diff options
author | RĂ©mi Verschelde <rverschelde@gmail.com> | 2017-12-12 00:14:26 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-12-12 00:14:26 +0100 |
commit | 3a078603112710d1d2719d7919711ab76ae161f0 (patch) | |
tree | f01b1d94887864387026e2955b9a69b7dd10318c /thirdparty/libwebp/src/dsp/alpha_processing_sse2.c | |
parent | 33db6a14df19a8d3feecac5d4254699c34625fc1 (diff) | |
parent | 043103fe6a1168729abf74dd56b8982ce54eea43 (diff) |
Merge pull request #14561 from volzhs/libwebp-0.6.1
Update libwebp to 0.6.1
Diffstat (limited to 'thirdparty/libwebp/src/dsp/alpha_processing_sse2.c')
-rw-r--r-- | thirdparty/libwebp/src/dsp/alpha_processing_sse2.c | 343 |
1 files changed, 343 insertions, 0 deletions
diff --git a/thirdparty/libwebp/src/dsp/alpha_processing_sse2.c b/thirdparty/libwebp/src/dsp/alpha_processing_sse2.c new file mode 100644 index 0000000000..76587006a1 --- /dev/null +++ b/thirdparty/libwebp/src/dsp/alpha_processing_sse2.c @@ -0,0 +1,343 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Utilities for processing transparent channel. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) +#include <emmintrin.h> + +//------------------------------------------------------------------------------ + +static int DispatchAlpha_SSE2(const uint8_t* alpha, int alpha_stride, + int width, int height, + uint8_t* dst, int dst_stride) { + // alpha_and stores an 'and' operation of all the alpha[] values. The final + // value is not 0xff if any of the alpha[] is not equal to 0xff. + uint32_t alpha_and = 0xff; + int i, j; + const __m128i zero = _mm_setzero_si128(); + const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u); // to preserve RGB + const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u); + __m128i all_alphas = all_0xff; + + // We must be able to access 3 extra bytes after the last written byte + // 'dst[4 * width - 4]', because we don't know if alpha is the first or the + // last byte of the quadruplet. + const int limit = (width - 1) & ~7; + + for (j = 0; j < height; ++j) { + __m128i* out = (__m128i*)dst; + for (i = 0; i < limit; i += 8) { + // load 8 alpha bytes + const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]); + const __m128i a1 = _mm_unpacklo_epi8(a0, zero); + const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); + const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); + // load 8 dst pixels (32 bytes) + const __m128i b0_lo = _mm_loadu_si128(out + 0); + const __m128i b0_hi = _mm_loadu_si128(out + 1); + // mask dst alpha values + const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask); + const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask); + // combine + const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo); + const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi); + // store + _mm_storeu_si128(out + 0, b2_lo); + _mm_storeu_si128(out + 1, b2_hi); + // accumulate eight alpha 'and' in parallel + all_alphas = _mm_and_si128(all_alphas, a0); + out += 2; + } + for (; i < width; ++i) { + const uint32_t alpha_value = alpha[i]; + dst[4 * i] = alpha_value; + alpha_and &= alpha_value; + } + alpha += alpha_stride; + dst += dst_stride; + } + // Combine the eight alpha 'and' into a 8-bit mask. + alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); + return (alpha_and != 0xff); +} + +static void DispatchAlphaToGreen_SSE2(const uint8_t* alpha, int alpha_stride, + int width, int height, + uint32_t* dst, int dst_stride) { + int i, j; + const __m128i zero = _mm_setzero_si128(); + const int limit = width & ~15; + for (j = 0; j < height; ++j) { + for (i = 0; i < limit; i += 16) { // process 16 alpha bytes + const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]); + const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first! + const __m128i b1 = _mm_unpackhi_epi8(zero, a0); + const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); + const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero); + const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); + const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero); + _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo); + _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi); + _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo); + _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi); + } + for (; i < width; ++i) dst[i] = alpha[i] << 8; + alpha += alpha_stride; + dst += dst_stride; + } +} + +static int ExtractAlpha_SSE2(const uint8_t* argb, int argb_stride, + int width, int height, + uint8_t* alpha, int alpha_stride) { + // alpha_and stores an 