - 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, - -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, - 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, - -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, - 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, - -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -}; - -static double extrapolate2(const struct osn_context *ctx, int xsb, int ysb, double dx, double dy) -{ - const int16_t *perm = ctx->perm; - int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E; - return gradients2D[index] * dx - + gradients2D[index + 1] * dy; -} - -static double extrapolate3(const struct osn_context *ctx, int xsb, int ysb, int zsb, double dx, double dy, double dz) -{ - const int16_t *perm = ctx->perm; - const int16_t *permGradIndex3D = ctx->permGradIndex3D; - int index = permGradIndex3D[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF]; - return gradients3D[index] * dx - + gradients3D[index + 1] * dy - + gradients3D[index + 2] * dz; -} - -static double extrapolate4(const struct osn_context *ctx, int xsb, int ysb, int zsb, int wsb, double dx, double dy, double dz, double dw) -{ - const int16_t *perm = ctx->perm; - int index = perm[(perm[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF] + wsb) & 0xFF] & 0xFC; - return gradients4D[index] * dx - + gradients4D[index + 1] * dy - + gradients4D[index + 2] * dz - + gradients4D[index + 3] * dw; -} - -static INLINE int fastFloor(double x) { - int xi = (int) x; - return x < xi ? xi - 1 : xi; -} - -// -- GODOT start -- -/* -static int allocate_perm(struct osn_context *ctx, int nperm, int ngrad) -{ - if (ctx->perm) - free(ctx->perm); - if (ctx->permGradIndex3D) - free(ctx->permGradIndex3D); - ctx->perm = (int16_t *) malloc(sizeof(*ctx->perm) * nperm); - if (!ctx->perm) - return -ENOMEM; - ctx->permGradIndex3D = (int16_t *) malloc(sizeof(*ctx->permGradIndex3D) * ngrad); - if (!ctx->permGradIndex3D) { - free(ctx->perm); - return -ENOMEM; - } - return 0; -} - -int open_simplex_noise_init_perm(struct osn_context *ctx, int16_t p[], int nelements) -{ - int i, rc; - - rc = allocate_perm(ctx, nelements, 256); - if (rc) - return rc; - memcpy(ctx->perm, p, sizeof(*ctx->perm) * nelements); - - for (i = 0; i < 256; i++) { - // Since 3D has 24 gradients, simple bitmask won't work, so precompute modulo array. - ctx->permGradIndex3D[i] = (int16_t)((ctx->perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3); - } - return 0; -} -*/ -// -- GODOT end -- - -/* - * Initializes using a permutation array generated from a 64-bit seed. - * Generates a proper permutation (i.e. doesn't merely perform N successive pair - * swaps on a base array). Uses a simple 64-bit LCG. - */ -// -- GODOT start -- -int open_simplex_noise(int64_t seed, struct osn_context *ctx) -{ - int rc; - int16_t source[256]; - int i; - int16_t *perm; - int16_t *permGradIndex3D; - int r; - - perm = ctx->perm; - permGradIndex3D = ctx->permGradIndex3D; -// -- GODOT end -- - - uint64_t seedU = seed; - for (i = 0; i < 256; i++) - source[i] = (int16_t) i; - seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL; - seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL; - seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL; - for (i = 255; i >= 0; i--) { - seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL; - r = (int)((seedU + 31) % (i + 1)); - if (r < 0) - r += (i + 1); - perm[i] = source[r]; - permGradIndex3D[i] = (short)((perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3); - source[r] = source[i]; - } - return 0; -} - -// -- GODOT start -- -/* -void open_simplex_noise_free(struct osn_context *ctx) -{ - if (!ctx) - return; - if (ctx->perm) { - free(ctx->perm); - ctx->perm = NULL; - } - if (ctx->permGradIndex3D) { - free(ctx->permGradIndex3D); - ctx->permGradIndex3D = NULL; - } - free(ctx); -} -*/ -// -- GODOT end -- - -/* 2D OpenSimplex (Simplectic) Noise. */ -double open_simplex_noise2(const struct osn_context *ctx, double x, double y) -{ - - /* Place input coordinates onto grid. */ - double stretchOffset = (x + y) * STRETCH_CONSTANT_2D; - double xs = x + stretchOffset; - double ys = y + stretchOffset; - - /* Floor to get grid coordinates of rhombus (stretched square) super-cell origin. */ - int xsb = fastFloor(xs); - int ysb = fastFloor(ys); - - /* Skew out to get actual coordinates of rhombus origin. We'll need these later. */ - double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D; - double xb = xsb + squishOffset; - double yb = ysb + squishOffset; - - /* Compute grid coordinates relative to rhombus origin. */ - double xins = xs - xsb; - double yins = ys - ysb; - - /* Sum those together to get a value that determines which region we're in. */ - double inSum = xins + yins; - - /* Positions relative to origin point. */ - double dx0 = x - xb; - double dy0 = y - yb; - - /* We'll be defining these inside the next block and using them afterwards. */ - double dx_ext, dy_ext; - int xsv_ext, ysv_ext; - - double dx1; - double dy1; - double attn1; - double dx2; - double dy2; - double attn2; - double zins; - double attn0; - double attn_ext; - - double value = 0; - - /* Contribution (1,0) */ - dx1 = dx0 - 1 - SQUISH_CONSTANT_2D; - dy1 = dy0 - 0 - SQUISH_CONSTANT_2D; - attn1 = 2 - dx1 * dx1 - dy1 * dy1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate2(ctx, xsb + 1, ysb + 0, dx1, dy1); - } - - /* Contribution (0,1) */ - dx2 = dx0 - 0 - SQUISH_CONSTANT_2D; - dy2 = dy0 - 1 - SQUISH_CONSTANT_2D; - attn2 = 2 - dx2 * dx2 - dy2 * dy2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate2(ctx, xsb + 0, ysb + 1, dx2, dy2); - } - - if (inSum <= 1) { /* We're inside the triangle (2-Simplex) at (0,0) */ - zins = 1 - inSum; - if (zins > xins || zins > yins) { /* (0,0) is one of the closest two triangular vertices */ - if (xins > yins) { - xsv_ext = xsb + 1; - ysv_ext = ysb - 1; - dx_ext = dx0 - 1; - dy_ext = dy0 + 1; - } else { - xsv_ext = xsb - 1; - ysv_ext = ysb + 1; - dx_ext = dx0 + 1; - dy_ext = dy0 - 1; - } - } else { /* (1,0) and (0,1) are the closest two vertices. */ - xsv_ext = xsb + 1; - ysv_ext = ysb + 1; - dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; - dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; - } - } else { /* We're inside the triangle (2-Simplex) at (1,1) */ - zins = 2 - inSum; - if (zins < xins || zins < yins) { /* (0,0) is one of the closest two triangular vertices */ - if (xins > yins) { - xsv_ext = xsb + 2; - ysv_ext = ysb + 0; - dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D; - dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D; - } else { - xsv_ext = xsb + 0; - ysv_ext = ysb + 2; - dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D; - dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D; - } - } else { /* (1,0) and (0,1) are the closest two vertices. */ - dx_ext = dx0; - dy_ext = dy0; - xsv_ext = xsb; - ysv_ext = ysb; - } - xsb += 1; - ysb += 1; - dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; - dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; - } - - /* Contribution (0,0) or (1,1) */ - attn0 = 2 - dx0 * dx0 - dy0 * dy0; - if (attn0 > 0) { - attn0 *= attn0; - value += attn0 * attn0 * extrapolate2(ctx, xsb, ysb, dx0, dy0); - } - - /* Extra Vertex */ - attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext; - if (attn_ext > 0) { - attn_ext *= attn_ext; - value += attn_ext * attn_ext * extrapolate2(ctx, xsv_ext, ysv_ext, dx_ext, dy_ext); - } - - return value / NORM_CONSTANT_2D; -} - -/* - * 3D OpenSimplex (Simplectic) Noise - */ -double