'and' operation of all the alpha[] values. The final + // value is not 0xff if any of the alpha[] is not equal to 0xff. + uint32_t alpha_and = 0xff; + int i, j; + const __m128i a_mask = _mm_set1_epi32(0xffu); // to preserve alpha + const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u); + __m128i all_alphas = all_0xff; + + // We must be able to access 3 extra bytes after the last written byte + // 'src[4 * width - 4]', because we don't know if alpha is the first or the + // last byte of the quadruplet. + const int limit = (width - 1) & ~7; + + for (j = 0; j < height; ++j) { + const __m128i* src = (const __m128i*)argb; + for (i = 0; i < limit; i += 8) { + // load 32 argb bytes + const __m128i a0 = _mm_loadu_si128(src + 0); + const __m128i a1 = _mm_loadu_si128(src + 1); + const __m128i b0 = _mm_and_si128(a0, a_mask); + const __m128i b1 = _mm_and_si128(a1, a_mask); + const __m128i c0 = _mm_packs_epi32(b0, b1); + const __m128i d0 = _mm_packus_epi16(c0, c0); + // store + _mm_storel_epi64((__m128i*)&alpha[i], d0); + // accumulate eight alpha 'and' in parallel + all_alphas = _mm_and_si128(all_alphas, d0); + src += 2; + } + for (; i < width; ++i) { + const uint32_t alpha_value = argb[4 * i]; + alpha[i] = alpha_value; + alpha_and &= alpha_value; + } + argb += argb_stride; + alpha += alpha_stride; + } + // Combine the eight alpha 'and' into a 8-bit mask. + alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); + return (alpha_and == 0xff); +} + +//------------------------------------------------------------------------------ +// Non-dither premultiplied modes + +#define MULTIPLIER(a) ((a) * 0x8081) +#define PREMULTIPLY(x, m) (((x) * (m)) >> 23) + +// We can't use a 'const int' for the SHUFFLE value, because it has to be an +// immediate in the _mm_shufflexx_epi16() instruction. We really need a macro. +// We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit +// value. +#define APPLY_ALPHA(RGBX, SHUFFLE) do { \ + const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \ + const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \ + const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \ + const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \ + const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \ + const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \ + const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \ + const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \ + const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \ + /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \ + const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \ + const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \ + const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \ + const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \ + const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \ + const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \ + const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \ + _mm_storeu_si128((__m128i*)&(RGBX), A3); \ +} while (0) + +static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first, + int w, int h, int stride) { + const __m128i zero = _mm_setzero_si128(); + const __m128i kMult = _mm_set1_epi16(0x8081u); + const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0); + const int kSpan = 4; + while (h-- > 0) { + uint32_t* const rgbx = (uint32_t*)rgba; + int i; + if (!alpha_first) { + for (i = 0; i + kSpan <= w; i += kSpan) { + APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3)); + } + } else { + for (i = 0; i + kSpan <= w; i += kSpan) { + APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1)); + } + } + // Finish with left-overs. + for (; i < w; ++i) { + uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); + const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); + const uint32_t a = alpha[4 * i]; + if (a != 0xff) { + const uint32_t mult = MULTIPLIER(a); + rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); + rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); + rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); + } + } + rgba += stride; + } +} +#undef MULTIPLIER +#undef PREMULTIPLY + +//------------------------------------------------------------------------------ +// Alpha detection + +static int HasAlpha8b_SSE2(const uint8_t* src, int length) { + const __m128i all_0xff = _mm_set1_epi8(0xff); + int i = 0; + for (; i + 16 <= length; i += 16) { + const __m128i v = _mm_loadu_si128((const __m128i*)(src + i)); + const __m128i bits = _mm_cmpeq_epi8(v, all_0xff); + const int mask = _mm_movemask_epi8(bits); + if (mask != 0xffff) return 1; + } + for (; i < length; ++i) if (src[i] != 0xff) return 1; + return 0; +} + +static int HasAlpha32b_SSE2(const uint8_t* src, int length) { + const __m128i alpha_mask = _mm_set1_epi32(0xff); + const __m128i all_0xff = _mm_set1_epi8(0xff); + int i = 0; + // We don't know if we can access the last 3 bytes after the last alpha + // value 'src[4 * length - 4]' (because we don't know if alpha is the first + // or the last byte of the quadruplet). Hence the '-3' protection below. + length = length * 4 - 3; // size in bytes + for (; i + 64 <= length; i += 64) { + const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); + const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16)); + const __m128i a2 = _mm_loadu_si128((const __m128i*)(src + i + 32)); + const __m128i a3 = _mm_loadu_si128((const __m128i*)(src + i + 48)); + const __m128i b0 = _mm_and_si128(a0, alpha_mask); + const __m128i b1 = _mm_and_si128(a1, alpha_mask); + const __m128i b2 = _mm_and_si128(a2, alpha_mask); + const __m128i b3 = _mm_and_si128(a3, alpha_mask); + const __m128i c0 = _mm_packs_epi32(b0, b1); + const __m128i c1 = _mm_packs_epi32(b2, b3); + const __m128i d = _mm_packus_epi16(c0, c1); + const __m128i bits = _mm_cmpeq_epi8(d, all_0xff); + const int mask = _mm_movemask_epi8(bits); + if (mask != 0xffff) return 1; + } + for (; i + 32 <= length; i += 32) { + const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); + const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16)); + const __m128i b0 = _mm_and_si128(a0, alpha_mask); + const __m128i b1 = _mm_and_si128(a1, alpha_mask); + const __m128i c = _mm_packs_epi32(b0, b1); + const __m128i d = _mm_packus_epi16(c, c); + const __m128i bits = _mm_cmpeq_epi8(d, all_0xff); + const int mask = _mm_movemask_epi8(bits); + if (mask != 0xffff) return 1; + } + for (; i <= length; i += 4) if (src[i] != 0xff) return 1; + return 0; +} + +// ----------------------------------------------------------------------------- +// Apply alpha value to rows + +static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) { + int x = 0; + if (!inverse) { + const int kSpan = 2; + const __m128i zero = _mm_setzero_si128(); + const __m128i k128 = _mm_set1_epi16(128); + const __m128i kMult = _mm_set1_epi16(0x0101); + const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0); + for (x = 0; x + kSpan <= width; x += kSpan) { + // To compute 'result = (int)(a * x / 255. + .5)', we use: + // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16 + const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]); + const __m128i A1 = _mm_unpacklo_epi8(A0, zero); + const __m128i A2 = _mm_or_si128(A1, kMask); + const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3)); + const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3)); + // here, A4 = [ff a0 a0 a0][ff a1 a1 a1] + const __m128i A5 = _mm_mullo_epi16(A4, A1); + const __m128i A6 = _mm_add_epi16(A5, k128); + const __m128i A7 = _mm_mulhi_epu16(A6, kMult); + const __m128i A10 = _mm_packus_epi16(A7, zero); + _mm_storel_epi64((__m128i*)&ptr[x], A10); + } + } + width -= x; + if (width > 0) WebPMultARGBRow_C(ptr + x, width, inverse); +} + +static void MultRow_SSE2(uint8_t* const ptr, const uint8_t* const alpha, + int width, int inverse) { + int x = 0; + if (!inverse) { + const __m128i zero = _mm_setzero_si128(); + const __m128i k128 = _mm_set1_epi16(128); + const __m128i kMult = _mm_set1_epi16(0x0101); + for (x = 0; x + 8 <= width; x += 8) { + const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]); + const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]); + const __m128i v1 = _mm_unpacklo_epi8(v0, zero); + const __m128i a1 = _mm_unpacklo_epi8(a0, zero); + const __m128i v2 = _mm_mullo_epi16(v1, a1); + const __m128i v3 = _mm_add_epi16(v2, k128); + const __m128i v4 = _mm_mulhi_epu16(v3, kMult); + const __m128i v5 = _mm_packus_epi16(v4, zero); + _mm_storel_epi64((__m128i*)&ptr[x], v5); + } + } + width -= x; + if (width > 0) WebPMultRow_C(ptr + x, alpha + x, width, inverse); +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitAlphaProcessingSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) { + WebPMultARGBRow = MultARGBRow_SSE2; + WebPMultRow = MultRow_SSE2; + WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2; + WebPDispatchAlpha = DispatchAlpha_SSE2; + WebPDispatchAlphaToGreen = DispatchAlphaToGreen_SSE2; + WebPExtractAlpha = ExtractAlpha_SSE2; + + WebPHasAlpha8b = HasAlpha8b_SSE2; + WebPHasAlpha32b = HasAlpha32b_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2) + +#endif // WEBP_USE_SSE2 |