open_simplex_noise3(const struct osn_context *ctx, double x, double y, double z) -{ - - /* Place input coordinates on simplectic honeycomb. */ - double stretchOffset = (x + y + z) * STRETCH_CONSTANT_3D; - double xs = x + stretchOffset; - double ys = y + stretchOffset; - double zs = z + stretchOffset; - - /* Floor to get simplectic honeycomb coordinates of rhombohedron (stretched cube) super-cell origin. */ - int xsb = fastFloor(xs); - int ysb = fastFloor(ys); - int zsb = fastFloor(zs); - - /* Skew out to get actual coordinates of rhombohedron origin. We'll need these later. */ - double squishOffset = (xsb + ysb + zsb) * SQUISH_CONSTANT_3D; - double xb = xsb + squishOffset; - double yb = ysb + squishOffset; - double zb = zsb + squishOffset; - - /* Compute simplectic honeycomb coordinates relative to rhombohedral origin. */ - double xins = xs - xsb; - double yins = ys - ysb; - double zins = zs - zsb; - - /* Sum those together to get a value that determines which region we're in. */ - double inSum = xins + yins + zins; - - /* Positions relative to origin point. */ - double dx0 = x - xb; - double dy0 = y - yb; - double dz0 = z - zb; - - /* We'll be defining these inside the next block and using them afterwards. */ - double dx_ext0, dy_ext0, dz_ext0; - double dx_ext1, dy_ext1, dz_ext1; - int xsv_ext0, ysv_ext0, zsv_ext0; - int xsv_ext1, ysv_ext1, zsv_ext1; - - double wins; - int8_t c, c1, c2; - int8_t aPoint, bPoint; - double aScore, bScore; - int aIsFurtherSide; - int bIsFurtherSide; - double p1, p2, p3; - double score; - double attn0, attn1, attn2, attn3, attn4, attn5, attn6; - double dx1, dy1, dz1; - double dx2, dy2, dz2; - double dx3, dy3, dz3; - double dx4, dy4, dz4; - double dx5, dy5, dz5; - double dx6, dy6, dz6; - double attn_ext0, attn_ext1; - - double value = 0; - if (inSum <= 1) { /* We're inside the tetrahedron (3-Simplex) at (0,0,0) */ - - /* Determine which two of (0,0,1), (0,1,0), (1,0,0) are closest. */ - aPoint = 0x01; - aScore = xins; - bPoint = 0x02; - bScore = yins; - if (aScore >= bScore && zins > bScore) { - bScore = zins; - bPoint = 0x04; - } else if (aScore < bScore && zins > aScore) { - aScore = zins; - aPoint = 0x04; - } - - /* Now we determine the two lattice points not part of the tetrahedron that may contribute. - This depends on the closest two tetrahedral vertices, including (0,0,0) */ - wins = 1 - inSum; - if (wins > aScore || wins > bScore) { /* (0,0,0) is one of the closest two tetrahedral vertices. */ - c = (bScore > aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */ - - if ((c & 0x01) == 0) { - xsv_ext0 = xsb - 1; - xsv_ext1 = xsb; - dx_ext0 = dx0 + 1; - dx_ext1 = dx0; - } else { - xsv_ext0 = xsv_ext1 = xsb + 1; - dx_ext0 = dx_ext1 = dx0 - 1; - } - - if ((c & 0x02) == 0) { - ysv_ext0 = ysv_ext1 = ysb; - dy_ext0 = dy_ext1 = dy0; - if ((c & 0x01) == 0) { - ysv_ext1 -= 1; - dy_ext1 += 1; - } else { - ysv_ext0 -= 1; - dy_ext0 += 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysb + 1; - dy_ext0 = dy_ext1 = dy0 - 1; - } - - if ((c & 0x04) == 0) { - zsv_ext0 = zsb; - zsv_ext1 = zsb - 1; - dz_ext0 = dz0; - dz_ext1 = dz0 + 1; - } else { - zsv_ext0 = zsv_ext1 = zsb + 1; - dz_ext0 = dz_ext1 = dz0 - 1; - } - } else { /* (0,0,0) is not one of the closest two tetrahedral vertices. */ - c = (int8_t)(aPoint | bPoint); /* Our two extra vertices are determined by the closest two. */ - - if ((c & 0x01) == 0) { - xsv_ext0 = xsb; - xsv_ext1 = xsb - 1; - dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_3D; - dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D; - } else { - xsv_ext0 = xsv_ext1 = xsb + 1; - dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; - dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; - } - - if ((c & 0x02) == 0) { - ysv_ext0 = ysb; - ysv_ext1 = ysb - 1; - dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_3D; - dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D; - } else { - ysv_ext0 = ysv_ext1 = ysb + 1; - dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; - } - - if ((c & 0x04) == 0) { - zsv_ext0 = zsb; - zsv_ext1 = zsb - 1; - dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_3D; - dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D; - } else { - zsv_ext0 = zsv_ext1 = zsb + 1; - dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; - } - } - - /* Contribution (0,0,0) */ - attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0; - if (attn0 > 0) { - attn0 *= attn0; - value += attn0 * attn0 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 0, dx0, dy0, dz0); - } - - /* Contribution (1,0,0) */ - dx1 = dx0 - 1 - SQUISH_CONSTANT_3D; - dy1 = dy0 - 0 - SQUISH_CONSTANT_3D; - dz1 = dz0 - 0 - SQUISH_CONSTANT_3D; - attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1); - } - - /* Contribution (0,1,0) */ - dx2 = dx0 - 0 - SQUISH_CONSTANT_3D; - dy2 = dy0 - 1 - SQUISH_CONSTANT_3D; - dz2 = dz1; - attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2); - } - - /* Contribution (0,0,1) */ - dx3 = dx2; - dy3 = dy1; - dz3 = dz0 - 1 - SQUISH_CONSTANT_3D; - attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; - if (attn3 > 0) { - attn3 *= attn3; - value += attn3 * attn3 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3); - } - } else if (inSum >= 2) { /* We're inside the tetrahedron (3-Simplex) at (1,1,1) */ - - /* Determine which two tetrahedral vertices are the closest, out of (1,1,0), (1,0,1), (0,1,1) but not (1,1,1). */ - aPoint = 0x06; - aScore = xins; - bPoint = 0x05; - bScore = yins; - if (aScore <= bScore && zins < bScore) { - bScore = zins; - bPoint = 0x03; - } else if (aScore > bScore && zins < aScore) { - aScore = zins; - aPoint = 0x03; - } - - /* Now we determine the two lattice points not part of the tetrahedron that may contribute. - This depends on the closest two tetrahedral vertices, including (1,1,1) */ - wins = 3 - inSum; - if (wins < aScore || wins < bScore) { /* (1,1,1) is one of the closest two tetrahedral vertices. */ - c = (bScore < aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */ - - if ((c & 0x01) != 0) { - xsv_ext0 = xsb + 2; - xsv_ext1 = xsb + 1; - dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_3D; - dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; - } else { - xsv_ext0 = xsv_ext1 = xsb; - dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_3D; - } - - if ((c & 0x02) != 0) { - ysv_ext0 = ysv_ext1 = ysb + 1; - dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; - if ((c & 0x01) != 0) { - ysv_ext1 += 1; - dy_ext1 -= 1; - } else { - ysv_ext0 += 1; - dy_ext0 -= 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysb; - dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_3D; - } - - if ((c & 0x04) != 0) { - zsv_ext0 = zsb + 1; - zsv_ext1 = zsb + 2; - dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 2 - 3 * SQUISH_CONSTANT_3D; - } else { - zsv_ext0 = zsv_ext1 = zsb; - dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_3D; - } - } else { /* (1,1,1) is not one of the closest two tetrahedral vertices. */ - c = (int8_t)(aPoint & bPoint); /* Our two extra vertices are determined by the closest two. */ - - if ((c & 0x01) != 0) { - xsv_ext0 = xsb + 1; - xsv_ext1 = xsb + 2; - dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; - dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D; - } else { - xsv_ext0 = xsv_ext1 = xsb; - dx_ext0 = dx0 - SQUISH_CONSTANT_3D; - dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; - } - - if ((c & 0x02) != 0) { - ysv_ext0 = ysb + 1; - ysv_ext1 = ysb + 2; - dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D; - } else { - ysv_ext0 = ysv_ext1 = ysb; - dy_ext0 = dy0 - SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; - } - - if ((c & 0x04) != 0) { - zsv_ext0 = zsb + 1; - zsv_ext1 = zsb + 2; - dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D; - } else { - zsv_ext0 = zsv_ext1 = zsb; - dz_ext0 = dz0 - SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; - } - } - - /* Contribution (1,1,0) */ - dx3 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; - dy3 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; - dz3 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D; - attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; - if (attn3 > 0) { - attn3 *= attn3; - value += attn3 * attn3 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 0, dx3, dy3, dz3); - } - - /* Contribution (1,0,1) */ - dx2 = dx3; - dy2 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D; - dz2 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; - attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 1, dx2, dy2, dz2); - } - - /* Contribution (0,1,1) */ - dx1 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D; - dy1 = dy3; - dz1 = dz2; - attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 1, dx1, dy1, dz1); - } - - /* Contribution (1,1,1) */ - dx0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; - dy0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; - dz0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; - attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0; - if (attn0 > 0) { - attn0 *= attn0; - value += attn0 * attn0 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 1, dx0, dy0, dz0); - } - } else { /* We're inside the octahedron (Rectified 3-Simplex) in between. - Decide between point (0,0,1) and (1,1,0) as closest */ - p1 = xins + yins; - if (p1 > 1) { - aScore = p1 - 1; - aPoint = 0x03; - aIsFurtherSide = 1; - } else { - aScore = 1 - p1; - aPoint = 0x04; - aIsFurtherSide = 0; - } - - /* Decide between point (0,1,0) and (1,0,1) as closest */ - p2 = xins + zins; - if (p2 > 1) { - bScore = p2 - 1; - bPoint = 0x05; - bIsFurtherSide = 1; - } else { - bScore = 1 - p2; - bPoint = 0x02; - bIsFurtherSide = 0; - } - - /* The closest out of the two (1,0,0) and (0,1,1) will replace the furthest out of the two decided above, if closer. */ - p3 = yins + zins; - if (p3 > 1) { - score = p3 - 1; - if (aScore <= bScore && aScore < score) { - aScore = score; - aPoint = 0x06; - aIsFurtherSide = 1; - } else if (aScore > bScore && bScore < score) { - bScore = score; - bPoint = 0x06; - bIsFurtherSide = 1; - } - } else { - score = 1 - p3; - if (aScore <= bScore && aScore < score) { - aScore = score; - aPoint = 0x01; - aIsFurtherSide = 0; - } else if (aScore > bScore && bScore < score) { - bScore = score; - bPoint = 0x01; - bIsFurtherSide = 0; - } - } - - /* Where each of the two closest points are determines how the extra two vertices are calculated. */ - if (aIsFurtherSide == bIsFurtherSide) { - if (aIsFurtherSide) { /* Both closest points on (1,1,1) side */ - - /* One of the two extra points is (1,1,1) */ - dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; - dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; - dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; - xsv_ext0 = xsb + 1; - ysv_ext0 = ysb + 1; - zsv_ext0 = zsb + 1; - - /* Other extra point is based on the shared axis. */ - c = (int8_t)(aPoint & bPoint); - if ((c & 0x01) != 0) { - dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; - xsv_ext1 = xsb + 2; - ysv_ext1 = ysb; - zsv_ext1 = zsb; - } else if ((c & 0x02) != 0) { - dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; - xsv_ext1 = xsb; - ysv_ext1 = ysb + 2; - zsv_ext1 = zsb; - } else { - dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D; - xsv_ext1 = xsb; - ysv_ext1 = ysb; - zsv_ext1 = zsb + 2; - } - } else { /* Both closest points on (0,0,0) side */ - - /* One of the two extra points is (0,0,0) */ - dx_ext0 = dx0; - dy_ext0 = dy0; - dz_ext0 = dz0; - xsv_ext0 = xsb; - ysv_ext0 = ysb; - zsv_ext0 = zsb; - - /* Other extra point is based on the omitted axis. */ - c = (int8_t)(aPoint | bPoint); - if ((c & 0x01) == 0) { - dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; - xsv_ext1 = xsb - 1; - ysv_ext1 = ysb + 1; - zsv_ext1 = zsb + 1; - } else if ((c & 0x02) == 0) { - dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; - dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; - xsv_ext1 = xsb + 1; - ysv_ext1 = ysb - 1; - zsv_ext1 = zsb + 1; - } else { - dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; - dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D; - xsv_ext1 = xsb + 1; - ysv_ext1 = ysb + 1; - zsv_ext1 = zsb - 1; - } - } - } else { /* One point on (0,0,0) side, one point on (1,1,1) side */ - if (aIsFurtherSide) { - c1 = aPoint; - c2 = bPoint; - } else { - c1 = bPoint; - c2 = aPoint; - } - - /* One contribution is a permutation of (1,1,-1) */ - if ((c1 & 0x01) == 0) { - dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_3D; - dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; - dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; - xsv_ext0 = xsb - 1; - ysv_ext0 = ysb + 1; - zsv_ext0 = zsb + 1; - } else if ((c1 & 0x02) == 0) { - dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; - dy_ext0 = dy0 + 1 - SQUISH_CONSTANT_3D; - dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; - xsv_ext0 = xsb + 1; - ysv_ext0 = ysb - 1; - zsv_ext0 = zsb + 1; - } else { - dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; - dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; - dz_ext0 = dz0 + 1 - SQUISH_CONSTANT_3D; - xsv_ext0 = xsb + 1; - ysv_ext0 = ysb + 1; - zsv_ext0 = zsb - 1; - } - - /* One contribution is a permutation of (0,0,2) */ - dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; - dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; - dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; - xsv_ext1 = xsb; - ysv_ext1 = ysb; - zsv_ext1 = zsb; - if ((c2 & 0x01) != 0) { - dx_ext1 -= 2; - xsv_ext1 += 2; - } else if ((c2 & 0x02) != 0) { - dy_ext1 -= 2; - ysv_ext1 += 2; - } else { - dz_ext1 -= 2; - zsv_ext1 += 2; - } - } - - /* Contribution (1,0,0) */ - dx1 = dx0 - 1 - SQUISH_CONSTANT_3D; - dy1 = dy0 - 0 - SQUISH_CONSTANT_3D; - dz1 = dz0 - 0 - SQUISH_CONSTANT_3D; - attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1); - } - - /* Contribution (0,1,0) */ - dx2 = dx0 - 0 - SQUISH_CONSTANT_3D; - dy2 = dy0 - 1 - SQUISH_CONSTANT_3D; - dz2 = dz1; - attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2); - } - - /* Contribution (0,0,1) */ - dx3 = dx2; - dy3 = dy1; - dz3 = dz0 - 1 - SQUISH_CONSTANT_3D; - attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; - if (attn3 > 0) { - attn3 *= attn3; - value += attn3 * attn3 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3); - } - - /* Contribution (1,1,0) */ - dx4 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; - dy4 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; - dz4 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D; - attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4; - if (attn4 > 0) { - attn4 *= attn4; - value += attn4 * attn4 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 0, dx4, dy4, dz4); - } - - /* Contribution (1,0,1) */ - dx5 = dx4; - dy5 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D; - dz5 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; - attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5; - if (attn5 > 0) { - attn5 *= attn5; - value += attn5 * attn5 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 1, dx5, dy5, dz5); - } - - /* Contribution (0,1,1) */ - dx6 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D; - dy6 = dy4; - dz6 = dz5; - attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6; - if (attn6 > 0) { - attn6 *= attn6; - value += attn6 * attn6 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 1, dx6, dy6, dz6); - } - } - - /* First extra vertex */ - attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0; - if (attn_ext0 > 0) - { - attn_ext0 *= attn_ext0; - value += attn_ext0 * attn_ext0 * extrapolate3(ctx, xsv_ext0, ysv_ext0, zsv_ext0, dx_ext0, dy_ext0, dz_ext0); - } - - /* Second extra vertex */ - attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1; - if (attn_ext1 > 0) - { - attn_ext1 *= attn_ext1; - value += attn_ext1 * attn_ext1 * extrapolate3(ctx, xsv_ext1, ysv_ext1, zsv_ext1, dx_ext1, dy_ext1, dz_ext1); - } - - return value / NORM_CONSTANT_3D; -} - -/* - * 4D OpenSimplex (Simplectic) Noise. - */ -double open_simplex_noise4(const struct osn_context *ctx, double x, double y, double z, double w) -{ - double uins; - double dx1, dy1, dz1, dw1; - double dx2, dy2, dz2, dw2; - double dx3, dy3, dz3, dw3; - double dx4, dy4, dz4, dw4; - double dx5, dy5, dz5, dw5; - double dx6, dy6, dz6, dw6; - double dx7, dy7, dz7, dw7; - double dx8, dy8, dz8, dw8; - double dx9, dy9, dz9, dw9; - double dx10, dy10, dz10, dw10; - double attn0, attn1, attn2, attn3, attn4; - double attn5, attn6, attn7, attn8, attn9, attn10; - double attn_ext0, attn_ext1, attn_ext2; - int8_t c, c1, c2; - int8_t aPoint, bPoint; - double aScore, bScore; - int aIsBiggerSide; - int bIsBiggerSide; - double p1, p2, p3, p4; - double score; - - /* Place input coordinates on simplectic honeycomb. */ - double stretchOffset = (x + y + z + w) * STRETCH_CONSTANT_4D; - double xs = x + stretchOffset; - double ys = y + stretchOffset; - double zs = z + stretchOffset; - double ws = w + stretchOffset; - - /* Floor to get simplectic honeycomb coordinates of rhombo-hypercube super-cell origin. */ - int xsb = fastFloor(xs); - int ysb = fastFloor(ys); - int zsb = fastFloor(zs); - int wsb = fastFloor(ws); - - /* Skew out to get actual coordinates of stretched rhombo-hypercube origin. We'll need these later. */ - double squishOffset = (xsb + ysb + zsb + wsb) * SQUISH_CONSTANT_4D; - double xb = xsb + squishOffset; - double yb = ysb + squishOffset; - double zb = zsb + squishOffset; - double wb = wsb + squishOffset; - - /* Compute simplectic honeycomb coordinates relative to rhombo-hypercube origin. */ - double xins = xs - xsb; - double yins = ys - ysb; - double zins = zs - zsb; - double wins = ws - wsb; - - /* Sum those together to get a value that determines which region we're in. */ - double inSum = xins + yins + zins + wins; - - /* Positions relative to origin point. */ - double dx0 = x - xb; - double dy0 = y - yb; - double dz0 = z - zb; - double dw0 = w - wb; - - /* We'll be defining these inside the next block and using them afterwards. */ - double dx_ext0, dy_ext0, dz_ext0, dw_ext0; - double dx_ext1, dy_ext1, dz_ext1, dw_ext1; - double dx_ext2, dy_ext2, dz_ext2, dw_ext2; - int xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0; - int xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1; - int xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2; - - double value = 0; - if (inSum <= 1) { /* We're inside the pentachoron (4-Simplex) at (0,0,0,0) */ - - /* Determine which two of (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) are closest. */ - aPoint = 0x01; - aScore = xins; - bPoint = 0x02; - bScore = yins; - if (aScore >= bScore && zins > bScore) { - bScore = zins; - bPoint = 0x04; - } else if (aScore < bScore && zins > aScore) { - aScore = zins; - aPoint = 0x04; - } - if (aScore >= bScore && wins > bScore) { - bScore = wins; - bPoint = 0x08; - } else if (aScore < bScore && wins > aScore) { - aScore = wins; - aPoint = 0x08; - } - - /* Now we determine the three lattice points not part of the pentachoron that may contribute. - This depends on the closest two pentachoron vertices, including (0,0,0,0) */ - uins = 1 - inSum; - if (uins > aScore || uins > bScore) { /* (0,0,0,0) is one of the closest two pentachoron vertices. */ - c = (bScore > aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */ - if ((c & 0x01) == 0) { - xsv_ext0 = xsb - 1; - xsv_ext1 = xsv_ext2 = xsb; - dx_ext0 = dx0 + 1; - dx_ext1 = dx_ext2 = dx0; - } else { - xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1; - dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 1; - } - - if ((c & 0x02) == 0) { - ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; - dy_ext0 = dy_ext1 = dy_ext2 = dy0; - if ((c & 0x01) == 0x01) { - ysv_ext0 -= 1; - dy_ext0 += 1; - } else { - ysv_ext1 -= 1; - dy_ext1 += 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; - dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1; - } - - if ((c & 0x04) == 0) { - zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; - dz_ext0 = dz_ext1 = dz_ext2 = dz0; - if ((c & 0x03) != 0) { - if ((c & 0x03) == 0x03) { - zsv_ext0 -= 1; - dz_ext0 += 1; - } else { - zsv_ext1 -= 1; - dz_ext1 += 1; - } - } else { - zsv_ext2 -= 1; - dz_ext2 += 1; - } - } else { - zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; - dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1; - } - - if ((c & 0x08) == 0) { - wsv_ext0 = wsv_ext1 = wsb; - wsv_ext2 = wsb - 1; - dw_ext0 = dw_ext1 = dw0; - dw_ext2 = dw0 + 1; - } else { - wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1; - dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 1; - } - } else { /* (0,0,0,0) is not one of the closest two pentachoron vertices. */ - c = (int8_t)(aPoint | bPoint); /* Our three extra vertices are determined by the closest two. */ - - if ((c & 0x01) == 0) { - xsv_ext0 = xsv_ext2 = xsb; - xsv_ext1 = xsb - 1; - dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D; - dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_4D; - dx_ext2 = dx0 - SQUISH_CONSTANT_4D; - } else { - xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1; - dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dx_ext1 = dx_ext2 = dx0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c & 0x02) == 0) { - ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; - dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D; - dy_ext1 = dy_ext2 = dy0 - SQUISH_CONSTANT_4D; - if ((c & 0x01) == 0x01) { - ysv_ext1 -= 1; - dy_ext1 += 1; - } else { - ysv_ext2 -= 1; - dy_ext2 += 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; - dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy_ext1 = dy_ext2 = dy0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c & 0x04) == 0) { - zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; - dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D; - dz_ext1 = dz_ext2 = dz0 - SQUISH_CONSTANT_4D; - if ((c & 0x03) == 0x03) { - zsv_ext1 -= 1; - dz_ext1 += 1; - } else { - zsv_ext2 -= 1; - dz_ext2 += 1; - } - } else { - zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; - dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz_ext1 = dz_ext2 = dz0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c & 0x08) == 0) { - wsv_ext0 = wsv_ext1 = wsb; - wsv_ext2 = wsb - 1; - dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D; - dw_ext1 = dw0 - SQUISH_CONSTANT_4D; - dw_ext2 = dw0 + 1 - SQUISH_CONSTANT_4D; - } else { - wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1; - dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw_ext1 = dw_ext2 = dw0 - 1 - SQUISH_CONSTANT_4D; - } - } - - /* Contribution (0,0,0,0) */ - attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0; - if (attn0 > 0) { - attn0 *= attn0; - value += attn0 * attn0 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 0, dx0, dy0, dz0, dw0); - } - - /* Contribution (1,0,0,0) */ - dx1 = dx0 - 1 - SQUISH_CONSTANT_4D; - dy1 = dy0 - 0 - SQUISH_CONSTANT_4D; - dz1 = dz0 - 0 - SQUISH_CONSTANT_4D; - dw1 = dw0 - 0 - SQUISH_CONSTANT_4D; - attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1); - } - - /* Contribution (0,1,0,0) */ - dx2 = dx0 - 0 - SQUISH_CONSTANT_4D; - dy2 = dy0 - 1 - SQUISH_CONSTANT_4D; - dz2 = dz1; - dw2 = dw1; - attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2); - } - - /* Contribution (0,0,1,0) */ - dx3 = dx2; - dy3 = dy1; - dz3 = dz0 - 1 - SQUISH_CONSTANT_4D; - dw3 = dw1; - attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3; - if (attn3 > 0) { - attn3 *= attn3; - value += attn3 * attn3 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3); - } - - /* Contribution (0,0,0,1) */ - dx4 = dx2; - dy4 = dy1; - dz4 = dz1; - dw4 = dw0 - 1 - SQUISH_CONSTANT_4D; - attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4; - if (attn4 > 0) { - attn4 *= attn4; - value += attn4 * attn4 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4); - } - } else if (inSum >= 3) { /* We're inside the pentachoron (4-Simplex) at (1,1,1,1) - Determine which two of (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) are closest. */ - aPoint = 0x0E; - aScore = xins; - bPoint = 0x0D; - bScore = yins; - if (aScore <= bScore && zins < bScore) { - bScore = zins; - bPoint = 0x0B; - } else if (aScore > bScore && zins < aScore) { - aScore = zins; - aPoint = 0x0B; - } - if (aScore <= bScore && wins < bScore) { - bScore = wins; - bPoint = 0x07; - } else if (aScore > bScore && wins < aScore) { - aScore = wins; - aPoint = 0x07; - } - - /* Now we determine the three lattice points not part of the pentachoron that may contribute. - This depends on the closest two pentachoron vertices, including (0,0,0,0) */ - uins = 4 - inSum; - if (uins < aScore || uins < bScore) { /* (1,1,1,1) is one of the closest two pentachoron vertices. */ - c = (bScore < aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */ - - if ((c & 0x01) != 0) { - xsv_ext0 = xsb + 2; - xsv_ext1 = xsv_ext2 = xsb + 1; - dx_ext0 = dx0 - 2 - 4 * SQUISH_CONSTANT_4D; - dx_ext1 = dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D; - } else { - xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb; - dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 4 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x02) != 0) { - ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; - dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D; - if ((c & 0x01) != 0) { - ysv_ext1 += 1; - dy_ext1 -= 1; - } else { - ysv_ext0 += 1; - dy_ext0 -= 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; - dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 4 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x04) != 0) { - zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; - dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D; - if ((c & 0x03) != 0x03) { - if ((c & 0x03) == 0) { - zsv_ext0 += 1; - dz_ext0 -= 1; - } else { - zsv_ext1 += 1; - dz_ext1 -= 1; - } - } else { - zsv_ext2 += 1; - dz_ext2 -= 1; - } - } else { - zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; - dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 4 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x08) != 0) { - wsv_ext0 = wsv_ext1 = wsb + 1; - wsv_ext2 = wsb + 2; - dw_ext0 = dw_ext1 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D; - dw_ext2 = dw0 - 2 - 4 * SQUISH_CONSTANT_4D; - } else { - wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb; - dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 4 * SQUISH_CONSTANT_4D; - } - } else { /* (1,1,1,1) is not one of the closest two pentachoron vertices. */ - c = (int8_t)(aPoint & bPoint); /* Our three extra vertices are determined by the closest two. */ - - if ((c & 0x01) != 0) { - xsv_ext0 = xsv_ext2 = xsb + 1; - xsv_ext1 = xsb + 2; - dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dx_ext1 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D; - dx_ext2 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; - } else { - xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb; - dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D; - dx_ext1 = dx_ext2 = dx0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x02) != 0) { - ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; - dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy_ext1 = dy_ext2 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; - if ((c & 0x01) != 0) { - ysv_ext2 += 1; - dy_ext2 -= 1; - } else { - ysv_ext1 += 1; - dy_ext1 -= 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; - dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D; - dy_ext1 = dy_ext2 = dy0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x04) != 0) { - zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; - dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz_ext1 = dz_ext2 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; - if ((c & 0x03) != 0) { - zsv_ext2 += 1; - dz_ext2 -= 1; - } else { - zsv_ext1 += 1; - dz_ext1 -= 1; - } - } else { - zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; - dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D; - dz_ext1 = dz_ext2 = dz0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x08) != 0) { - wsv_ext0 = wsv_ext1 = wsb + 1; - wsv_ext2 = wsb + 2; - dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw_ext1 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; - dw_ext2 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D; - } else { - wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb; - dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D; - dw_ext1 = dw_ext2 = dw0 - 3 * SQUISH_CONSTANT_4D; - } - } - - /* Contribution (1,1,1,0) */ - dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; - dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; - dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; - dw4 = dw0 - 3 * SQUISH_CONSTANT_4D; - attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4; - if (attn4 > 0) { - attn4 *= attn4; - value += attn4 * attn4 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4); - } - - /* Contribution (1,1,0,1) */ - dx3 = dx4; - dy3 = dy4; - dz3 = dz0 - 3 * SQUISH_CONSTANT_4D; - dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; - attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3; - if (attn3 > 0) { - attn3 *= attn3; - value += attn3 * attn3 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3); - } - - /* Contribution (1,0,1,1) */ - dx2 = dx4; - dy2 = dy0 - 3 * SQUISH_CONSTANT_4D; - dz2 = dz4; - dw2 = dw3; - attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2); - } - - /* Contribution (0,1,1,1) */ - dx1 = dx0 - 3 * SQUISH_CONSTANT_4D; - dz1 = dz4; - dy1 = dy4; - dw1 = dw3; - attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1); - } - - /* Contribution (1,1,1,1) */ - dx0 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D; - dy0 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D; - dz0 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D; - dw0 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D; - attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0; - if (attn0 > 0) { - attn0 *= attn0; - value += attn0 * attn0 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 1, dx0, dy0, dz0, dw0); - } - } else if (inSum <= 2) { /* We're inside the first dispentachoron (Rectified 4-Simplex) */ - aIsBiggerSide = 1; - bIsBiggerSide = 1; - - /* Decide between (1,1,0,0) and (0,0,1,1) */ - if (xins + yins > zins + wins) { - aScore = xins + yins; - aPoint = 0x03; - } else { - aScore = zins + wins; - aPoint = 0x0C; - } - - /* Decide between (1,0,1,0) and (0,1,0,1) */ - if (xins + zins > yins + wins) { - bScore = xins + zins; - bPoint = 0x05; - } else { - bScore = yins + wins; - bPoint = 0x0A; - } - - /* Closer between (1,0,0,1) and (0,1,1,0) will replace the further of a and b, if closer. */ - if (xins + wins > yins + zins) { - score = xins + wins; - if (aScore >= bScore && score > bScore) { - bScore = score; - bPoint = 0x09; - } else if (aScore < bScore && score > aScore) { - aScore = score; - aPoint = 0x09; - } - } else { - score = yins + zins; - if (aScore >= bScore && score > bScore) { - bScore = score; - bPoint = 0x06; - } else if (aScore < bScore && score > aScore) { - aScore = score; - aPoint = 0x06; - } - } - - /* Decide if (1,0,0,0) is closer. */ - p1 = 2 - inSum + xins; - if (aScore >= bScore && p1 > bScore) { - bScore = p1; - bPoint = 0x01; - bIsBiggerSide = 0; - } else if (aScore < bScore && p1 > aScore) { - aScore = p1; - aPoint = 0x01; - aIsBiggerSide = 0; - } - - /* Decide if (0,1,0,0) is closer. */ - p2 = 2 - inSum + yins; - if (aScore >= bScore && p2 > bScore) { - bScore = p2; - bPoint = 0x02; - bIsBiggerSide = 0; - } else if (aScore < bScore && p2 > aScore) { - aScore = p2; - aPoint = 0x02; - aIsBiggerSide = 0; - } - - /* Decide if (0,0,1,0) is closer. */ - p3 = 2 - inSum + zins; - if (aScore >= bScore && p3 > bScore) { - bScore = p3; - bPoint = 0x04; - bIsBiggerSide = 0; - } else if (aScore < bScore && p3 > aScore) { - aScore = p3; - aPoint = 0x04; - aIsBiggerSide = 0; - } - - /* Decide if (0,0,0,1) is closer. */ - p4 = 2 - inSum + wins; - if (aScore >= bScore && p4 > bScore) { - bScore = p4; - bPoint = 0x08; - bIsBiggerSide = 0; - } else if (aScore < bScore && p4 > aScore) { - aScore = p4; - aPoint = 0x08; - aIsBiggerSide = 0; - } - - /* Where each of the two closest points are determines how the extra three vertices are calculated. */ - if (aIsBiggerSide == bIsBiggerSide) { - if (aIsBiggerSide) { /* Both closest points on the bigger side */ - c1 = (int8_t)(aPoint | bPoint); - c2 = (int8_t)(aPoint & bPoint); - if ((c1 & 0x01) == 0) { - xsv_ext0 = xsb; - xsv_ext1 = xsb - 1; - dx_ext0 = dx0 - 3 * SQUISH_CONSTANT_4D; - dx_ext1 = dx0 + 1 - 2 * SQUISH_CONSTANT_4D; - } else { - xsv_ext0 = xsv_ext1 = xsb + 1; - dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; - dx_ext1 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x02) == 0) { - ysv_ext0 = ysb; - ysv_ext1 = ysb - 1; - dy_ext0 = dy0 - 3 * SQUISH_CONSTANT_4D; - dy_ext1 = dy0 + 1 - 2 * SQUISH_CONSTANT_4D; - } else { - ysv_ext0 = ysv_ext1 = ysb + 1; - dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; - dy_ext1 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x04) == 0) { - zsv_ext0 = zsb; - zsv_ext1 = zsb - 1; - dz_ext0 = dz0 - 3 * SQUISH_CONSTANT_4D; - dz_ext1 = dz0 + 1 - 2 * SQUISH_CONSTANT_4D; - } else { - zsv_ext0 = zsv_ext1 = zsb + 1; - dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; - dz_ext1 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x08) == 0) { - wsv_ext0 = wsb; - wsv_ext1 = wsb - 1; - dw_ext0 = dw0 - 3 * SQUISH_CONSTANT_4D; - dw_ext1 = dw0 + 1 - 2 * SQUISH_CONSTANT_4D; - } else { - wsv_ext0 = wsv_ext1 = wsb + 1; - dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; - dw_ext1 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - } - - /* One combination is a permutation of (0,0,0,2) based on c2 */ - xsv_ext2 = xsb; - ysv_ext2 = ysb; - zsv_ext2 = zsb; - wsv_ext2 = wsb; - dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D; - dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D; - dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D; - dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D; - if ((c2 & 0x01) != 0) { - xsv_ext2 += 2; - dx_ext2 -= 2; - } else if ((c2 & 0x02) != 0) { - ysv_ext2 += 2; - dy_ext2 -= 2; - } else if ((c2 & 0x04) != 0) { - zsv_ext2 += 2; - dz_ext2 -= 2; - } else { - wsv_ext2 += 2; - dw_ext2 -= 2; - } - - } else { /* Both closest points on the smaller side */ - /* One of the two extra points is (0,0,0,0) */ - xsv_ext2 = xsb; - ysv_ext2 = ysb; - zsv_ext2 = zsb; - wsv_ext2 = wsb; - dx_ext2 = dx0; - dy_ext2 = dy0; - dz_ext2 = dz0; - dw_ext2 = dw0; - - /* Other two points are based on the omitted axes. */ - c = (int8_t)(aPoint | bPoint); - - if ((c & 0x01) == 0) { - xsv_ext0 = xsb - 1; - xsv_ext1 = xsb; - dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D; - dx_ext1 = dx0 - SQUISH_CONSTANT_4D; - } else { - xsv_ext0 = xsv_ext1 = xsb + 1; - dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c & 0x02) == 0) { - ysv_ext0 = ysv_ext1 = ysb; - dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D; - if ((c & 0x01) == 0x01) - { - ysv_ext0 -= 1; - dy_ext0 += 1; - } else { - ysv_ext1 -= 1; - dy_ext1 += 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysb + 1; - dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c & 0x04) == 0) { - zsv_ext0 = zsv_ext1 = zsb; - dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D; - if ((c & 0x03) == 0x03) - { - zsv_ext0 -= 1; - dz_ext0 += 1; - } else { - zsv_ext1 -= 1; - dz_ext1 += 1; - } - } else { - zsv_ext0 = zsv_ext1 = zsb + 1; - dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c & 0x08) == 0) - { - wsv_ext0 = wsb; - wsv_ext1 = wsb - 1; - dw_ext0 = dw0 - SQUISH_CONSTANT_4D; - dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D; - } else { - wsv_ext0 = wsv_ext1 = wsb + 1; - dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D; - } - - } - } else { /* One point on each "side" */ - if (aIsBiggerSide) { - c1 = aPoint; - c2 = bPoint; - } else { - c1 = bPoint; - c2 = aPoint; - } - - /* Two contributions are the bigger-sided point with each 0 replaced with -1. */ - if ((c1 & 0x01) == 0) { - xsv_ext0 = xsb - 1; - xsv_ext1 = xsb; - dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D; - dx_ext1 = dx0 - SQUISH_CONSTANT_4D; - } else { - xsv_ext0 = xsv_ext1 = xsb + 1; - dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x02) == 0) { - ysv_ext0 = ysv_ext1 = ysb; - dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D; - if ((c1 & 0x01) == 0x01) { - ysv_ext0 -= 1; - dy_ext0 += 1; - } else { - ysv_ext1 -= 1; - dy_ext1 += 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysb + 1; - dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x04) == 0) { - zsv_ext0 = zsv_ext1 = zsb; - dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D; - if ((c1 & 0x03) == 0x03) { - zsv_ext0 -= 1; - dz_ext0 += 1; - } else { - zsv_ext1 -= 1; - dz_ext1 += 1; - } - } else { - zsv_ext0 = zsv_ext1 = zsb + 1; - dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x08) == 0) { - wsv_ext0 = wsb; - wsv_ext1 = wsb - 1; - dw_ext0 = dw0 - SQUISH_CONSTANT_4D; - dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D; - } else { - wsv_ext0 = wsv_ext1 = wsb + 1; - dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D; - } - - /* One contribution is a permutation of (0,0,0,2) based on the smaller-sided point */ - xsv_ext2 = xsb; - ysv_ext2 = ysb; - zsv_ext2 = zsb; - wsv_ext2 = wsb; - dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D; - dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D; - dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D; - dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D; - if ((c2 & 0x01) != 0) { - xsv_ext2 += 2; - dx_ext2 -= 2; - } else if ((c2 & 0x02) != 0) { - ysv_ext2 += 2; - dy_ext2 -= 2; - } else if ((c2 & 0x04) != 0) { - zsv_ext2 += 2; - dz_ext2 -= 2; - } else { - wsv_ext2 += 2; - dw_ext2 -= 2; - } - } - - /* Contribution (1,0,0,0) */ - dx1 = dx0 - 1 - SQUISH_CONSTANT_4D; - dy1 = dy0 - 0 - SQUISH_CONSTANT_4D; - dz1 = dz0 - 0 - SQUISH_CONSTANT_4D; - dw1 = dw0 - 0 - SQUISH_CONSTANT_4D; - attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1); - } - - /* Contribution (0,1,0,0) */ - dx2 = dx0 - 0 - SQUISH_CONSTANT_4D; - dy2 = dy0 - 1 - SQUISH_CONSTANT_4D; - dz2 = dz1; - dw2 = dw1; - attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2); - } - - /* Contribution (0,0,1,0) */ - dx3 = dx2; - dy3 = dy1; - dz3 = dz0 - 1 - SQUISH_CONSTANT_4D; - dw3 = dw1; - attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3; - if (attn3 > 0) { - attn3 *= attn3; - value += attn3 * attn3 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3); - } - - /* Contribution (0,0,0,1) */ - dx4 = dx2; - dy4 = dy1; - dz4 = dz1; - dw4 = dw0 - 1 - SQUISH_CONSTANT_4D; - attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4; - if (attn4 > 0) { - attn4 *= attn4; - value += attn4 * attn4 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4); - } - - /* Contribution (1,1,0,0) */ - dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; - dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; - attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5; - if (attn5 > 0) { - attn5 *= attn5; - value += attn5 * attn5 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5); - } - - /* Contribution (1,0,1,0) */ - dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; - dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; - attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6; - if (attn6 > 0) { - attn6 *= attn6; - value += attn6 * attn6 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6); - } - - /* Contribution (1,0,0,1) */ - dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; - dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; - dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7; - if (attn7 > 0) { - attn7 *= attn7; - value += attn7 * attn7 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7); - } - - /* Contribution (0,1,1,0) */ - dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; - dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; - attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8; - if (attn8 > 0) { - attn8 *= attn8; - value += attn8 * attn8 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8); - } - - /* Contribution (0,1,0,1) */ - dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; - dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; - dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9; - if (attn9 > 0) { - attn9 *= attn9; - value += attn9 * attn9 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9); - } - - /* Contribution (0,0,1,1) */ - dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; - dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; - dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10; - if (attn10 > 0) { - attn10 *= attn10; - value += attn10 * attn10 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10); - } - } else { /* We're inside the second dispentachoron (Rectified 4-Simplex) */ - aIsBiggerSide = 1; - bIsBiggerSide = 1; - - /* Decide between (0,0,1,1) and (1,1,0,0) */ - if (xins + yins < zins + wins) { - aScore = xins + yins; - aPoint = 0x0C; - } else { - aScore = zins + wins; - aPoint = 0x03; - } - - /* Decide between (0,1,0,1) and (1,0,1,0) */ - if (xins + zins < yins + wins) { - bScore = xins + zins; - bPoint = 0x0A; - } else { - bScore = yins + wins; - bPoint = 0x05; - } - - /* Closer between (0,1,1,0) and (1,0,0,1) will replace the further of a and b, if closer. */ - if (xins + wins < yins + zins) { - score = xins + wins; - if (aScore <= bScore && score < bScore) { - bScore = score; - bPoint = 0x06; - } else if (aScore > bScore && score < aScore) { - aScore = score; - aPoint = 0x06; - } - } else { - score = yins + zins; - if (aScore <= bScore && score < bScore) { - bScore = score; - bPoint = 0x09; - } else if (aScore > bScore && score < aScore) { - aScore = score; - aPoint = 0x09; - } - } - - /* Decide if (0,1,1,1) is closer. */ - p1 = 3 - inSum + xins; - if (aScore <= bScore && p1 < bScore) { - bScore = p1; - bPoint = 0x0E; - bIsBiggerSide = 0; - } else if (aScore > bScore && p1 < aScore) { - aScore = p1; - aPoint = 0x0E; - aIsBiggerSide = 0; - } - - /* Decide if (1,0,1,1) is closer. */ - p2 = 3 - inSum + yins; - if (aScore <= bScore && p2 < bScore) { - bScore = p2; - bPoint = 0x0D; - bIsBiggerSide = 0; - } else if (aScore > bScore && p2 < aScore) { - aScore = p2; - aPoint = 0x0D; - aIsBiggerSide = 0; - } - - /* Decide if (1,1,0,1) is closer. */ - p3 = 3 - inSum + zins; - if (aScore <= bScore && p3 < bScore) { - bScore = p3; - bPoint = 0x0B; - bIsBiggerSide = 0; - } else if (aScore > bScore && p3 < aScore) { - aScore = p3; - aPoint = 0x0B; - aIsBiggerSide = 0; - } - - /* Decide if (1,1,1,0) is closer. */ - p4 = 3 - inSum + wins; - if (aScore <= bScore && p4 < bScore) { - bScore = p4; - bPoint = 0x07; - bIsBiggerSide = 0; - } else if (aScore > bScore && p4 < aScore) { - aScore = p4; - aPoint = 0x07; - aIsBiggerSide = 0; - } - - /* Where each of the two closest points are determines how the extra three vertices are calculated. */ - if (aIsBiggerSide == bIsBiggerSide) { - if (aIsBiggerSide) { /* Both closest points on the bigger side */ - c1 = (int8_t)(aPoint & bPoint); - c2 = (int8_t)(aPoint | bPoint); - - /* Two contributions are permutations of (0,0,0,1) and (0,0,0,2) based on c1 */ - xsv_ext0 = xsv_ext1 = xsb; - ysv_ext0 = ysv_ext1 = ysb; - zsv_ext0 = zsv_ext1 = zsb; - wsv_ext0 = wsv_ext1 = wsb; - dx_ext0 = dx0 - SQUISH_CONSTANT_4D; - dy_ext0 = dy0 - SQUISH_CONSTANT_4D; - dz_ext0 = dz0 - SQUISH_CONSTANT_4D; - dw_ext0 = dw0 - SQUISH_CONSTANT_4D; - dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_4D; - dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_4D; - dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_4D; - dw_ext1 = dw0 - 2 * SQUISH_CONSTANT_4D; - if ((c1 & 0x01) != 0) { - xsv_ext0 += 1; - dx_ext0 -= 1; - xsv_ext1 += 2; - dx_ext1 -= 2; - } else if ((c1 & 0x02) != 0) { - ysv_ext0 += 1; - dy_ext0 -= 1; - ysv_ext1 += 2; - dy_ext1 -= 2; - } else if ((c1 & 0x04) != 0) { - zsv_ext0 += 1; - dz_ext0 -= 1; - zsv_ext1 += 2; - dz_ext1 -= 2; - } else { - wsv_ext0 += 1; - dw_ext0 -= 1; - wsv_ext1 += 2; - dw_ext1 -= 2; - } - - /* One contribution is a permutation of (1,1,1,-1) based on c2 */ - xsv_ext2 = xsb + 1; - ysv_ext2 = ysb + 1; - zsv_ext2 = zsb + 1; - wsv_ext2 = wsb + 1; - dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - if ((c2 & 0x01) == 0) { - xsv_ext2 -= 2; - dx_ext2 += 2; - } else if ((c2 & 0x02) == 0) { - ysv_ext2 -= 2; - dy_ext2 += 2; - } else if ((c2 & 0x04) == 0) { - zsv_ext2 -= 2; - dz_ext2 += 2; - } else { - wsv_ext2 -= 2; - dw_ext2 += 2; - } - } else { /* Both closest points on the smaller side */ - /* One of the two extra points is (1,1,1,1) */ - xsv_ext2 = xsb + 1; - ysv_ext2 = ysb + 1; - zsv_ext2 = zsb + 1; - wsv_ext2 = wsb + 1; - dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D; - dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D; - dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D; - dw_ext2 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D; - - /* Other two points are based on the shared axes. */ - c = (int8_t)(aPoint & bPoint); - - if ((c & 0x01) != 0) { - xsv_ext0 = xsb + 2; - xsv_ext1 = xsb + 1; - dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D; - dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; - } else { - xsv_ext0 = xsv_ext1 = xsb; - dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x02) != 0) { - ysv_ext0 = ysv_ext1 = ysb + 1; - dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; - if ((c & 0x01) == 0) - { - ysv_ext0 += 1; - dy_ext0 -= 1; - } else { - ysv_ext1 += 1; - dy_ext1 -= 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysb; - dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x04) != 0) { - zsv_ext0 = zsv_ext1 = zsb + 1; - dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; - if ((c & 0x03) == 0) - { - zsv_ext0 += 1; - dz_ext0 -= 1; - } else { - zsv_ext1 += 1; - dz_ext1 -= 1; - } - } else { - zsv_ext0 = zsv_ext1 = zsb; - dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c & 0x08) != 0) - { - wsv_ext0 = wsb + 1; - wsv_ext1 = wsb + 2; - dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; - dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D; - } else { - wsv_ext0 = wsv_ext1 = wsb; - dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D; - } - } - } else { /* One point on each "side" */ - if (aIsBiggerSide) { - c1 = aPoint; - c2 = bPoint; - } else { - c1 = bPoint; - c2 = aPoint; - } - - /* Two contributions are the bigger-sided point with each 1 replaced with 2. */ - if ((c1 & 0x01) != 0) { - xsv_ext0 = xsb + 2; - xsv_ext1 = xsb + 1; - dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D; - dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; - } else { - xsv_ext0 = xsv_ext1 = xsb; - dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x02) != 0) { - ysv_ext0 = ysv_ext1 = ysb + 1; - dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; - if ((c1 & 0x01) == 0) { - ysv_ext0 += 1; - dy_ext0 -= 1; - } else { - ysv_ext1 += 1; - dy_ext1 -= 1; - } - } else { - ysv_ext0 = ysv_ext1 = ysb; - dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x04) != 0) { - zsv_ext0 = zsv_ext1 = zsb + 1; - dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; - if ((c1 & 0x03) == 0) { - zsv_ext0 += 1; - dz_ext0 -= 1; - } else { - zsv_ext1 += 1; - dz_ext1 -= 1; - } - } else { - zsv_ext0 = zsv_ext1 = zsb; - dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D; - } - - if ((c1 & 0x08) != 0) { - wsv_ext0 = wsb + 1; - wsv_ext1 = wsb + 2; - dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; - dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D; - } else { - wsv_ext0 = wsv_ext1 = wsb; - dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D; - } - - /* One contribution is a permutation of (1,1,1,-1) based on the smaller-sided point */ - xsv_ext2 = xsb + 1; - ysv_ext2 = ysb + 1; - zsv_ext2 = zsb + 1; - wsv_ext2 = wsb + 1; - dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - if ((c2 & 0x01) == 0) { - xsv_ext2 -= 2; - dx_ext2 += 2; - } else if ((c2 & 0x02) == 0) { - ysv_ext2 -= 2; - dy_ext2 += 2; - } else if ((c2 & 0x04) == 0) { - zsv_ext2 -= 2; - dz_ext2 += 2; - } else { - wsv_ext2 -= 2; - dw_ext2 += 2; - } - } - - /* Contribution (1,1,1,0) */ - dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D; - dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D; - dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D; - dw4 = dw0 - 3 * SQUISH_CONSTANT_4D; - attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4; - if (attn4 > 0) { - attn4 *= attn4; - value += attn4 * attn4 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4); - } - - /* Contribution (1,1,0,1) */ - dx3 = dx4; - dy3 = dy4; - dz3 = dz0 - 3 * SQUISH_CONSTANT_4D; - dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D; - attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3; - if (attn3 > 0) { - attn3 *= attn3; - value += attn3 * attn3 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3); - } - - /* Contribution (1,0,1,1) */ - dx2 = dx4; - dy2 = dy0 - 3 * SQUISH_CONSTANT_4D; - dz2 = dz4; - dw2 = dw3; - attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2); - } - - /* Contribution (0,1,1,1) */ - dx1 = dx0 - 3 * SQUISH_CONSTANT_4D; - dz1 = dz4; - dy1 = dy4; - dw1 = dw3; - attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1); - } - - /* Contribution (1,1,0,0) */ - dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; - dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; - attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5; - if (attn5 > 0) { - attn5 *= attn5; - value += attn5 * attn5 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5); - } - - /* Contribution (1,0,1,0) */ - dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; - dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; - attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6; - if (attn6 > 0) { - attn6 *= attn6; - value += attn6 * attn6 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6); - } - - /* Contribution (1,0,0,1) */ - dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D; - dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; - dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; - dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7; - if (attn7 > 0) { - attn7 *= attn7; - value += attn7 * attn7 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7); - } - - /* Contribution (0,1,1,0) */ - dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; - dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D; - attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8; - if (attn8 > 0) { - attn8 *= attn8; - value += attn8 * attn8 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8); - } - - /* Contribution (0,1,0,1) */ - dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; - dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D; - dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D; - dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9; - if (attn9 > 0) { - attn9 *= attn9; - value += attn9 * attn9 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9); - } - - /* Contribution (0,0,1,1) */ - dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D; - dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D; - dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D; - dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D; - attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10; - if (attn10 > 0) { - attn10 *= attn10; - value += attn10 * attn10 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10); - } - } - - /* First extra vertex */ - attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0 - dw_ext0 * dw_ext0; - if (attn_ext0 > 0) - { - attn_ext0 *= attn_ext0; - value += attn_ext0 * attn_ext0 * extrapolate4(ctx, xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0, dx_ext0, dy_ext0, dz_ext0, dw_ext0); - } - - /* Second extra vertex */ - attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1 - dw_ext1 * dw_ext1; - if (attn_ext1 > 0) - { - attn_ext1 *= attn_ext1; - value += attn_ext1 * attn_ext1 * extrapolate4(ctx, xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1, dx_ext1, dy_ext1, dz_ext1, dw_ext1); - } - - /* Third extra vertex */ - attn_ext2 = 2 - dx_ext2 * dx_ext2 - dy_ext2 * dy_ext2 - dz_ext2 * dz_ext2 - dw_ext2 * dw_ext2; - if (attn_ext2 > 0) - { - attn_ext2 *= attn_ext2; - value += attn_ext2 * attn_ext2 * extrapolate4(ctx, xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2, dx_ext2, dy_ext2, dz_ext2, dw_ext2); - } - - return value / NORM_CONSTANT_4D; -} - |